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Abstract—Disturbances in power systems cause oscillations 

which can be observed in measured signals throughout the 

network.  This paper examines the relationship between events in 

the system and the measured modal content of the oscillations. 

Identifying patterns or distinguishing characteristics from 

oscillation monitoring data is examined in the context of linear 

system theory and control theory.  Our results show that with 

knowledge of the nominal modes of certain generators, it is often 

possible to distinguish an event at one of these generators. 

Index Terms—oscillations, Prony, signal analysis, eigenvalues, 

data mining 

I. INTRODUCTION

ISTURBANCES cause oscillations in power system 
signals, also referred to as “ringdowns,” which

commonly appear as exponentially-damped sinusoids.  

When oscillations are present, it is often desirable to 

characterize the signal with respect to its frequency content.  

An oscillation monitoring system (OMS) [1] can provide 

operators with an indicator that, for example, the system has 

poor damping (~3%). Estimates are computed of the 

frequency, damping, amplitude, and phase of the components 

in the signal [2].  An OMS evaluates the modal content of 

measured oscillations in power system signals, cross-checks 

the results using several methods, and generates alerts when 

poorly damped modes are discovered [1]. Such an OMS can 
serve as an early warning of serious events. Useful 

information about operational reliability is obtained from the 

estimated modes.     

The purpose of this work is to facilitate the use of OMS 

modal estimates for the discovery of event signatures in the 

ringdown data.  We seek to uncover mappings between the 

estimated modal content and events in the system. The 

premise is that different events have different impacts on the 

system and thus produce different ringdowns.  Thus, certain 

changes may impact modal estimates in distinct, predicable 

ways.  An interesting relationship between the modal content 
of angle measurements and increased wind generation in 

Texas is recognized in [3].  Changes in modal content 

associated with significant events motivate our work of to 

recognize and classify patterns in oscillation data.  In this 

paper, we examine the relationship of the observed oscillations 

to known power system modes.    
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Power systems are constantly changing.  Small disturbances 
include load changes, while large disturbances include 

network topology changes and faults.  In this work, we are 

predominately interested in what occurs during large 

disturbances.  Suppose, for example, a fault occurs at the 

terminals of a generator.  A phasor measurement unit (PMU) 

suitably located in the system will capture oscillation data that 

occurs as a result of this event.  The question is whether we 

can take the ringdown data of the event as viewed from the 

PMU measurements and ascertain which possible events may 

have caused the ringdown.    

The goal is to characterize ringdowns in terms of time and 
frequency domain signatures and to pick out these signatures 

in incoming data.  To characterize a ringdown, it is necessary 

to find attributes which can serve as unique, identifying 

characteristics of an event.  Analysis is needed on the extent to 

which certain events are distinguishable from other events. 

The inherent limitations of signature-searching must be 

examined.  For example, do generator outages appear distinct 

in OMS results?  Furthermore, what circumstances are 

necessary to assure that certain events will present distinct 

signatures? If associations between OMS modes and certain 

events can be made, engineers can identify the occurrence of 

these events from measurement data.  Event types of interest 
may include faults, generator trips, system topology changes, 

as well as significant wind events.   

In this paper, the focus is on recognizing events occurring at 

specific generators.   For a generator fault, the goal is to use 

oscillation data to identify which generators are likely to have 

been involved.  It may be the case that key eigenvalues and 

associated generators are known a priori, especially if a 

transient stability model of the system is available.  Our 

analysis and study system results indicate that if modes of 

certain generators are known, it is often possible to distinguish 

an event at one of those generators.  The paper presents 
experimental results of events at several locations and 

examines the identifying information that is present in the 

ringdowns from these events.  

II. POWER SYSTEM OSCILLATIONS

In power systems, it is imperative to obtain information 

about damping and stability, and this information is present in 

the oscillations.  The GSO 37-bus study system [4] used in 

this paper is shown in Figure 1.  The angle reference is the 
average of all generator angles.   
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Figure 1. GSO 37-Bus System 

 

We seek interesting patterns which relate the modal content 

of measured oscillations to the modes of particular generators. 

