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Abstract—This paper presents a weather-informed calculation
of wind and solar photovoltaic generation capacity, validates
the calculated capacity against wind and solar generation totals
from the U.S. Energy Information Administration in 2021,
and applies the validated technique to determine wind and
solar resource droughts in the United States for 1973–2022. As
renewable generation sources rely on variable resources such as
wind or solar irradiance, the actual availability of the renewable
resources may be insufficient if electric grid studies and analyses
are performed using its rated capacity. Improved methods for
more accurately calculating renewable power outputs given
weather data are discussed and resource drought examples
are presented for U.S. states with high amounts of renewable
generation.

Index Terms—renewable generation, renewable resource
drought, weather, power systems planning

I. INTRODUCTION

Renewable generation provides inexpensive power genera-
tion that produces no operational emissions and comprises a
growing portion of the power generation mix in the United
States. Based on U.S. Energy Information Administration
(EIA) Form EIA-860 [1] in 2021 around 16% of the overall
generation capacity is supplied from renewable energy. This
portion is expected to grow in the coming years as more
wind and solar capacity is planned [2]. As the percentage
of electricity generated using renewable sources is increases,
traditional resource adequacy studies must now consider the
variablity of renewable resources to ensure electric grid relia-
bility and resiliency [3], [4]. There is a growing concern about
outlier weather events that can reduce the total availability of
renewable resources over longer periods of time. These events
are referred to as wind resource droughts (WRDs), solar
resource droughts (SRDs), or more generically as renewable
resource droughts (RRDs) [5], [6]. The purpose of this paper
is to study the prevalence of RRDs using weather over the
previous fifty years.

The concept of a renewable resource drought is inspired
by [7] which defines “drought,” as “a period of abnormally
dry weather sufficiently long enough to cause a serious
hydrological imbalance.” As illustrated in the literature, both
a traditional rain “drought,” and RRDs do not have a precisely
defined duration or geographic extent but they do need to be
sufficiently long and wide-spread to cause an impact. They
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also needs to be “abnormal,” as mentioned in its definition.
Just as a rain drought only makes sense in comparison to the
average rainfall in a given location or timeframe, a WRD or
SRD is only meaningful when compared to typical values of
wind or solar generation; thus it would not be meaningful
to determine RRDs in areas with little installed renewable
generation.

Additionally, there are a variety of definitions in the liter-
ature for the criteria of resource droughts. The classification
of a drought event involves the resource availability being
less than a given threshold for an extended period of time.
Similarly to the work in this paper, [8] used historical weather
data to calculate possible wind and solar output power,
then calculated the occurrence of weather droughts using
half of the daily mean value over the 39-year study period
as the threshold. In contrast, [9] uses data based on the
ERA5 re-analysis [10] and proposes the 10th percentile of
the average calculated renewable power as the threshold.
However, neither [8] nor [9] validated the calculated wind
and solar output power values using actual renewable MW
output values.

Much like the thresholds and periods being defined in a va-
riety of ways in the literature, the data considered is different
for various studies with respect to geographic regions, years,
resolution, and consideration of weather measurements or
resulting power availability. Some studies [11]–[14] consider
only weather measurements (e.g., wind speed) in their deter-
mination of droughts. Others [8], [15], [16] use weather data
such as wind speeds as input to wind turbine power curves for
hypothetical or approximated generator outputs in the regions
of study. In contrast, this paper calculates approximate MW
output power for both solar and wind plants using wind
speed and cloud cover data. As later demonstrated, these
calculations are validated against actual renewable power
production data and are shown to be highly accurate in most
cases.

Additionally, several references in the literature study the
impact of droughts on the electrical grid in different parts of
the world. In [17], WRDs were found to be more intense than
SRDs in India. Another study evaluated the energy security
threat posed by RRDs on the Finnish grid [18]. The role
of renewable generation in reducing the risks of droughts
in the Brazilian system is presented in [19]. Reference [11]
quantified the probability of RRDs in Poland, noting that if
the SRDs and WRDs are considered jointly, the result is
smaller probability of RRDs and lower intermittency. The



costs associated with RRDs in California were shown to be
reduced in scenarios in which California shares resources
with the remainder of the U.S. Western Interconnection [8].
Finally, a methodology for including the effect of weather
(and by extension RRDs) in the power flow is given in [20].

The key point of this paper is to gather the key weather
measurements and run simulations to find the outputs of
renewable generators based on the availability of these re-
sources. This is accomplished using the power curves of
wind and solar plants determined using information in the
the EIA-860 data [1]. Next, the calculated weather-informed
available power capacity of wind and solar generators are
validated against wind and solar generation totals from the
2021 EIA-860 data. The renewable resource droughts are
then determined by examining wind and solar outputs that
are considerably below normal values for extended periods
of time. Methods for improved accuracy and statistics on
resource drought severity and duration are discussed with
examples presented for U.S. states with high amounts of
renewable generation considering that these droughts create
problems in the grid relative to the load.

