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Abstract—A Key challenge to Geomagnetic Disturbance (GMD)
studies is the scarcity of severe geomagnetic field data available
to researchers due to its low event occurrence. This study aims
to address this challenge by first creating realistic “synthetic”
data that represents the geomagnetic field fluctuations caused by
recent GMD events. This paper utilizes a machine-learning ap-
proach to generate synthetic geomagnetic field data. Specifically,
the application and preliminary results of a modified form of
the generative adversarial network (GAN) to create time-series
synthetic geomagnetic field data of three different severities are
described here. The purpose of this paper is to document the first
step towards creating severe synthetic geomagnetic field data to
advance power system research. Future studies beyond this paper
will extend on this work to generate data representing severe
GMD storms.

Index Terms—Geomagnetic Disturbances, Magnetometer, Ge-
omagnetic Field, Geomagnetically Induced Current, Machine
Learning, Neural Networks, Generative Adversarial Networks.

I. INTRODUCTION

EOMAGNETIC DISTURBANCE (GMD) simulations
G and analysis on the power grid are important for further-
ing innovations for the protection of the bulk power system.
Due to their rare occurrence and potential to cause long-term
and widespread damage to the electrical infrastructure, GMDs
are classified as High Impact, Low Frequency (HILF) events.
A significant challenge to GMD studies on the power grid is
posed by the scarcity of severe GMD geomagnetic data. The
purpose of this work is to address this gap by first generating
realistic “synthetic” data that represents the geomagnetic field
fluctuations caused by a GMD event. Future studies will
extend beyond this work to generate data representing severe
GMDs. This work is a part of the larger goal of modeling
severe GMD events.
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A. Geomagnetic Disturbance Formulation and its Impact on
the Power Grid

Geomagnetic disturbances are caused by an injection of
charged particles from the sun. The interaction between these
charged particles and the earth’s magnetosphere results in a
disturbance in the earth’s magnetic field. As described through
Faraday’s law of induction, changes in the earth’s magnetic
field can induce an electric field across the earth’s surface [1].

In power systems modeling, frequency domain transfor-
mations are commonly utilized to compute geomagnetically
induced electric fields [2]. The induced electric field is defined
as the product of the earth’s surface impedance and magnetic
field, as shown,

Fx(w) = Z(w) 22 (1)
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where Ex(w) corresponds to the northward electric field,
Ey(w) corresponds to the eastward electric field, Bx(w)
corresponds to the northward magnetic field, By (w) corre-
sponds to the eastward magnetic field, Z(w) corresponds to
the earth’s surface impedance, and po corresponds to the
magnetic permeability of free space. By computing the inverse
Fourier transform of F(w), the time-series electric field, E(t),
is obtained as shown,

E(t) = F H{E(w)} 3)

The presence of this electric field on the electric power
grid results in the formation of a quasi-dc voltage, V., across
transmission lines. The voltage induced on a transmission line
can be calculated by integrating F(¢) along the incremental
length, di, of the transmission line as shown,
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The induced voltages generate geomagnetically induced
quasi-dc currents (GICs) on the power grid that, when un-
controlled, could lead to instability in system voltages, affect
operations of relays, protection systems, and cause irreversible
physical damage to high-voltage power transformers [3], [4].
To assess the risk of voltage instability, GIC values can be



included into the power flow analysis. Changes in reactive
power and bus voltages can be used to determine the likelihood
of voltage collapse [5].

B. Historical Context of Geomagnetic Disturbances on the
Power Grid

On March 1989, a severe GMD storm moving at a peak
variation of 500 nT/min triggered a chain of power system
disturbances that ultimately resulted in the collapse of the
Hydro Quebec power grid [6]. Further examination of historic
storm data suggests that disturbance levels of 5,000 nT/min
have occurred as a result of a GMD storm in 1921 [6]. With
today’s extensive network of high voltage transmission lines,
it is reasonable to expect that a geomagnetic storm of similar
intensity would cause unprecedented damage to the grid. These
historic events demonstrate the extremity of GMD storms and
threat that could be posed on the power grid.