In this section, we discuss the content of oscillation signals. 

A.  Power System Ringdowns  

When a disturbance is applied and then removed to a linear 

time-invariant system, the system will “ring down” according 

to the solution of the system differential equations 
 

 x = Ax  (1) 
 

where A is the linearized system matrix from the dynamic 

equations in the power system.  The eigenvalues, right 

eigenvectors, and left eigenvectors of A can be represented 

respectively as λi ,pi, and qi. Then, as discussed in [2], the state 

of the system as a function of time x(t) may be written as 
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where x0 is the initial system state and n is the true dimension 
of the system.    

The total system response is the sum of a zero-input 

component and a zero-state component [5].  This should not 

be confused with the natural response and the forced response, 

which is a similar decomposition but not the same.  The zero-

input portion is the response of a linear system when there is 

no input.  This response reveals the inherent behavior of the 

system. The zero-input component is the solution of the 

following equation for xϕ(t). 
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where the symbol D represents the derivative operator d/dt. 

Equation (3) is satisfied by a solution of the following form: 
 

 ( ) tx t ce   (4) 

Then, (3) can be written as 
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A non-trivial solution requires that the polynomial in (5) be 

equal to zero, 
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so there are N possible solutions.  Thus, (4) can be any of the 

exponential solutions, 
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where any linear combination of these exponentials is also a 

possible solution (for proof, see [5]).  These exponentials 

represent the poles, eigenvalues, roots, or characteristic modes 

of the system [5], [6]. Which one of the infinite number of 

possible solutions we actually obtain as the response is 

dependent upon the system input and upon the initial 
conditions.     

Since A is determined by the differential equations of 

generators and represents the eigenvalues or modes associated 

with the generators, it follows that a measured ringdown in the 

system will contain information about those modes.  A 

measurement signal, such as line flow deviation or voltage 

deviation, is a linear combination of the states [7], 

 ( ) ( )k k

k
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where wk are weights, and samples are taken at t=nT, where T 

is the sample period. Thus, a measured signal contains 

information about the system modes and is also a sum of 

damped exponentials.   

For a linear system, the characteristic modes of the system 
are completely determined from the system impulse response.  

That is, if the input into a linear system is the Dirac delta 

function, δ(t), then the response of the system is a linear 

combination of all the modes of the system.  So, ideally, if the 

system could be perturbed by this input, the characteristic 

modes of the system would be clearly present in the response.  

The zero-state component assumes an initial state equal to 

zero and is the result of convolving the system input with the 

impulse response.  This portion of the response will generally 

contain both characteristic modes and non-characteristic 

modes of the system.  
When considering power system oscillations, the response 

will not be ideal for several reasons.  Power systems are not 

linear systems.  Also, it is impossible to perturb the system by 

a delta function because it would have to have infinite 

magnitude and an infinitely small duration.  Theoretically, a 

delta function perturbs the system by an infinitely short 

amount of time at all the frequencies, and then it is suddenly 

removed as the input.  Thus, the way the system responds to a 

delta function is completely governed only by its own 

characteristic modes, so these characteristic modes may be 

retrieved.  In a real power system, the input is obviously not a 
delta function, so non-characteristic modes may be present. 

The behavior of a more general system near an equilibrium 

point xe is governed by 
 

 
    

    

x A x B u

y C x D u
 (10) 

where matrices A, B, C, and D represent the system equations 

linearized around xe, and the transfer function is 

 
1Y(s)

H(s) ( )
U(s)

s    C I A B D  (11) 

which represents the modes expected in the oscillations. 

Additionally, a ringdown can be considered to be in one of 

three categories.  (1) The system is stable and the value returns 

to the equilibrium value xe. (2) The system is stable but returns 

to some new equilibrium point, denoted xe,new. (3) The system 

is unstable.  The focus of this work is on the oscillations for 
the first two types.  Future work is possible to obtain more 
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information by simultaneously considering the steady-state 

changes that occur in situation (2). 

