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Abstract—The impact of Electric Vehicles (EVs) on the grid
and the benefit of utilizing them as a source of energy to increase
the grid’s reliability and resilience in severe weather conditions
are shown in this study. This case study is the winter storm Uri
that happened in February 2021 in Texas and impacted a large
part of the United States. The studied grid is a realistic 7000-bus
electric grid on the Texas footprint to mimic the ERCOT system
without revealing confidential data. The results show that using
EVs as power sources can help avoid outages and the necessity
of load shedding in similar events.

Index Terms—Vehicle-to-grid, winter storms, load shedding,
power outages, grid reliability, renewable energy

I. INTRODUCTION

Despite a decrease in overall new car sales in 2020, EV
sales increased globally by 39% over the previous year. It
is predicted that the sales of EVs will increase up to 30
million cars in 2028 and will include almost 50 percent of new
passenger car sales by 2030 [1]. Figure 1 shows the global sale
of conventional cars and EVs from 2018 to 2030. According
to this Figure, although the global passenger car sale faced
several challenges in 2020, EVs have become more popular.
It is estimated that the penetration of EVs of Texas in the
United States grows to over 3.2 million by 2033 and the total
energy capacity of EV energy storage is approximately 208
GWh based on EV type including EV light-duty passenger
cars around 60 GWh, EV buses around 28 GWh, and EV
Trucks around 120 GWh [2]. Furthermore, according to the
kind of vehicle, EVs may store between 20 and 600 kWh of
energy in their batteries [2].

One of the main objectives of power system operation
and planning is to ensure that electrical power is provided
reliably and that the power grid is resilient to severe weather
conditions. Several events present various challenges to the
power system as they change the expected load and operation
situation compared to the usual circumstances. For instance,
the Texas winter storm Uri on February 15-17, 2021, dam-
aged hundreds of thousands of customers and caused billions
of dollars in damage to the Electric Reliability Council of
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Fig. 1. Global Passenger Car Sales [1]

Texas (ERCOT), which distributes electricity to the majority
of Texas. During the winter storm Uri, the unexpectedly
low temperatures increased the electrical energy demand for
heating. According to the Federal Energy Regulatory Com-
mission report [3], some generator turbines were frozen, and
there was a shortage of natural gas reserves that caused a
generation shortage compared to the load. Therefore, there was
a necessity for load shedding to avoid a complete blackout of
the ERCOT grid and keep the optimization problem (power
flow) solvable. Figure 2 shows the impact of the winter storm
on Feb 15, 2021, in system frequency between 1 am and 2
am, which resulted in the necessity of load shedding. Because
of the freezing weather and lack of heating energy, this process
affected over 4.5 million households in Texas, causing more
than 60 fatalities in over 20 counties of Texas and more than
195,000 million dollars of damage [4]. If more energy storage
capacity or EVs with the possibility of injecting power into
the grid were available during this event, extreme mitigation
measures such as load shedding could be avoided. Reference
[5] studies how battery storage could reduce the damage
caused by the Power Failure in Texas in February 2021.

Overall, with the increase in the penetration of renewable
resources and their dependency on the weather, as well as
the potential for extreme weather events caused primarily by
global warming, there is a tendency toward increased usage
of battery storage in the electric grid to help in improving



Fig. 2. Winter Storm - February 2021 [4]

the grid’s reliability and resilience [6]. On the other hand,
as energy storage is a little expensive power source, it is
encouraging to use the capacity of EVs in times of emergency.
Bidirectional EVs usage will reduce the need for costly
stationary distributed energy storage. Vehicle-to-Grid (V2G)
technology has been proposed as an area of research over
several years to use the capacity of EVs as the power source. It
can be beneficial for saving the power generated by renewable
energy resources in EV batteries and supplying electricity to
the grid in an emergency [7]. References such as [8] and
[9] discuss the advantages and disadvantages of the V2G
system. The technical difficulties in bidirectional charging
are discussed in reference [10]. Reference [11] reviews the
role of EVs as portable energy storage devices for power
system resilience enhancement. Reference [12] shows that
both utilities and EV owners can benefit from V2G because
when its power transactions are performed, EV owners will be
compensated for using the energy stored in their cars while in
idle mode. According to [13], which examines the effects of
V2G on electric grid frequency management, transient stability
has also received interest in V2G technology and demonstrated
that EVs might be able to offer efficient frequency control.