Since the historic GMD storm of 1989, the power sectors
have adopted operational procedures to protect against GMDs
[6]. However, more research is necessary to consider the
impacts more severe storms may have on the power grid so
that practical mitigation procedures can be developed to harden
the grid against more powerful GMD events.

C. Challenges to GMD Research in Power Systems

The immediate goal of this work is to synthesize GMD
data that closely resembles different severity levels of mag-
netic field fluctuations. Much like hurricanes, tornadoes, and
earthquakes, a standard rating of GMD severity has been
established under the National Oceanic and Atmospheric Ad-
ministration (NOAA) Space Weather Scales. Table I provides
details on GMD severity and maps the severity scales to their
potential impact on critical infrastructure, with G1 being the
most minor and G5 being the most severe and thus, associated
with the most major impacts [7].

One issue hindering research on GMD analysis on the power
grid is the limited quantity of severe GMD data. Although
geomagnetic field data can be acquired through the North
American Electric Reliability Corporation (NERC) and other
observatories supporting academic research, such as the IN-
TERMAGNET network [8], data capturing fluctuations caused
by GMD of severity G5 is very limited. To the authors’ best
knowledge, the last known G5 storm to strike earth occurred
in late-October 2003 (with a speed of 300 nT/min [6]).

This study is a part of the larger goal of synthesizing data
that represents severe GMDs. A method to achieve this goal

TABLE I
NOAA SPACE WEATHER SCALES FOR GEOMAGNETIC STORMS

Ave. Frequency

Scale (1 cycle=11 years)

Description Impacts on Power Systems

Widespread voltage control issue;
€ Extreme System collapse and blackouts 4 days per cycle
Possible voltage issue; . .
e Severe Miss operation of relay tripping 60 days per cycle
Voltage correction needed; .
€ Strong False alarms triggering on protection 130 days per cycle
G2 Moderate Damage to high-latitude power system assets | 360 days per cycle
G1 Minor ‘Weak power grid fluctuations 900 days per cycle

is to first generate data that is statistically similar to presently
available geomagnetic field data, and then scale up magnetic
field fluctuations for severe GMD representations. Future
studies will extend beyond this work to scale-up magnetic
field changes of synthetic data sets to represent severe storms.
This paper serves to document a machine-learning approach,
or more specifically, the Time-series Generative Adversarial
Network (TimeGAN), to generate realistic synthetic geomag-
netic field data.

The rest of the paper is structured as follows. Synthetic
data generation and validation metrics are fully explained in
Section II. Experimental results and analysis are presented in
Section III. Section IV discusses challenges faced during the
study. Finally, Section V concludes with a summary of the
work.

II. SYNTHETIC DATA GENERATION AND VALIDATION
METHODS

The goal of this section is to provide an overview of the
method and tools used for creating synthetic geomagnetic field
data as well as explain the metrics used to guide evaluations
of the quality and accuracy of synthetic data.

A. Generative Adversarial Networks (GAN)

GAN is a relatively new unsupervised machine learning
algorithm first proposed by [9] in 2014 to generate very
realistic high-resolution data. The basic structure of GAN
includes two machine learning models, called the generator
network and the discriminator network. The generator assumes
an unstructured prior distribution p, over a random noise
vector z that would be fed into the generator function, G(z).
The goal for the generator is then to learn the function G(z)
that would transform unstructured samples z into realistic
samples that can be drawn from the probability distribution
of the real data set, p,.. The role of the discriminator is to
learn a function D(z) that can correctly distinguish between
data synthesized by the generator and data used for training.
During the learning process, the discriminator draws samples
from the real data set, x, and is trained to classify the data as
“real”. Similarly, the discriminator learns the statistics of data
generated by the generator and is trained to classify this data
as “fake”.

The mechanics of GAN can be viewed as a competition
between the generator and discriminator. The generator’s goal
is to generate realistic data that would fool the discriminator
while the discriminator’s goal is to correctly classify data
from the generator as counterfeit. If the discriminator can
distinguish between real and generated content, the generator
is penalized, otherwise, the discriminator itself is penalized
while the generator is rewarded. This competition drives both
networks to improve their strategies until the synthetic data
becomes indistinguishable from the training data. The main
objective of this game can be described by the following
objective function [9]-[11],

Min Mgz V(G, D) = Equp, [D(2)] ~ Eorup. [D(G(2))] )
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Fig. 1: Blocks to the TimeGAN model [12].