The remainder of this paper includes details on the data and
models (Section II), the methodology of calculating weather-
informed capacity of wind and solar generators using this data
and definitions of RRDs (Section III). Examples and statistics
of RRDs from the last fifty years are presented in Section
IV. The weather-informed calculation of renewable generator
capacity foundational to the RRD identification is validated
(Section V), and future directions are presented (Section VI).

II. DATA OVERVIEW

A. Input Data

The identification of the potential for WRDs and SRDs
requires a knowledge of the capacity and location of the wind
and solar generators. For this work with its focus on the U.S.,
this information is publicly available in the yearly U.S. EIA-
860 datasets [1]. The actual generation capacity is, of course,
continually changing. This work used the more recent dataset,
which represents the installed capacity at the end of 2021.
This set has a total 1485 wind generators with a combined
capacity of 132 GW and a total of 5270 solar generators with
a combined capacity of 61 GW. With this data, generators are
represented with their main characteristics such as fuel type,
capacity, and exact geographic locations.

Since the capacity of wind and solar generators is de-
pendent on the weather conditions, measurements including
wind speed and cloud cover are used from several thousands
of weather stations. The specific weather data used in this
paper includes hourly weather measurements of wind speed,
cloud coverage, temperatures, dew point, and humidity over
the continental United States from 1973 to 2022. Using the
geographic coordinates of the generators and the weather
stations, the weather measurements can be mapped to elec-
trical generators based on their geographic proximity [20]. If
there is missing data points in the input weather data, either
a Delaunay Triangulation-based interpolation or the closest
station with valid measurements is used, as explained in [20].

B. Weather Models

Four generic wind models and one generic solar model
presented in [20] are used to directly incorporate weather
measurements such as wind speed and cloud coverage in

the power system model. This enables the calculation of
the capacity of renewable generation (i.e., wind and solar
photovoltaic) that reflects the weather conditions.

The weather measurements are mapped to renewable gen-
erators based on geographic proximity. With the weather
stations assigned to generators, the hourly generator capacity
can be calculated by using the device power curve. The EIA-
860 data contains the model numbers for each of the genera-
tors, making it straightforward to represent the performance
of the generators [1]. For a wind turbine, this is a speed-
power curve. For a solar photovoltaic (PV) generator, the
model calculated the power generation capacity based on
cloud coverage as well as information on date and time.

III. METHODOLOGY

The methodology to find renewable resource droughts
(RRDs) begins with the calculation of weather-informed
generator capacity as shown in Fig. 1. First, for each hourly
timestep from January 1, 1973 to March 1, 2022, the weather
measurements including wind speed, wind directon and per-
cent cloud coverage for each region of study are used to
calculate the output power of all wind turbines and solar
plants in the contiguous United States. Two examples of this
approach are illustrated in Fig. 2 and 3, with each showing
the spatial distribution of the total wind and solar generation,
with the values visualized using the geographic data view
(GDV) approach of [21], [22]. In particular, the area of
the green ovals (GDVs) is proportional the wind generation
whereas the size of the yellow GDVs is proportional to the
solar generation. The spatial variation in the wind speed is
contoured using the orange color scale. As an example of
these GDVs, Fig. 2 presents a visualization of the hour in
2021 with the highest total combined modeled wind and solar
generation (a total of 155 GW), whereas Fig. 3 shows the
hour in 2021 with the least wind generation in Texas.

The detailed hourly calculated output data of wind turbines
and solar farms based on the proposed strategy below is
used for the states with the largest wind and solar capacity
in the U.S. for each hour of the year to find the historic
distribution of wind power availability. The states with the
largest capacity of installed wind turbines based on [1]
include Texas, Iowa, and Oklahoma and the states with the
largest installed solar generation capacity include California,
Texas, and North Carolina. Therefore, the historical statistics
of these states are studied in more detail. Fig. 4 shows
the historic distribution of calculated daily wind energy
availability in Texas, Iowa, and Oklahoma, respectively and
Fig. 5 shows the historical distribution of calculated daily
solar PV energy availability in California, Texas, and North
Carolina. Each point in these curves is achieved from the
data of calculated hourly MW output of wind and solar plants
from 1973 to 2022, aggregated on a daily basis. The various
curves in each figure represent the minimum, 10th percentile,
20th percentile, average, 80th percentile, 90th percentile, and
maximum values for each day within the year-long historical
distribution.