B.  Single-Machine-Infinite-Bus Eigenvalues 

 Single-machine-infinite-bus (SMIB) eigenvalues are 

calculated by modeling one machine in detail while modeling 

the rest of the system as an infinite bus [8].  SMIB eigenvalues 

can be obtained for each generator if the dynamic models are 

known.  Thus, a SMIB model allows the local modes of a 

generator to be examined and can greatly simplify analysis. 

Detailed investigation of SMIB models is found in [9].   

A linearized second order model of a synchronous generator 

can be used to represent its electromechanical modes (machine 

angle and rotor speed),  
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where ks is the synchronizing coefficient and kD is the 

damping coefficient.  In general, such a second order system is 

represented as    

 2 22 0n ns s     (13) 

where the poles may be expressed as  

 s j    (14) 

 21n     (15) 

 n   (16) 

 
where ζ is the damping ratio, ωn is the natural frequency, and 

ωd is the damped natural frequency.  The Laplace transform 

pair, from [10], is given by the following: 
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The eigenvalues of (12) are 
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These electromechanical modes associated with angle and 

frequency tend to be the most prominent in the ringdown for 

three-phase faults at the generator terminals. Thus, the modes 

in (20) are of particular interest.  For a SMIB system, these 

modes can be found by examining participation factors.   

Participation factors are essentially a measure of the effect 
of a particular state on a particular eigenvalue, 
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and they relate the kth state variable to the ith eigenvalue.  

These are determined from right and left eigenvectors v and w 

respectively.  Eigenvectors may be chosen with any 

convenient scaling such as to make w
T
v= 1. Thus, 

participation factors show which state variables reflect or 

capture certain modes, and one can determine which modes 

represent the angle and speed states by inspection.     

Two distinctions should be made before proceeding.  First, 

a two-bus equivalent system can be constructed based on a 

SMIB model: one bus represents the machine, while the other 

bus and transmission line represent the rest of the system. 
Ringdowns in the two-bus equivalent represent modes of the 

particular generator more clearly since the dynamics of all 

other generators are not modeled, whereas ringdowns in the 

full system contain the impact of all generators.  It is useful to 

compare the modal content of a ringdown in the two-bus 

system to that of the full system.  Additionally, it is important 

to distinguish between the rotor angle and the bus angle.  In 

simulation, it is possible to obtain the internal rotor angle 

which is a state of the generator, and this angle often more 

clearly preserves certain modes.  Conversely, the bus angle, 

which is possible to measure, is a function of solving the 

network’s algebraic equations.       
In summary, a relationship exists between the system 

eigenvalues, which may be associated with certain generators, 

and the modes in a ring-down. Measurement data can be used 

to characterize these relationships to facilitate event detection 

and classification. How well the SMIB eigenvalues of a 

generator are preserved in a ringdown partially depends on 

how linear the differential equations are as well as the 

coupling between generators.  If an entry in the system matrix 

A depends on the state, the system is nonlinear, and the 

computed eigenvalues may change considerably as the system 

state changes.    

III.  APPROACH 

The methods in this section are used to investigate the 

extent to which events at different generators have distinct 

signatures in OMS results. Results on estimating oscillation 

parameters of power systems in [7] corroborate our theory that 

for a small disturbance, a measurement can be modeled as the 

output of a linear system excited by a delta function.  Then, 

the signal is completely characterized by the coefficients of 
the numerator and denominator polynomial.  The coefficients 

of this transfer function are termed a linear predictive code 

(LPC) or model (LPM).  This LPM gives a model of the 

signal, and from this signal model we can compute various 

signal attributes.  Important attributes are frequency, presence 

or absence of critical modes, degree of damping, and 

amplitude of signal components.  The future evolution of the 

signal can also be predicted from the LPM.   

Approaches for LPM characterization of the signal are 

discussed and demonstrated in this section. Differences are 

often present in how the coefficients of the LPM are 
estimated. Understanding the benefits and limitations of 

particular identification methods with respect to signature-

seeking is important.  The methods explored in this section are 

the Prony method [2], the Steiglitz-McBride algorithm [11] 

with initial mode estimates, and mode-matching least-squares 
(LS) estimation. Signatures of different events are evident.  

