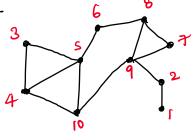
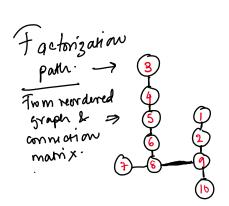


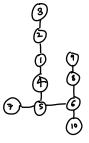
3. Use the Tinney 2 approach to order the following network. Give the permutation vector.


 Using your reordered results from question 3, draw the full factorization path graph for the system.

Souhans


Manix representation of relabeled graph.

	f I	21	3	4-1	5	6	7	8	9	10	•
	X	X							20	_	
2	X	X							入	$-\downarrow$	
3			X	X	X					< /	_
4			X	X	X					Δ	_
S			Χ	X	X	X	_		-	X	
6					X	X	-	X	\	0	
7							17	X	1	0	
8	_					7	X	X	K	V	
9		X		- /	1		X	$+$ \times	1	\\rangle	
10				X	. X	0	•	0	×	1	
	1		1	'			•		1	1	


reordered graph

- enly anside the lower manix.

Factorization paths for the original graph node numbers)

Soutian

$$A = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 4 & -1 & -1 \\ -1 & -1 & 5 & 2 \\ 0 & -1 & 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

$$R_{3} = R_{3} + \frac{1}{2} \times R_{1}$$

$$\begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 4 & -1 & -1 \\ 0 & -1 & 9/2 & 2 \\ 0 & -1 & 2 & + \end{bmatrix} \implies L^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1/2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 4 & -1 & -1 \\ 0 & 0 & 1974 & 914 \\ 0 & 0 & 0 & \frac{103}{34} \end{bmatrix} \implies 0$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -0.5 & -0.25 & 1 & 0 \\ 0 & -0.25 & 0.411 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 4 & -1 & -1 \\ 0 & 0 & 4 \cdot 2.5 & 1 \cdot 75 \\ 0 & 0 & 0 & 3 \cdot 0.3 \end{bmatrix}$$

Use forward substitution to solve Ly=b. y=[1,2,4,0.8529]

Use backward substitution to calculate x; Ux=y.

X=[0.9126, 0.7767, 0.8252, 0.2816]

 Manually do an LU factorization on the following matrix A. Then manually do a forward and backward substitution to solve for x in Ax=b

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 4 & -1 & -1 \\ -1 & -1 & 5 & 2 \\ 0 & -1 & 2 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

Code the LU factorization discussed in class for full matrices, along with the forward/backward substitution. To test your algorithm use it to factor and solve the above matrix from question 1. You do not need to code pivoting.

```
matrix from question 1. You do not need to code pivoting.
clc;
A = [2, 0, -1, 0; 0, 4, -1, -1; -1, -1, 5, 2; 0, -1, 2, 4;];
%A = input('Input matrix A:');
%performing LU decomposition
rows = 4;
col = 4;
v=[1 \ 1 \ 1 \ 1];
L=diag(v); %initializing the lower triangular matrix as identity matrix
U=A; %initializing the upper triangular matrix to A
k=1; %inner loop for factorizing U matrix
%calculating LU decomposition
for i=2:1:rows
    for j=1:1:col
        if j<i</pre>
            L(i,j)=U(i,j)/U(j,j); %calculating scale factor
            for k=1:1:col
                 if k>=j
                     U(i,k)=U(i,k)-(L(i,j)*U(j,k)); %performing row operation
                 end
            end
        end
    end
end
result = L*U; %this is same as A
b = [1; 2; 3; 2];
%b = input('Input matrix b:');
y=inv(L)*b; %forward subsitution to calculate y
x=inv(U)*y; %backward substitution to calcculate x
display(y);
display(x);
```

2

```
y =

1.0000
2.0000
4.0000
0.8529

x =

0.9126
0.7767
0.8252
0.2816
```

Published with MATLAB® R2021b