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Abstract 
 
This paper develops a method for reliably determining the set 
of low-voltage solutions which are closest to the operable 
power flow solution.  These solutions are often used in 
conjunction with techniques such as energy methods and the 
voltage instability proximity index (VIPI) for assessing system 
voltage stability.  This paper presents an algorithm which 
provides good initial guesses for these solutions.  The results 
are demonstrated on a small system and on larger systems with 
up to 2000 buses. 
 
I. Introduction 

 
One class of methods for determination of the voltage 

stability limits utilizes the distance between the operable power 
flow solution and an alternative (or low-voltage) solution.  This 
includes the use of state space measures [1], [2], [3], a PV 
curve based method [4], and energy methods [5] for quasi-
static voltage stability assessment. Additionally, low-voltage 
solutions are used in the determination of the exit point for 
dynamic voltage stability assessment [6], [7]. The common 
element of these methods is the need to determine at least one 
of these low-voltage solutions.  It has long been recognized that 
the nonlinear power flow equations can have multiple solutions 
[8].  While the actual number of solutions depends upon system 
loading, the number of potential solutions can be quite large; 
the maximum number for an n+1 bus system is estimated to be 
2n in [9] and (2n

 n ) in [10].  For these methods to be practical, 
there is a need for an efficient method to determine the 
appropriate low-voltage solutions reliably.   

A number of methods have been proposed for determining 
some (or all) of these solutions.  In [9] an algorithm is 
presented that attempts to determine all of the low-voltage 
solutions by systematically starting the power flow solution 
from different initial voltage guesses.  The number of solutions 
actually found depends upon the convergence characteristics of 
the Newton-Raphson (N-R) power flow.  In [10] a homotopy-
based method is developed that offers a more rigorous method 
for determining all of the system solutions but requires 
computation proportional to (2n

 n ). An improved homotopy 
method for finding all solutions is presented in [11] that 
requires computation proportional to the product of the system 
size and the actual number of solutions.  Genetic algorithms for 
solving this problem are discussed in [12].  While these 
methods promise to 

find all of the system solutions, they require computation well 
beyond that considered reasonable for on-line usage. 

Luckily, results from [13] indicate that the search for low-
voltage solutions can be restricted to those solutions 
corresponding to equilibrium points with a single positive 
eigenvalue associated with the Jacobian of the linearized 
system dynamic equations (i.e., the type-one solutions).  For 
certain realistic classes of load models, the stability of an 
equilibrium point can be determined from the eigenvalues of 
the polar form of the power flow Jacobian [14], [15], [16].  
Furthermore, only those solutions associated with relatively 
low energy margins need to be determined.  Nevertheless, de-
termining these solutions quickly enough for on-line usage has 
proven difficult.   

As the system approaches the loadability limit, the number 
of solutions decreases.  At some point (usually very close to the  
limit) only the operable solution and a closely paired low-
voltage solution remain.  If one is concerned only with 
checking for this condition, [17] presents an efficient method 
that exploits the convergence characteristics of the rectangular 
N-R power flow.  An alternative method is proposed in [18] 
that uses the Householder transform to check for the solution. 

To assess security while a system is still a reasonable dis-
tance from the loadability limit, a number of type-one low-volt-
age solutions are usually required, with the different solutions 
providing measures of the security in different portions of the 
system [13].  In [9] a method that requires approximately n 
power flow solutions was suggested.  The computation was fur-
ther reduced in [13] and [19] by employing screening tech-
niques using equivalent systems.  The goal of this paper is to 
develop a more robust and efficient method for determining 
this set of low-voltage solutions “closest” to the operable 
solution.  The method presented utilizes the structure of the 
power flow equations to determine good initial guesses for 
these solutions, and is general enough to determine more than 
just a single low-voltage solution. The results are demonstrated 
on both small systems and larger systems with up to 2000 
buses. 