Although traditional GAN can be extremely successful in
producing highly reliable data, its performance on learning
temporal correlations unique to time-series data is insufficient.
Fortunately, the popularly of GANs among the research and
academic realm has yielded rapid improvements in GAN
algorithms to accomplish unique objectives. This study seeks
to test and evaluate TimeGAN proposed by [12] in generating
synthetic geomagnetic field data. In this framework, the tempo-
ral dependencies of the real data are preserved in the model by
merging the flexibility of the unsupervised GAN with the con-
trol offered by supervised training in autoregressive networks.
TimeGAN introduces two new functions, called the embedding
and recovery functions, whose purpose is to provide mappings
between feature and latent representations. This allows the
adversarial network to learn conditional temporal distributions
of the data via a lower-dimensional space. A basic block
diagram of TimeGAN is illustrated in Fig. 1. Further details
on the TimeGAN architecture can be viewed here [12].

For this study, YData Synthetic [13], a publicly available
python-based package based on [12], was implemented to
generate and validate time-series synthetic data.

B. Data Set

This study utilized magnetometer data collected by an IN-
TERMAGNET [8] observatory stationed at Boulder, Colorado,
USA. Data from one magnetometer station is used in this study
to avoid introducing spatially-dependent field variations. The
magnetometer samples the geomagnetic field at a cadence of
one sample per minute.

Nineteen hours of magnetic field, B, data from November
3, 2021 to November 4, 2021 to capture fluctuations from
Gl to G3 category GMD events, and five days worth of
data from September 6, 2017 to September 10, 2017 to
capture a G4 category GMD event, were used as inputs to
train separate TimeGAN models representing GMD events of
different severity levels.

One of the questions this study intended to answer was
whether it is more difficult for TimeGAN to train from a data

set containing more severe magnetic field fluctuations. Hence,
the time series data sets were partitioned based on their respec-
tive GMD severity category before using them as input to train
the TimeGAN model. Data sets from the G1 and G2 categories
were combined as a single input to the TimeGAN model;
this set contained 150 samples and represented 2.5 hours of
GMD duration. The data set from the G3 category contained
960 samples, representing 16 hours, and the data set from the
G4 category contained 7,200 samples, representing 120 hours
or five days of magnetic field fluctuations. Importantly, time-
dependent variations of the X, Y, and Z components of B
were treated as separate “features” of the magnetic field data
set.

Prior to being used as input for training the TimeGAN syn-
thesizer, the data sets were pre-processed. Data pre-processing
involved the following steps:

1) Each element of the time-series feature vector was scaled
to be within the range of [0, 1].

2) Sliding window technique was implemented across all
time steps to create subsets, or input sequences, of
the original time-series data set. All subsets combined
formed the final data set used to train a TimeGAN
model.

3) The final data set were then then “randomized” so that
subsets were placed in no particular order. This step
allows the data set to mimic independent and identically
distributed (IID) sets. After randomization, temporal
dynamics would still be preserved within each subset.
Thus, these subsets may also be called “input sequences”
in this paper.

C. Evaluation Metrics for Synthetic Data

Two metrics commonly used to assess the quality of output
from neural network models were considered here, diversity
and predictability.

Diversity: The desired outcome is for the synthesized data
and real data to share similar feature distribution. After syn-
thetic data generation, the diversity and feature distributions of
the synthetic data were compared against real data using two
dimensionality reduction techniques called, Principle Compo-
nent Analysis (PCA) [14] and t-distributed stochastic neighbor
embedding (t-SNE) [15]. PCA and t-SNE analyses were
conducted to provide a 2-dimensional visual representation of
how close synthetic distributions resemble actual distributions
observed by the magnetometer. Though PCA and t-SNE are
both dimensional reduction techniques commonly used for
data visualization and analysis, they are used in conjunction
here for correlation purposes. Unlike the more ubiquitous
PCA, t-SNE uses a non-linear approach to reducing data
complexity, and thus is capable of capturing more complex
relationships between features. If the synthetic data completely
inherits the feature distribution of the real data set, then the
expected observation would be a complete overlap between
synthetic and real data dimensionality reduction results.