These approaches illustrate the feasibility of distinguishing 

different events from each other in the resulting ringdown 

data.  Research on techniques to further characterize the 

signatures and to appropriately distinguish between events is 

in progress.    
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A.  Prony Analysis  

Prony analysis can be used to quantify the modal content of 

a ringdown by determining a best-fit reduced-order model 

both in time and frequency domains.  Similar methods for 

estimating a LPM in power systems include least squares (LS) 

and generalized least squares (GLS) [12].  Prony analysis can 

be considered a variation on the linear LS method, while GLS 

is an iterative approach to allow online updating of modal 

estimates. Following Section II, power system oscillations can 

be approximated by a sum of damped exponentials:   
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Prony analysis [2] estimates the parameters Bi and λi of (22), 

where (22) is also expressed as   
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and σi is the damping, Ai is the amplitude, ωi is the frequency 

in radian/s, and ϕi is the phase in radians. This estimated 

modal content can provide a useful summary of transient 

stability runs as well as of measured data.   

Many variations exist in Prony analysis implementations.  

In this paper, all Prony analysis is performed following the 

implementation of the Prony toolbox for Matlab [13], which is 

described in detail in [14] in its original context for analyzing 

modes in reactor measurements.   

In Figure 2a, SMIB eigenvalues with low damping for 

generators BLT138, LAUF69, ROGER69, BLT69, and 
BOB69 are shown.  Prony analysis results for simulated 

events of three-phase faults to ground followed by the 

generator tripping at BLT138, LAUF69, ROGER69, BLT69, 

and BOB69 are shown in Figure 2b, where the angle at 

BUCKY138 is the simulated PMU signal.  

 
 

 

Each set of eigenvalues in Figure 2b represents a ringdown.  

For example, the angle response at BUCKY138 to the event at 

BLT138 is given in Figure 3. 

 

 
Figure 3. Angle response to BLT138 event 

 

By inspection of Figure 2a and b, there is some similarity in 

structure, but more analysis is needed.   

B.  Stiglitz-McBride Algorithm with Initial Parameters 

The Steiglitz-McBride (SM) algorithm, introduced in [11], 

iteratively computes Kalman estimates. The algorithm 

identifies a transfer function N(z)/D(z) where 
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Each iteration of the algorithm determines updates of the 

coefficients α0,…,αn-1, and β1,… βn until the estimated 

response converges to the true response.  Convergence 

properties of the algorithm are examined in [15].   

The applicability of the SM algorithm in power systems for 

the purpose of studying low frequency electromechanical 

oscillations and for identifying low-order models from 

simulation data is examined in [16] and [17].   Performance 

comparisons of the Steiglitz-McBride algorithm, the 

Eigensystem Realization Algorithm, and the Prony method are 

given in [17].  As explained in [16], the estimated transfer 

function can be written as a sum of the residues ri over the 
poles. 
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The SM method can be executed in two forms, either with 

or without the use of initial parameters [11].  Executing the 

SM algorithm with specific initial parameters is advantageous 

for cases where certain modes seem to be of interest, as in our 

application.  The SM algorithm is especially useful because 

we can specify modes to serve as an initial estimate for the 

denominator coefficients of the LPM.  The SM algorithm 
implementation used in this paper is the Seiglitz-McBride 

function in Matlab’s Signal Processing Toolbox [18].  

SMIB eigenvalues and modal estimates from other methods 

can serve as useful initial conditions. When the modes 

obtained from Prony analysis are used as the initial transfer 

function poles, the SM method approximation more closely 

matches the true signal than the Prony approximation.  For a 

0.1 second balanced three-phase to ground fault at BLT138 in 

the two-bus equivalent, the bus angle ringdowns using Prony 

and SM methods are shown in Figure 4, for 30 modes: 
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Figure 4. 30-mode estimate for BLT138 fault in two-bus 

equivalent – Prony method (left), SM method (right)  

When only four modes are estimated, the discrepancy between 

the two methods is even more obvious, as shown in Figure 5. 

 

 
Figure 5. Four-mode estimate for BLT138 fault in two-bus 

equivalent – Prony method (left), SM method (right) 

However, when no initial parameters for the SM method are 

specified, its results essentially match the Prony method.     