 
II. Power Flow Low-Voltage Solutions 
 

The problem is introduced by considering the low-voltage 
solution characteristics of the symmetric three-bus system 
shown in Figure 1 (line impedances are per unit using a 100 
MVA base).  Buses 1 and 2 are modeled as constant PQ load 
buses, while bus 3 is the system slack with a constant per unit 
voltage of 1.0 + j0.0.  For the base case loading shown in the 
figure, the system has four real power flow solutions given in 
Table 1.  Solution A corresponds to the operable solution, 
solutions B and C are type-one, while solution D is type-two.   

As the system loading is varied, the locations of these 
solutions also vary.  In particular, as loading increases towards 
a point of maximum loadability, the number of solutions 
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decreases until at some point only a single type-one solution 
and the operable solution remain. Maximum loadability occurs 
when these two solutions coalesce at a point on the maximum 
loadability boundary (denoted by Σ) in a saddle-node 
bifurcation.  System loadability can be monitored by tracking 
the distance between the operable solution and this type-one 
solution.  However, a key point is that unless one knows a 
priori how system loading will change, it is impossible to know 
with absolute (and sometimes even reasonable) certainty the 
identity of this type-one solution.  Therefore a number of 
solutions close to the operable solution must be determined.   

 

Figure 1: Three Bus System 

Voltage Solution A Solution B Solution C Solution D 
V1 0.9487 0.2677 0.7477 0.3162 
θ1 -18.43° -77.52° -26.95° -71.56° 
V2 0.9487 0.7471 0.2677 0.3162 
θ2 -18.43° -26.95° -77.52° -71.56° 

Table 1: Three Bus Base Case Solutions 

The advantage of this approach is that it  provides a method 
of loadability assessment that is independent of any assumed 
path to the boundary Σ. This quality can be extremely 
important in trying to assess system security accurately under 
the unusual operating conditions often associated with 
proximity to voltage instability.  While many utilities have a 
good idea of load participation under normal operating 
conditions, this information is much more difficult to ascertain 
under such stressed conditions for which little historical data is 
available. Furthermore, as transmission systems become more 
open, there will be an increase in potentially harmful third party 
transactions of which the operator may have little knowledge 
and control. 

For example, the following three figures show the solution 
variation for the three bus system in the V1-V2 plane as load is 
increased with different assumed participation factors.  In 
Figure 2 the load increase at bus 1 is twice that at bus 2, while 
in Figure 3 the opposite occurs, with the load increase at bus 2 
twice the value at bus 1.  In the first case the heavy load 
increase at bus 1 ultimately causes solutions A and B to 
coalesce as maximum loadability is reached (at a total load of 
965 MW).  Note that solutions C and D also coalesce, but at a 
lower load of only 787 MW.  The opposite occurs in the second 
case, with solutions A and C now coalescing at maximum 
loadability (now B and D coalesce at a lower value).  

In the Figure 4 case the load participation is initially higher 
at bus 1, causing solutions A and B to initially move toward 
each other.  However, when the bus 1 load is at 1.3 times the 
base value, the participation is switched so that most of the load 
increase occurs at bus 2.  The maximum loadability boundary is 
then ultimately reached with solutions A and C coalescing.  

This example illustrates that even though a low-voltage 
solution may at some point be closest to the operable solution 
(as B is early on), changing system conditions can result in a 
final bifurcation with another solution.  Hence the potential 
need to calculate more than one low-voltage solution.   
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Figure 2: Maximum Load Participation at Bus 1 
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Figure 3: Maximum Load Participation at Bus 2 
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Figure 4: Varying Load Participation 

The type-one low-voltage solutions are often identified by 
the bus number with the lowest voltage magnitude.  Alterna-
tively, and almost always equivalently, the solutions can be 
classified based upon information derived from an eigenvector 
of the polar form of the solution Jacobian.  This is because at 
the point of bifurcation the Jacobian is singular, with the initial 
direction of voltage collapse along the eigenvector correspond-
ing to the zero eigenvalue of the polar form of the power flow 
Jacobian [20], [21].  This eigenvector usually has relatively 
large components at only a few buses.  Also, for loading sig-
nificantly less than this critical value, the eigenvector asso-
ciated with the positive eigenvalue of J(xu) still approximates 
this direction [13].  The solution can be identified from the bus 
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number corresponding to the largest magnitude in this eigen-
vector.  This solution can then be used to obtain a measure of 
the voltage security in that portion of the system.  For the three 
bus example, solution B is the bus 1 low-voltage solution, 
while solution C is the bus 2 solution (solution A is the 
operable solution, while D is type-two). 
 