Predictability: Ideally, the synthesized data should inherit
the predictive characteristics of the real data. The quality and



usefulness of synthetic data can be determined by how well-
matched its predictive characteristics are to those of the real
input data. To evaluate this, a 2-layer GRU-based recurrent
neural network (RNN) was trained on the first 50 percent of
the synthetic data set and tested against the last 50 percent of
the real data ("train on synthetic, test on real” framework [12]).
The trained RNN model was then used to predict future values
(’synthetic predictions”). Finally, predictions for synthetic data
were then evaluated by use of the coefficient of determination
R? and the mean absolute error (MAE) scores. Note that to
ensure the RNN model is of good quality (so as to not impact
the results and analysis of the trained TimeGAN model), the
RNN model was also trained on the corresponding real data
to form predictions (“real predictions”) and then evaluated
accordingly.

R? is a measure of goodness-of-fit between predicted and
true values, and thus can be used to indicate how well
the trained RNN model can form predictions based on the
input data. If the RNN model carries excellent prediction
capability and the synthetic data perfectly inherits predictive
characteristics of the real data set, then both R? scores for
synthetic predictions and real predictions should be very close
to 1.0.

MAE is a model evaluation metric used to compute the mag-
nitude of error between predicted data and real data. Again,
if the quality of the RNN model is good and both synthetic
and real data sets share the same predictive characteristics,
then the MAE values are expected to be very close to zero.
Mathematically, estimations for R? and the MAE over n
samples are represented by equations (6) and (7), respectively
[16].

i(yz —§)?
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where y; represents the true value of the ith element in the
sample set, ¢; is the corresponding predicted value, and ¥ is
the average value of y; over over n samples.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The objective of this section is to present and explain
experimental observations. Unless otherwise noted, results
presented reflect the following model hyperparameters and
input properties for training TimeGAN: TimeGAN model
was customized to have 128 network layers and 24 hidden
dimensions; a learning rate of 5e-4 was used; the batch size
of 128 was used for training G3 and G4 data, and 120
for G1-G2; input noise dimension for the generator network
was 32; input vector length for each subset is 30; finally, a
maximum number of 50,000 training steps was used to train
the model. These parameters were selected to optimize model
performance while reducing computation time.
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Fig. 2: PCA and t-SNE visualizations on synthetic data generated by
TimeGAN (in red) and real magnetic field data (in blue). Each row
provides visualizations for different severity GMD events.

A. Statistical Visual Analysis

As displayed in Fig. 2, PCA and t-SNE visualizations show
good overlap between synthetic and real data across all three
severity types, thus demonstrating that feature distributions
between synthetic and real data are similar. For G1 to G2
data sets, it is observed that synthetic data shows better overlap
with real data when compared with G3 and G4 partitions using
PCA analysis. This observation could be explained by the fact
that G1 to G2 magnetic field fluctuation magnitudes are less
than those inherent to more severe storms such as G3 and G4,
and thus making its distributions and statistics the easiest for
TimeGAN to learn.



TABLE II
PREDICTION RESULTS WITH A 2-LAYER RNN MODEL

Prediction Scores using G4 Input Data
Training Samples # Epochs
R? MAE Required
(Real or Synthetic)
Real 0.948 0.009 253
Synthetic 0.962 0.008 125
Prediction Scores using G3 Input Data
Training Samples # Epochs
R? MAE Required
(Real or Synthetic)
Real 0.879 0.037 704
Synthetic 0.843 0.034 387

B. Quantitative Predictive Scoring

Sixty samples of G1-G2, 465 samples of synthetic G3, and
3,585 samples of synthetic G4 data were used to separately
train a 2-layer RNN model to be used for prediction. Pre-
dictions for real data were used as the control to ensure the
quality of the 2-layer RNN sequence-prediction model.

As shown in Table II, the prediction scores that assess how
reliable synthetic data is in capturing temporal dynamics of the
real data are remarkably impressive. Prediction scores for the
G3 synthetic data are slightly poorer than that of G4, but this
could be attributed to the smaller number of G3 training data
available for the RNN model from which to learn. For both
G3 and G4, the real and synthetic predictive scores are very
similar in value, indicating excellent inheritance of temporal
characteristics.