Studies like [14] believe that companies are reluctant to
implement this technology due to the battery life reduction
and increased anxiety of drivers of depleting the required
charging. However, as EV batteries continue to improve,
this will be a less concerning issue. Ford company is one
of the pioneers that implemented bidirectional EV chargers
[15]. In addition, Electric Power Research Institute (EPRI)
launched a research to assess the viability of integrating V2G
technology with mainstream car manufacturers, such as Fiat
Chrysler Automobiles and Honda Motor, who offered cars
with bidirectional power conversion systems [9].

In this paper, the impact of Electric Vehicles (EVs) on the
grid and the benefit of utilizing them as a source of energy to
increase the grid’s reliability and resilience in severe weather
conditions are shown. This case study is the winter storm Uri
that happened in February 2021 in Texas and impacted a large
part of the United States. The studied grid is a realistic 7000-
bus grid on the Texas territory to emulate the ERCOT system
without releasing sensitive data.

II. MODELLING EVS IN THE GRID

A. EV Modeling Strategy
1) EV Charging Model: The linkage between transportation

and the power system is the spatiotemporal charging demand.
Considering the critical importance of a realistic charging
pattern, we constructed a realistic charging demand strategy
considering the original travel model for trip origins and
destinations, a vehicle’s dynamic model for EV energy con-
sumption, and used surveys on travel and charging behaviors.
The estimated Travel Demand Model (TDM) and travel studies
run the EV charging simulation from [16]. TDMs consist
of both the start-travel node (departure location) and the
end-travel node (arrival location). In addition, they contain
information such as total distances, operating time, and fuel
consumption throughout a day in the regional transportation
network. The network was created by urban traffic simulation
[17] and the traffic dynamics are generated by a simulator
called Mobiliti [18].

To predict the in-transit power usage of EVs, the model
creates travel paths that it produces as output after taking
the transportation system and traveling needs as inputs. A
subset of travel itineraries is selected randomly to become
EV traveling utilizing a predetermined EV market share. It
is necessary to employ an activity-based EV model to analyze
how distinct transportation-related characteristics affect energy
consumption [19]. The next step is to estimate EV power
usage depending on the circumstances of in-transit operation
using a parametric simulation inferences technique [20]. A
Bayesian Network statistic modeling (BNSM) that accepts
the industry experience beforehand and can be improved to
utilize an information method is employed to describe the
automobile powertrain. The specifics of its modeling and
verification are described in [20].

For a list of trips in the region, we simulated a specific
percentage for the penetration of different types of EVs and the
model considering whether it is a 100, 200, or 300-mile range
EV. The range from each allocated EV in the network is picked
according to the anticipated EV market penetration from EV
sales figures [21]. EVs having distances of 100, 200, and 300
miles each made up 25%, 13%, and 52% of the overall EV
fleet. The state of charge is then simulated for each travel at the
beginning of a trip to evaluate if it needs to charge considering
the available energy depending on the energy usage patterns
for EVs with various distances. It also estimates if this trip is
the last trip of the day, based on model outputs, and assigns
home demand charging accordingly. The road linkage driving
length and velocity discovered from the automobile itineraries
were used to fit the energy usage rates per mile produced
from the EV models to each driving. Using the recharging
needs modeling, the overall drive in road usage transformed
into recharging demands. Finally, a Monte Carlo strategy was
implemented to consider the uncertainties of the model.

B. Mapping EV Charging Demand to the Electric Grid
The results of transportation studies and the transportation

simulation are the location and time series of EV charging.



The geographic coordinates of the grid’s substations and buses,
along with their latitudes and longitudes, are used to apply
the recharging needs to the power network simulations to
include this information in the power system simulation. The
methodology to map the EV charging demand to electric grid
substations is explained in more detail in [22].

C. Load Time Series

The method described in [23] and [24] generates the 24-
hour time series load data for each bus for one year. Consider-
ing load data of the time step, each bus’s physical locations are
employed to specify a distinctive power usage profile for that
region. After that, an iterative aggregation method is used to
combine freely accessible building-level and facility-level load
time data to the buses. This method generates bus-level load
data by merging location prototype building and facility load
data every time with the concentration of resident, business,
and industry loads at each node in the system. The synthetic
load data each time are confirmed by applying the time series
of an authentic power system in [24].

Once the load from each EV charging station is mapped to
its substation within the transmission system, the EV load time
series from Section II-A is represented as a load at the bus
level within its assigned substation. The synthetic load data at
the bus level is also updated to include this load.

D. Vehicles to Grid Modeling

The possibility of connecting EVs to the grid is modeled
as batteries at the end-of-trip locations of EV fleets where
the vehicles are in parking and idle mode. The geographical
coordinates of the start and end travel nodes are from TDMs,
and if the travel distance is shorter than 40 miles it is assumed
that EVs are not depleted and can be used as a source of
power. For integrating this information into the electric grid,
the parking locations of EV fleets must be mapped to electric
grid models with transmission-level substations by using a
Voronoi diagram. The EV battery stations that EVs are parked
and they are in idle mode are allocated to the substation
connected to the location of end-travel nodes of EV fleets. The
EV battery stations are connected to the electric grid model
as generators such as battery storage.