Next, the RRDs are identified using three key aspects of
resource droughts: severity, duration, and geographical area
impacted. To determine the severity, a daily combined, year-
long historical distribution of the calculated renewable data
is created for each day of the year across all 50 study
years (1973–2022). First, the daily combined MWh values



Fig. 1: Approach to calculate wind and solar generator
capacity using wind speeds and cloud coverage as weather

inputs, respectively.

Fig. 2: 2021 Peak combined wind and solar generation

for the wind and solar are computed by adding up the hourly
production for each day of the roughly 18,000 day study
period (January 1, 1973 to March 1, 2022). Then, a year-
long (365-day) historical distribution is created to compare
the renewable power output at a given date with ranges of
the historical values at that date across the 50 year study
period. In other words, starting with January 1, all of the
January 1st renewable production data across all 50 years is
used to create a historical distribution with 7 quantile values
as described above (min, 10th, 20th, 50th, 80th and 90th and
max). This process is repeated for all 365 days of the year,
across all 50 years. The results shown aggregated on a daily
basis in Fig. 4 and 5.

Second, the resource availability threshold for an RRDs
is defined as a wind power availability below the 25% of
the daily mean of the historic availability curves (Fig. 4 or
a solar power availability below 40% of the daily mean 5).
For both wind and solar, a time period of 2 days (48 hours)
or more is used. However, this definition can be adapted to
change based on power system operational conditions such
as demand, availability of other conventional generators, and
transmission line outages. More importantly, if the resource
drought is severe (e.g. below 15% of the mean for wind or
30% of the mean for solar), a shorter period of WRD could
also create operational challenges. On the other hand, if the
resource drought is not severe but lasts over a long period
of time and impacts a very large area, it could also create
serious reliability issues for the grid.

Finally, the identification of RRDs requires the specifi-
cation of the impacted geographic region. The region to

Fig. 3: 2021 Minimum combined wind and solar generation

be considered depends on the magnitude of the RRD and
the characteristics of the associated electric grid. Here, for
convenience and to aid with validation, the regions are defined
as U.S. states, though the approach itself can be generalized
for any region.

IV. RESOURCE DROUGHTS

The intensity of resource droughts is a function of the
severity, duration, and area of the drought. In this work,
the severity of a drought is characterized according to
power availability for historical weather conditions. SRDs
and WRDs are defined to occur when the power availability
is below a percentage of the mean of the calculated values
based on the historical weather data (25% of the mean for
wind, and 40% of the mean for solar). The area of a resource
drought is another important consideration with respect to the
impact of the drought. This work accounts for this implicitly
by aggregating the renewable generation capabilities on a
state-by-state basis, but drought intensity is greater if multiple
states within the same interconnect are experiencing drought
conditions simultaneously.

The duration of historical WRDs and SRDs from 1973
to 2022 are calculated as consecutive hours during which
the calculated capacity available is at or below 25% of the
mean for wind or 40% of the mean for solar of historical
capacity availability for the same time of year. For states with
high levels of wind and solar generation, WRDs and SRDs
lasting at least 48 hours are summarized in Tables I and II.
Accounting for a minimum duration of a resource drought
occurring for at least 2 consecutive days, the probability
ranges between 0.13–2.19% for WRDs for the states with
highest levels of wind generation and between 0.65–1.35%
for SRDs for the states with the highest levels of solar PV
generation. These values were determined using Equation 1,
where P (RRDg) represents the probability of a resource
drought for the generation type in question, t is the duration
of a resource drought, d ∈ D is the resource drought within
the set of all resource droughts that occurred during the period
of study, and n is the total number of timepoints in the
duration of study.

P (RRDg) =

∑D
td

n
(1)

Over the years of weather data studied, 11 WRDs occurred
in Texas, the state with the highest penetration of wind
generation. The longest of these WRDs in Texas 3 days,
occurring in both May 2007 and October 2021. In Iowa, the
occurrence of WRDs was higher with 158 WRDs observed
between 1973 and 2022. The longest WRD in Iowa during



(a) Texas

(b) Iowa

(c) Oklahoma

Fig. 4: Historic Distribution of Daily Wind Energy
Generation in (a) Texas, (b) Iowa, and (c) Oklahoma

(a) California

(b) Texas

(c) North Carolina

Fig. 5: Historic Distribution of Daily Solar Energy
Generation in (a) California, (b) Texas,

and (c) North Carolina



TABLE I: WRDs 1973–2022

Longest Drought
Count Probability Duration (days) Date

Texas 11 0.13% 3 5/07, 10/21
Iowa 158 2.19% 7 9/09, 8/14, 7/21

Oklahoma 71 1.27% 5 10/15

TABLE II: SRDs 1973–2022
Longest Drought

Count Probability Duration (days) Date
California 24 0.65% 4 12/77, 1/95
Texas 96 1.35% 5 10/84, 2/89, 1/92, 1/94, 10/18
North Carolina 81 1.10% 5 4/03, 2/21

this period lasted for 7 days in September 2009, August
2014 and July 2021. The occurrence of SRDs lasting at
least 2 days is summarized in Table II. During the years
studied, California experienced 24 SRDs, with the longest
occurring in the winters of 1977 and 1995 and lasting 4 days.
These periods of low and extended periods of wind and solar
generation availability can pose challenges with respect to
resource adequacy, though the impact of such droughts is
dependent on system conditions.