III. Relationships between Solutions 
 
To develop the necessary relationships between the operable 

solution and the low-voltage solutions, consider the power flow 
equations for an n+1 bus system (with bus n+1 as the slack): 

 S  =  f(x*) (1) 

where S is a vector of the constant real and reactive power load 
minus generation at all the non-generator (PQ) buses, and the 
real power plus voltage magnitude equality constraints at all 
generator (PV) buses (except the slack).  For convenience 
assume that the first m buses are PV, and the remainder are PQ:   

 S  =  [P1, ..., Pn, V2
1, ..., V2

m, Qm+1, ..., Qn]T  (2) 

with  x* the power flow solution in rectangular coordinates, 

 x = [e1, e2, ..., en, f1, f2, ...,fn]T,  (3) 

and f the function of the bus power/voltage constraints 

 f = [fp1(x), ..., fpn(x), fq1(x), ..., fqn(x)]T  (4) 

 fpi  =  -  ∑

j=1
n  [ ei(ejGij - fjBij) + fi(fjGij + ejBij) ] (5a) 

and at the PV and PQ buses respectively 

 fqi  =  e2
i  + f2

i  (5b) 

 fqi  =  -  ∑

j=1
n  [ fi(ejGij - fjBij) - ei(fjGij + ejBij) ] (5c) 

Because the power balance equations are a set of quadratic 
equations with no first order terms, the Taylor series expansion 
of (1) can be written exactly as [22]: 

 S = f(x*) = f(x + ∆x) = f(x) + J(x) ∆x + f(∆x)  (6) 

with ∆x the difference between an arbitrary x and a solution x*, 
while J(x) is the power flow Jacobian.  Additionally, since (1) 
is quadratic, for an arbitrary scalar µ we have 

 f(µ∆x) = µ2 f(∆x) (7) 

In order to develop an improved low voltage solution 
algorithm, we make four observations.  First, consider two 
unique power flow solutions: xs the operable power flow 
solution, and xu a type-one low-voltage solution.  Let xm be the 
midpoint between the two solutions.  Then define 

 ∆xm  = xs  - xm  =  xm  - xu (8) 

From (6) and (7) it is clear that 

 f(xs)  =  f(xm) + J(xm) ∆xm + f(∆xm)   = S (9) 

 f(xu)  =  f(xm) - J(xm) ∆xm + f(∆xm)   =  S (10) 

Subtracting (10) from (9) gives 

  0   =  2 J(xm) ∆xm (11) 

Since by definition ∆xm ≠ 0, J(xm) is singular, indicating 
that xm is a point on the maximum loadability boundary Σ, and 
that ∆xm is the eigenvector associated with the zero eigenvalue 
of J(xm).  Since xm is on the line segment joining xs and xu, it is 
the boundary point closest (in state space) to both solutions; the 
load level for xm is f(xm).  Also, starting from the operable 
solution xs and knowing xm, we could directly determine xu. 

The second observation provides a method for 
approximating ∆xm (and hence xm ).  Again using (6) we can 
write   

 f(xm)  =  f(xs) - J(xs) ∆xm + f(∆xm)     (12) 

By subtracting (9) from (12), and recalling that J(xm) ∆xm = 0, 
we can directly solve for ∆xm 

 f(xm) - f(xs)  =  -f(xm) + f(xs) - J(xs) ∆xm   (13) 

 2 [J(xs)] -1 [f(xm) - f(xs)]  =   ∆xm   (14) 

Thus, if we know the “midpoint mismatch”, [f(xm) - f(xs)] (or 
have a reasonable approximation), we can determine ∆xm.   