Thus, the insight for the SM approach is to choose initial 

parameters, since a noteworthy improvement in the results is 

observed.  Suggestions include choosing the largest-amplitude 

eigenvalues from an initial Prony analysis or choosing the 

SMIB eigenvalues.  We generally see this effect for all of the 
studied fault signals.   

C.  Mode-Matching Least Squares Estimation 

The approach in this section seeks a direct mapping 

between the estimated modes of the response and the SMIB 

eigenvalues.  Least-squares estimation is used to force the 

estimate to include certain known or specified modes.  
Specified modes (damping and frequency) are held fixed 

while their amplitudes and initial phases are estimated.  The 

objective is to solve the following,   

 
2

,
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i iA 
f(t) y(t)  (27) 

where f(t) is a vector of the estimated signal and y(t) is a 

vector of the true signal.  The estimate f(t) is a summation of 

unknown coefficients multiplied by known sinusoids:  
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Therefore, if we know the dampings and frequencies, we can 

estimate the amplitudes and initial phases by solving the 

following linear matrix equation for a: 

 Ea y(t)  (29) 

Matrix E and vector a have the following structures: 
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where n is the number of modes and N is the number of time 

points.  Then, the least-squares solution is  
 

 1[ ] T T
a E E E y  (32) 

where a is a vector of complex numbers which, in polar 

notation, give the magnitude and initial angle of the signal. 
The quality of the approximation depends on which modes 

are specified. If a careful choice of representative modes is 

made initially, then f(t) is approximately equal to the original 

signal.  Conversely, if the modes are poorly selected, a 

meaningful approximation may not be found.  As with the SM 

algorithm, the authors have experimented with several ways of 

choosing the initial modes for this algorithm.  Suggestions 

include the SMIB eigenvalues and estimates from other 

methods.    

Once the amplitudes and initial phases of the selected 

modes are determined, one may examine the amplitudes of the 

modes to find generators with significant contributions to the 
event.  Generators with electromechanical modes 

corresponding to the highest estimated amplitudes should be 

noted.  The identified generator or generators may serve as an 

indication of the likely source of the event.    

Consider again the event at BLT138 corresponding to 

Figure 3. Following the method described, SMIB eigenvalues 

are chosen to be the specified modes.  Figure 6 shows a fit of 

29 generator SMIB eigenvalues to the ringdown and also plots 

the Prony estimate.  

 

 

Figure 6. Approximations of Figure 3 event with Prony analysis 
and Mode-Matching LS 

The SMIB modes with the highest amplitudes and their 

associated generators are found, and generators with large 

contributions are identified in Table 1. The SMIB modes of 

generator BLT 138, where the event occurred, have higher 
amplitudes than the other SMIB modes.  Thus, the 

precipitating generator can be correctly identified as BLT138.  
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Table 1. Prony results with SMIB eigenvalue amplitudes 

Amplitude Generator Damping 

Frequency 

(rad) 

0.0000 LAUF69 -15.142 -3.172 

0.0000 LAUF69 -15.142 3.172 

17525.0000 BLT138 -2.8161 3.6975 

17525.0000 BLT138 -2.8161 -3.6975 

9.9970 ROGER69 -1.9498 -12.603 

9.9968 ROGER69 -1.9498 12.603 

8.0001 LAUF69 -1.6795 14.944 

7.9998 LAUF69 -1.6795 -14.944 

122.1300 BLT138 -2.661 -15.716 

122.1300 BLT138 -2.661 15.716 
 

It is important to note that identification of a single 

contributing generator will not always be this apparent.  

Which modes are present in the ringdown depends on which 

modes are excited, and this is based on both the system input 

and system state.     

IV.  RESULTS  

In this section, we take a closer look at the signatures that 

occur in the ringdown results for a particular type of event.  In 

particular, three-phase to ground faults lasting 0.1 seconds are 

applied at each of the eight generator buses.  The ringdowns 

are analyzed and the results compared.  The idea is to be able 

to pick out the characteristics that make each event appear 
distinct in a ring down.  