III. TIME STEP SIMULATION

A. AC Optimal Power Flow (OPF)

To calculate the steady-state outcomes in a power system
that minimizes the generation cost from Eq. 1, the ac OPF [25]
is employed. Coefficients (a, b, and c) that represent quadratic
cost curve elements of generators specify Fc(PG):

min
PG

Fc(PG) =

|G|∑
g=1

[ag + bgPG, g + cgP
2
G, g] (1)

The power balancing equations (2, 3) have to be satisfied.
In addition, additional operational constraints from (Eq. 4) to
(Eq. 7) should be considered [25].

PG,(g∈g(i)) − PD,i = |Vi|
|N |∑
k=1

|Vk|(GY
ikcosθik +BY

iksinθik)

(2)

QG,(g∈g(i)) −QD,i = |Vi|
|N |∑
k=1

|Vk|(GY
iksinθik −BY

ikcosθik)

(3)

Pmin,g ≤ PG,g ≤ Pmax,g ∀g ∈ G (4)

Qmin,g ≤ QG,g ≤ Qmax,g ∀g ∈ G (5)

Vmin,i ≤ |Vi| ≤ Vmax,i ∀i ∈ N (6)

P 2
e +Q2

e ≤ S2
max,e ∀e ∈ E (7)

In the equations, the variables |V i| and |θi| stand in for the
size and degree of the voltage at the i-th bus, respectively. The
θik is the gap between the voltage degrees from the i-th bus to
the k-th bus. The system’s representation of the fleet of buses
is N , and the actual and reactive power demands at the i-th
bus are PD,i and QD,i, respectively. Similarly, PG,g indicate
the g-th generator’s actual power, and QG,g reflect the g-th
generator’s reactive power.

In the system, the fleet of all generators is denoted by G.
The real and reactive value of the Y bus matrix is denoted
by its real component as GY

ik and BY
ik. (Pmin,g, Pmax,g) as

real power and (Qmin,g, Qmax,g) as reactive power show the
generator operating limits by minimum and maximum. Bus
voltage operating limits are constrained by (Vmin,i, Vmax,i).
The thermal limit, Smax,e, constrains the flow of power to each
bus of e, and it is connected to the flow of real and reactive
power in (Eq. 7). The power flow on each bus is provided by
the power equations (Eq. 8) and (Eq. 9).

Pe = |Vi|2GY
ik − |Vi||Vk|(GY

ikcosθik +BY
iksinθik) (8)

Qe = −|Vi|2BY
ik − |Vi||Vk|(BY

ikcosθik −GY
iksinθik) (9)

B. Direct Inclusion of Weather Data in OPF

We have proposed a strategy in our previous work [26],
to map weather stations with electric grid generators, input
time-dependent weather measurements such as wind speed,
cloud coverage percentage, and temperatures directly into OPF
modeling, and output the actual time-dependent capacities
of generators especially renewable generators based on the
weather. The renewable generators’ models are extracted from
[27]. These models and input data are then used in a time-
step simulation to update the actual capacities of generators
and find the output generation of renewable resources based
on the availability of renewable resources [26].



TABLE I
TEXAS SYNTHETIC GRID STATISTICS

Parameter Numerical Value
Buses 6,717

Generators 731
Loads 5,095

Switched Shunts 634
Substations 4,894

Transmission lines 7,173
Maximum load (MW) 74,667

Maximum generation (MW) 104,914

Fig. 3. The one-line diagram of transmission lines of the studied grid over
Texas footprint. This grid is synthetic grid and is not real one.

IV. CASE STUDY

A. Grid Model

The grid, in this study, is a synthetic but realistic grid that
covers the territory of Texas in the U.S. without disclosing
any Critical Energy/Electric Infrastructure Information (CEII).
This grid was developed using publicly accessible data, includ-
ing U.S. Census statistics [28] and information on generators
from online in the Energy Information Administration (EIA)
[29]. The detailed strategy to create this grid is explained in
[30] including assignment of substations, transmission lines
and reactive power control devices. All the planning for
substations, transmission lines, and reactive power fall under
the same procedure. Grids are created and verified using
validation metrics, which are essential characteristics of real
grids [31], [32] to offer data sets that are realistic. The
availability of geographical data for system components is a
crucial component of these synthetic grids. This grid can be
available in [33]. The 7000-bus synthetic grid, seen in Fig. 3,
includes the ERCOT [34] geographical territory. Bolded green
lines show 345 kV transmission lines, 138 kV lines are shown
in black, and 69 kV lines with light green.