To develop this approximation, we require the use of the 
optimal multiplier result of [22] which states that once an 
arbitrary direction ∆x has been found, one can directly and 
efficiently solve for a scalar optimal multiplier µ which 
minimizes the following cost function in that direction: 

 F(x) = 
1
2 [S - f(xs + µ∆x)]T [S - f(xs + µ∆x)]  (15) 

This result is derived by first using (6) to expand f(x) about xs 

 f(xs + µ∆x)  =  f(xs)  +  µ J(xs) ∆x  + µ2 f(∆x) 

Then define vectors a, b, c, and rewrite (15) 

 a = S  -  f(xs)  (16) 

 b = - J(xs) ∆x  (17) 

 c = - f(∆x) (18) 

 F(x) = 
1
2 [a + µ b + µ2 c]T [a + µ b + µ2 c] (19) 

The values of µ which minimize (15) are determined by 
differentiating (19) with respect to µ, which gives 

 g0  +  g1 µ  +  g2 µ2  + g3 µ3  =  0 (20) 

where for the general problem 

 g0 = aT b   (21) 

 g1 = bT b + 2 aT c  (22) 

 g2 = 3 bT c  (23) 

 g3 = 2 cT c  (24) 

However, for the specific problem under consideration here (of 
estimating xu from xs), we note that since a = 0 by definition 
(and hence g0 = 0), (20) can be simplified to  

 µ (g1 +  g2 µ  + g3 µ2 )  =  0   (25) 
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Since any solution of the power flow problem is an absolute 
minima of (15), (25) always has a root µ = 0, corresponding to 
xs.  Whether (25) has two additional real roots depends upon 
the g coefficients (specifically we require g2

2 > 4 g1 g3 ).  If this 
condition is met, the root closest to zero is always a local 
maximum of (15) while the more distant root is always a local 
minimum.  The third observation then is that since  

 xs  +  2 ∆xm  =  xu (26) 

to determine xu we need only determine a vector ∆x which is 
collinear to ∆xm. The optimal multiplier equation can be used 
to determine the actual distance to move in direction ∆x.  
Because of the linearity of (14), this implies that we do not 
actually need to determine the midpoint mismatch, [f(xm) - 
f(xs)], but rather just a vector ∆S which is collinear to it. 

The last observation is used to develop an estimate of this 
collinear vector; this is the only approximation which is 
employed.  Again consider the two solutions xs and xu.  The 
midpoint mismatch then provides one amount of load increase 
which would cause these two solutions to coalesce.  Since xm is 
the midpoint in state space on the line segment joining the two 
solutions, it can be thought of as the “closest” bifurcation point 
in state space for the two solutions. The midpoint mismatch is 
the amount of parameter variation necessary to reach this point.  
However, this point is not equivalent to the closest point in 
parameter space computed in [23] using an l2-norm (Euclidean 
norm).  It appears to be more closely related to the point which 
locally minimizes the l1-norm.   

Examination of the midpoint mismatch reveals that for type-
one solutions it usually has a relatively large component only at 
a single bus, and then only in the reactive component.  
Furthermore, this bus corresponds to the bus number used 
earlier to identify the solution.  This implies that the “quickest” 
way to voltage instability via a bifurcation between a particular 
type-one solution and the operable solution would be to 
increase just the reactive power at the identifying bus.  For 
example, Table 2 shows the midpoint mismatches for the two 
type-one solutions from Table 1, with the bus 1 solution having 
a large Q1 mismatch while the bus 2 solution has a large Q2 
mismatch.  Thus, the vector ∆S collinear to [f(xm) - f(xs)] can 
be approximated by including a single nonzero at the location 
corresponding to the reactive power at a particular bus.   