For the BLT138 fault in the two-bus equivalent, the Prony 

analysis of ringdowns for both the rotor angle and the bus 

angle are given in the top two plots of Figure 7. Note how the 

signals change when the system is interconnected.  The 

bottom plots of Figure 7 show the ringdowns in the full system 

for the same event.    

 
Figure 7. Fault at BLT138 – Two-bus equivalent rotor angle (a) 
and bus angle (b); Full system rotor angle (c) and bus angle (d)  

Table 2 provides a summary of the results for each event at 

each generator bus in the full system.  It is important here to 

point out an inherent challenge, which is how best to quantify 

similarity of modes.  In these results, we examined both the 

Euclidean distance and the Manhatten distance in the jω 
direction.  The latter is simply the SMIB eigenvalue frequency 

minus the estimated frequency, in radians. The value of the 

frequency term may be of greater significance than the value 

of the damping term.  The reasoning is that frequency is based 

on physical characteristics of the generator whereas damping 

may more readily change based on controls in the system.   

The first row in each portion of the table denotes the 

generator and its electromechanical SMIB modes. The most 
significantly contributing mode estimates are given, obtained 

from the three methods described in this paper.  Beneath each 

mode are two numbers, indicated in the (d:a,b) term, where a 

is the Euclidean distance and b is the Manhatten distance of 

each mode to the SMIB mode. Low distance values indicate 

an estimate which is well-matched to the SMIB 

electromechanical mode. More research is needed to better 

quantify the “closeness” of modes. 

 
Table 2. Results for 0.1 second faults at each generator terminal 

 (1) Gen 53 – ―BLT138,‖ s = -2.66±j15.7162 

Prony SB LS 

s =-3.78±j10.92  
(d: 4.92, 4.80) 

s = -3.51±j16.63, 
(d:1.25, -0.91) 

s = -3.78±j10.92, 
(d:4.92, 4.80) 

s =-3.51±j17.13,  
(d:1.65, -1.41) 

s = -2.97±j10.82, 
(d: 4.91, 4.90) 

s = -3.51±j17.13, 
(d:1.65, -1.41) 

 
(2) Gen 44 – ―LAUF69,‖ s = -1.68±j14.94 

Prony SB LS 

s =-6.02±j9.51 
(d:6.95, 5.44) 

s =-7.06±j14.97, 
(d:5.38, -0.03) 

s =-6.02±j9.51, 
(d:6.95, 5.44) 

s =-2.10±j16.15,  

(d:1.29, -1.21) 

s =-2.13±j16.70, 

(d:1.82, -1.76) 

s =-2.10±j16.15, 

(d:1.29, -1.21) 

 
(3) Gen 50 – ―ROGER69,‖ s = -1.95±j12.60 

Prony SB LS 

s =-2.674±j12.221 
(d:0.82, 0.38) 

s =-2.862±j11.95 
(d:1.12, 0.65) 

s =-2.674±j12.221 
(d:0.82, 0.38) 

 
(4) Gen 54- ―BLT69,‖ s = -1.90±j11.28 

Prony SB LS 

s =-2.09±j11.09 
(d:0.27, 0.19) 

s =-1.32±j11.20 
(d:0.59, 0.08) 

s =-2.09±j11.09 
(d:0.27, 0.19) 

  s =-1.90±j11.279 
(d:0.00, 0.00) 

 
(5) Gen 31- ―SLACK345,‖ s = -3.68±j8.17 

Prony SB LS 

s =-2.86±j12.07 
(d:3.98, -3.90) 

s =-2.94±j10.79 
(d:2.72, -2.62) 

s =-3.683±j8.171 
(d:0.00, 0.00) 

s =-3.52±j14.45 
(d:6.28, -6.28) 

s =-1.91±j13.9 
(d:6.00, -5.73) 

 

 
(6) Gen 28 – ―JO345,‖ s = -2.25±j14.69 

Prony SB LS 

s =-2.362±j12.74 
(d:1.95, 1.95) 

s =-2.872±j11.49 
(d:3.26, 3.2) 

s =-3.517±j14.46 
(d:1.29, 0.23) 

s =-6.224±j16.63 
(d:4.42, -1.94) 

s =-2.09±j14.40 
(d:0.33, 0.29) 

s =-2.86±j12.07 
(d:2.69, 2.62) 