The number of epochs required for predictions made by the
RNN model to converge to ground truth data is also shown
for the record. Note that due to the small number of training
samples available, the RNN-model was unable to produce
reliable predictions for the G1-G2 scenario, and thus prediction
results are not shown here.

A complimentary graphical representation of prediction re-
sults using G4 magnetic field data is shown in Fig. 3. Although
Fig. 3c shows an area where a large spike was underestimated
in predictions, predicted curves generally demonstrate remark-
able agreement with the ground truth test data, indicating that
the 2-layer RNN is capable of forming reliable predictions.
Most importantly, predictions on real and on synthetic data
are almost completely aligned, indicating excellent inheritance
of predictive characteristics from real data to synthetic data
produced by TimeGAN.

C. The General Time-series Synthetic Data

A comparison of sequence vectors for the time-series real
and synthetic magnetic field data is shown in Fig. 4. The
synthetic G3 data shown in Fig. 4a was generated using a
training set with an input sequence length of 320, whereas the
synthetic G1-G2 data shown in Fig. 4b used an input sequence
length of 60. It was observed that the synthetic data for the G3
partition captures the general shape of the real magnetic field,
but misses some higher-frequency temporal dynamics. On the
other hand, synthetic data for the G1-G2 partition appears
to inherit higher frequency fluctuations and also captures the
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Fig. 3: Predictions using scaled G4 magnetic field data. Extrapola-
tions based upon synthetic and real training data are both compared
against corresponding data from the actual test data set.

general temporal pattern of the real data better than that of
4a. This could be attributed to using a much shorter input
sequence vector length (60 vs. 320) to train the TimeGAN
model. A longer vector length may contain more temporal
dynamics per input sequence which may have necessitated
more training steps in order for TimeGAN to generate similar
quality synthetic data than the authors allowed.

IV. DISCUSSION AND FUTURE WORKS

The larger goal is to synthesize data that mimics severe
GMD storms, but the scarcity of geomagnetic field data from
severe GMD events makes this challenging. Although neural
networks show promise in modeling input environments, they
may not be capable of capturing all of the important physical
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real and synthetic magnetic field data.

boundaries just by training on available data. Moreover, gener-
ating severe GMDs might not be possible without incorporat-
ing physics that dictates the true distribution of geomagnetic
field fluctuations from severe GMDs. A potential avenue
for future investigation could be incorporating physics that
determines geomagnetic field boundaries into neural networks
to create realistic models for severe GMDs.

Within the space weather and geophysics community, there
has been a number of studies modeling historically severe
GMD events. One such study published by Winter et al.
constructs high-resolution magnetic fields representing the
1859 Carrington event (the most extreme GMD storm ever
recorded) by utilizing modern high-resolution magnetometer
observations of less severe GMD events and low-resolution
magnetometer observations of the Carrington event. Thus,
another potential application of TimeGAN would be to syn-
thesize more variety of data representing severe GMD events
by training on magnetic fields constructed by [17].

A challenge to using TimeGAN is balancing model capa-
bility with computational time. To maximize the probability
of success in generating statistically accurate data, it may

become necessary to increase model complexity and the size
of the training data set. Both approaches necessitate longer
computation times, which hinder efficient optimization of
model hyperparameters and generally slow down experiments.
For example, training the embedding, supervised and joint
networks using 50,000 training steps on an input data size
of 7,170 input sequence vectors of dimensions 30x3 required
approximately 29 hours when utilizing the NVIDIA GeForce
RTX 2080 Ti GPU.

V. CONCLUSIONS

This study explores the use of a novel machine learning
approach called TimeGAN to generate synthetic data that
adheres to statistics of actual geomagnetic fields produced
by a GMD. The quality and reliability of synthetic data sets
were validated using statistical visualization techniques as well
as prediction scoring. Empirical results demonstrate that the
synthetic data successfully captures feature distributions and
temporal dynamics of the input geomagnetic field samples,
showing promise for TimeGAN to be used for producing a
variety of synthetic geomagnetic sceanrios to be used for GMD
simulations and analysis. This study serves as a part of the
larger goal to model severe GMD events.
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