 

Midpoint Mismatch  Bus 1 Solution Bus 2 Solution 
P1 (MW) -4.3 4.3 
Q1 (Mvar) 220.2 9.5 
P2 (MW) 4.3 -4.3 
Q2 (Mvar) 9.5 220.2 

Table 2: Midpoint Mismatches for Three Bus Solutions 
 

IV. Low-voltage Solution Algorithm 
 

The observations from the previous section are now used to 
develop an algorithm to reliably calculate one or more low-
voltage solutions.  The algorithm is repeatedly applied to each 
bus k in a set K consisting of all buses for which potential low-
voltage solutions are desired.  The operable solution xs is 
assumed to be known.  For each bus k in K Do  

1. Set ∆S with a single nonzero at the position of the 
reactive power mismatch for bus k.   

2. Use (14) to calculate the search direction ∆x.   

3. Attempt to determine the optimal multiplier using (25).  
If the result is imaginary, stop the bus k iteration; a 
second local minimum of the cost function does not 
exist in the search direction.  Otherwise, the largest 
root µ determines how far to move in the direction ∆x.  
Set x0  = xs + µ ∆x as the initial estimate of xu. 

4. The accuracy of the initial estimate can be quantified 
by calculating the norm of the initial mismatch f(x0) - 
S.  If the norm is sufficiently low, solve the Newton-
Raphson power flow using x0 as an initial guess of xu. 

The computational requirements for solving for the initial 
guess x0 are quite reasonable.  If the operable solution has been 
determined using the Newton-Raphson method, then J(xs) is 
already available in factored form.  Otherwise it only needs to 
be calculated and factored once for the entire set K.  Since ∆S 
is a sparse vector, ∆x can be calculated very efficiently in step 
2 using sparse vector methods with a fast forward, full 
backward solution [24].  To determine the optimal multiplier in 
step 3, the vectors b and c are needed.  However, by 
substituting (14) into (17), it is clear that b = -∆S. The 
computation of c is equivalent to a power flow mismatch 
calculation. All other operations to calculate µ are order n.  If 
the optimal multiplier is real, then determining the norm of the 
initial mismatch is again equivalent to a power flow mismatch 
calculation.   

As discussed in the next section, only those solutions with 
sufficiently small mismatches need to be solved in step 5.  How 
quickly (or whether) the power flow converges to the bus k low 
solution depends upon the accuracy of the initial guess x0.  The 
numerical testing discussed in the next section indicates that for 
low-voltage solutions close to the operable solution the results 
are quite good, resulting in rapid convergence.   

The final issue that must be addressed is the determination 
of the set of buses likely to have low-voltage solutions of 
interest (i.e., set K).  Since the voltage security in a particular 
area of the system is determined using a low voltage solution 
from a bus in that area, usually only a subset of the system 
buses needs to be searched.  For example a utility might just 
select its own internal system and several nearby external 
buses; other portions of the system, where the utility has no 
operational control and only limited real-time knowledge, are 
excluded. 

This set is further reduced by using a fast screening method 
to identify the locally weakest buses.  One approach is to use 
screening methods based upon solving a smaller equivalenced 
system, such as the methods discussed in [19].  Another is to 
first calculate the ∂Vi/∂Qi sensitivity for each bus in the internal 
system.  While we do not advocate the use of these linear 
sensitivities as explicit measures of voltage security, testing 
indicates that they are useful for identifying the locally weakest 
buses, which are then included in set K.  Using sparse vector 
methods these values can be computed very efficiently. Table 3 
compares the times (in seconds) of a single power flow solution 
to the time to determine all the ∂Vi/∂Qi sensitivities for a 
system (note that normally only sensitivities for the internal 
buses would need to be determined) (studies were done with a 
PC).   
 