 
(7) Gen 14- ―WEBER69,‖ s = -3.75±j15.25 

Prony SB LS 

s = -2.22±j13.30 
(d:2.48, 1.95) 

s = -2.13±j13.32 
(d:2.52, 1.93) 

s = -3.75±j15.25 
(d:0.00, 0.00) 

 
(8) Gen 48 – ―BOB69,‖ s = -3.37±j12.96 

(c) (d) 

(b) (a) 
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Prony SB LS 

s = -3.08±j11.34 
(d:1.65, 1.62) 

s = -3.32±j11.33 
(d:1.63, 1.63) 

s = -3.37±j12.96 
(d:0.00, 0.00) 

The initial results presented here are promising, especially 

considering the fact that the SMIB eigenvalues are essentially 
two orders of approximations – firstly from the non-linear 

system dynamics to a linearized representation of the system, 

and secondly from a linearized representation of the system to 

generator models which are decoupled from the dynamics of 

other generators.  The connection between SMIB models and 

the full system is further examined in [9].   

V.  CHALLENGES 

To suitably distinguish event signatures, a number of 

complicating issues must be confronted.  As mentioned in 

Section IV, one challenge is to develop metrics for comparing 

similarity of signals based on their modal content.  Another 

challenge is dealing with cases where strong modes excited by 

the event are not easily identifiable as belonging to a particular 

generator’s local modes.  Research is in progress on 

identifying signatures for such difficult circumstances.  Rather 

than attempting to associate an event with one particular 

generator, it may be useful to determine sets of coherent 

generators and find the coherent group to which an event is 

likely to belong. Finding groups or clusters can also help make 
pattern-matching more tractable since rather than searching 

the large set of all generators, it is only necessary to search a 

small set of groups.   

An additional challenge is that the eigenvalues of the 

system are changing, especially during an event, so trying to 

fit them to a model is trying to fit a moving target. It would be 

better to have an of algorithm designed to account for the 

expected changes over time.  Studying the trajectory of 

eigenvalues over a window of time may provide more 

information about the events. 

Another useful area for further investigation is system 
identification.  The ideal method would allow certain modes to 

be specified as algorithm parameters while allowing the 

remaining modes to be selected such that a best-fit of the 

signal is obtained by the algorithm.  More research is needed 

to seek direct ways to accomplish this.      

Also, the number of modes, n, which should be estimated is 

often unknown.  A number of practical issues including signal 

selection, filtering, and linearity assessment are discussed in 

[22], [19].  A primary limitation to obtaining accurate modal 

estimates is noise.  Measurement location can also impact the 

estimates.  It may be beneficial to consider the impact of 

location using relevant concepts in electromagnetic wave 
propagation theory [20][21]. Signals at different locations can 

be correlated to reflect how events move through the system. 

Also, utilizing a multi-signal approach in [22] provides more 

accurate modal estimates in the presence of noise and system 

nonlinearities. Including ongoing advances in OMS 

technology will only help to strengthen the concepts in this 

work.   

VI.  CONCLUSION 

This work shows that different events produce ringdowns 

which have distinct characteristics or signatures.  In this paper, 

a specific type of signature is studied, which relates the 

captured oscillation data to the generator of origin.  Three 

identification approaches are used in Section III: the Prony 

method, the SM method with initial parameters, and mode-

matching LS.  

Examining the contributions of generator electromechanical 
modes to ringdowns lays the foundation for continued work in 

detecting and distinguishing event characteristics.  This paper 

is an early stage in our continuing work to develop methods 

for signature recognition and classification in OMS data.  The 

SMIB electromechanical modes corresponding to the faulted 

generator are often well-represented in the ringdown.  Thus, if 

nominal local generator modes are known, it is often possible 

to correctly identify the generator where the event occurred.   

However, such identification may not always be easy or 

possible.  Inherent challenges are discussed in Section V.  

More work is underway to deal with the numerous 

complicating situations that can arise.      
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