Fig. 4. Geographical Data View of Load Substations in Peak Loads in the
Texas Case Study

Figure 4 shows a geographical data view (GDV) of the load
substations based on the strategy presented in [35], [36]. The
main parameters of the case and the maximum load are shown
in Table I. The oval’s size is related to the dimensions of the
power stations.

B. Scenarios

The studied scenarios in this paper include weather and load
data in February 15, 2021. The hourly load data at the bus level
created in Section II-C is then scaled based on [3]. Weather
models of generators in this paper are based on [26]. In Texas
weather stations, hourly measurements such as temperatures,
wind speed, wind direction, cloud coverage percentage, and
dew points are gathered from [37] and directly included in
optimal power flow models to update the output and actual
capacities of generators, primarily renewable generators.

Two scenarios that are studied in this paper include:
• The Base case: Texas load on February 15, 2021
• The V2G case: base case Texas load with the addition

of the required EV charging demand a with 15% EV
penetration with V2G capability

Figure 5 shows that Dallas, Austin, and Houston are the
three major cities with the most EV registration in Texas. In
addition, from Fig. 4 the highest electricity demand is in these
cities as both are related to the population distribution in Texas.
As a result, if EVs in big cities are used as energy resources
to the grid when an emergency case such as a Texas winter
storm Uri, they are very close to the electrical loads.

V. RESULTS

Simulations are run by PowerWorld [39], Python and MAT-
LAB installed on an Intel(R) Xeon(R) CPU E5-1650 v4
@ 3.60GHz and RAM 64GB. After time step simulation is



Fig. 5. Texas Electric Vehicle Registration Mapping [38]

applied in the base case with the impact of load and weather
but without including any EVs to solve AC OPF, there was
a convergence issue because of the voltage collapse at 1 pm
on February 15, 2021. The North of Texas had low voltage
issues below 0.9 per unit (p.u) in 165 buses as well as The
West of Texas resulted in high voltage problems above 1.1
p.u in 1747 buses. Overall 1912 buses had severe voltage
violation problems in this case because of a shortage in
generation compared to the load. In general, if generation is
lower than load in the real power grid, it would be a blackout
as the simulation shows the voltage collapse and the slack
bus provides a very large real and reactive power. In this
situation, ERCOT enforced load shedding several times to
avoid a general blackout all over this state.

Figure 6 shows a voltage contour of p.u voltage levels of
buses of this case based on the strategy mentioned in [40].
It should be noted that the generation, in this case, is lower
than the load and therefore this case goes to a blackout. After
implementing the impact of EVs with the capability of energy
storage is mapped to the grid, although the overall demand is
increased by around 1.5 GW due to the EV charging demand,
the available generation from EV batteries is also increased by
around 6 GW, so the AC OPF is solved and there is no major
voltage convergence issue in the system. Figure 7 depicts the
voltage contour of buses inside the Texas network following
the application of the effect of EVs with V2G capabilities.
Please note that in this case, it is assumed that only 15% of
the overall cars are EVs with V2G capability.

VI. CONCLUSION AND FUTURE WORK

The hourly required demand to charge EVs in specific
locations and times of the day is calculated based on travel
patterns and then added to the hourly load of the studied
grid over the Texas footprint. Then the possibility of taking

Fig. 6. Voltage magnitude on February 15, 2021 with the base case

Fig. 7. Voltage magnitude on February 15, 2021 with EV15%

advantage of EVs as the power source in severe weather events
is researched. The V2G capability is added to the grid at times
that EVs are parked and in an idle mode based on end-of-travel
geographic coordinates and if the duration of their previous
travel is rather short. The same charging capacity of EV fleets
mapped to the grid assumes that 15% of light-duty cars in
two cities of Texas are EVs with V2G capability. The main
weather measurements, such as wind speed, cloud coverage,
and temperatures of a winter storm called Uri in February
2021 in Texas, are added as the input, and the capacities of
generators and outputs of renewable generators are updated
as output based on specific generator models. Then, for a
scenario with bidirectional EVs, an ac OPF is solved. The
outcomes compared to the basic simulations with no EVs.



The simulation outcomes demonstrate that although the basic
scenario has a convergence issue and voltage collapse due to
high load and less available generation, the base case adding
15% EVs with V2G capabilities overcomes this issue. This
result indicates the advantage of using EVs as energy resources
to increase the grid’s stability and resilience in the case of
some emergencies and the potential to save losses in millions
of dollars.
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