Test System Power flow (secs) Sensitivities (secs) 
IEEE 118 bus 0.3 0.1 
IEEE 300 bus 0.5 0.3 
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415 bus utility sys. 1.1 0.5 
2000 bus utility sys. 14.3 23.6 

Table 3 : Computation Time to Calculate Diagonal Sensitivities 
 

V. Test System Results 
 

The ability of the algorithm to determine low-voltage 
solutions over a wide range of system loading is first evaluated 
using the earlier three-bus system.  Under light loading this 
system exhibits four solutions, two of which are type-one.  
However the identity of the type-one solution that ultimately 
coalesces with the stable equilibrium strongly depends on the 
load participation at buses 1 and 2.  For the Figure 2 case (with 
load participation at bus 1 twice that at bus 2), Figure 5 shows 
the variation in the largest component of the initial mismatch, 
f(x0) - S, as a function of load.  The solution found with k equal 
to bus 1 corresponds to solution B in Figure 2, while k equal to 
bus 2 corresponds to solution C.  The method was able to trace 
the bus 1 solution all the way to the bifurcation boundary (Σ) 
and the bus 2 solution to the point where it coalesces with the 
type-two solution at a load of 787 MW.  An increasing 
mismatch accompanies the loss of solution at bus 2, whereas at 
all load levels the bus 1 solution mismatch is rather small, with 
the value tending towards zero as Σ is approached.  Figure 6 
shows the variation in the ∂Vi/∂Qi sensitivities as a function of 
load.  While the sensitivities are useful for determining the 
more heavily loaded portion(s) of the system (i.e., bus 1 for this 
case), their relative insensitivity to changes in loading (almost 
until the point of bifurcation) make them unsuitable for direct 
voltage security assessment.  Conversely, Figure 7 shows how 
the low-voltage solution(s) can be used with energy methods to 
provide smoothly varying measure(s) of system security [5]. 
 

600 700 800 900 1,000
Total Load (MW)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

 M
is

m
at

ch
 a

t I
ni

tia
l G

ue
ss

   
   

   
   

   
  (

Pe
r U

ni
t)

Bus 1
Bus 2

 
Figure 5: Largest Initial Low-Voltage Solution Mismatch 
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Figure 6: Three Bus ∂Vi/∂Qi Sensitivities 

The variation of the energy measures corresponding to the 
type-one solutions of the IEEE 118-Bus system has been 
investigated as a function of load in [19] using the simplified 
method of [9].  A similar analysis, this time using the proposed 
method, produced a nearly identical set of curves.  Figure 8 
illustrates the method’s ability to track a number of low-energy 
solutions as load is increased uniformly at all buses toward 
maximum loadability.  Experimentation has shown that the 
method performs equally well for a number of other load 
parametrizations.  Moreover, Figure 9 shows that the 
mismatches at the initial low-solution guesses again are quite 
low, resulting in efficient convergence to the low solutions. 
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Figure 7:  Energy Measures for 3-Bus System 
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Figure 8:  Energy Measures for 118-Bus System 
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Figure 9:  Largest Initial Low-Voltage Solution Mismatch 
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The use of ∂Vi/∂Qi sensitivity as a screening tool was seen to 
be an expedititious, though not entirely foolproof, means of 
determining set K.  By checking the six most sensitive buses at 
any given load level, the least-energy solution was always 
found.  The identity of those buses leading to the five least-
energy solutions could usually be found with reasonable 
certainty if the ten most sensitive buses were searched.  Lastly, 
the method was tested on a 2000 bus utility system.  As was the 
case for the earlier systems, the initial mismatches in f(x0) - S 
were usually quite low, resulting in good convergence to the 
low-voltage solutions.  Screening and determining the close by 
solutions for the entire system required computation equal to 
about 15 standard power flow solutions.  However if only a 
portion of the system was screened (such as a 300 bus “internal 
system” in this case), this dropped to less than 10 times a 
standard power flow.   
 
VI. Conclusion 
 

A computationally efficient and reliable method for 
calculating the lowest-energy type-one solutions has been 
introduced and demonstrated on a number of systems.  The 
algorithm poses little additional computation and converges to 
the low-voltage solution within a few iterations.  Moreover, it 
is general enough to track several low-voltage solutions, and it 
provides a convenient screening facility for discerning which 
low-voltage solutions to investigate.  Further research is needed 
on developing improved techniques to limit the size of set K.   
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