The impact of resource droughts is relative to the load
experienced on the system. If the load on the system is
low, low availability of renewable generation resources has
a less severe impact on the grid particularly with diversity
in the generation mix. As shown in the historic wind and
solar capacity distributions (Fig. 4 and 5), wind generation
availability is typically lower on average during the summer,
coinciding with higher average solar availability. The comple-
mentary trends in these resources indicates that diversity in
renewable generation technologies may yield complementary
availability of power from renewable generation sources.

V. VALIDATION OF METHODOLOGY

The U.S. EIA publishes a report on utility-scale net gener-
ation by fuel type occurring on a monthly and calendar-year
basis [23]. Given that the calculation of renewable generation
capacity is performed with the 2021 generators, the validation
of the weather-informed renewable generation capacity can
be performed by comparing the published values for wind
and solar generation at utility-scale facilities from [23] to the
renewable generation capacity calculated using weather data
incorporated in the power system model.

Table III shows the comparison of these values for the wind
generation in the ten states with the most wind generation in
2021. Some discrepancies can be accounted for by recogniz-
ing that the calculated generation does not include curtailment
or unit commitment and that the generators modeled as
reported in the EIA-860 form reflect the generators in-service
at the end of the year. Particularly in areas with rapid growth
of wind and solar generation in their systems, this would
result in the calculated generation being greater than the
reported 2021 generation data. For example, the calculated
generation in New Mexico was an overestimate by 57%.
According to [24], New Mexico installed over 1.3 GW wind
generation in 2021 alone, increasing the installed capacity
by about 50%. The wind generation calculation is not very
representative of the 2021 generation values for California
and New Mexico in particular. In addition to the growth of
installed wind generation in both states, the mountainous ter-
rain in these regions may mean that the weather experienced
at the nearest measurement location is significantly different

TABLE III: Validation of Wind Generation Calculation
Methodology with 2021 Data

Reported Calculated
Generation Generation Difference

(TWh) (TWh) (%)
Texas 100.05 105.64 5.6
Iowa 36.58 36.16 -1.2
Oklahoma 33.39 34.80 4.2
Kansas 25.63 27.92 8.9
Illinois 18.69 16.56 -11.4
California 15.63 21.43 37.1
Colorado 15.03 15.70 4.5
North Dakota 14.54 14.75 1.4
Minnesota 12.94 12.71 -1.8
New Mexico 10.65 16.74 57.2

TABLE IV: Validation of Solar PV Generation Calculation
Methodology with 2021 Data

Reported Calculated
Generation Generation Difference

(TWh) (TWh) (%)
California 32.23 38.30 18.8
Texas 14.14 18.70 32.2
North Carolina 9.92 11.20 12.9
Florida 9.03 8.89 -1.6
Nevada 6.49 7.97 22.8
Arizona 5.99 6.40 6.8
Georgia 4.82 5.60 16.2
Utah 3.47 3.56 2.6
Virginia 3.34 4.20 25.7
South Carolina 2.28 2.13 -6.6

from that experienced at the location of the wind turbine.
An approach for mitigating this would be to assign a more
representative wind measurement (which may not be closest)
to wind turbines located in mountainous regions.

Table IV shows the comparison of the values for solar
PV generation in the ten states with the greatest solar PV
generation. Again, the calculated generation does not account
for curtailment or generator status and the generators used in
calculating the capacity are those that were operational by the
end of 2021, resulting in mostly overestimated calculations
of solar PV generation. The remaining discrepancies could
be improved by tuning parameters associated with rated real
power such as the azimuth, the tilt angle, the sky diffuse
factor, and the inclusion of solar PV tracking capabilities
(fixed, single-axis, or dual-axis) for improved accuracy.

VI. SUMMARY AND FUTURE WORK

This paper presented weather-informed calculations of
generation capacity for wind and solar generators, validated
these calculations, and identified historic WRDs and SRDs
which could present resource adequacy issues in power grid
operations if they were to occur again. The calculations
presented leverage publicly-available generator information
and weather data including wind speed and cloud coverage
from nearby weather stations to calculate the generation
capacity of wind and solar PV generators according to the
modeled weather conditions. For the examples in this paper,
generator information from the 2021 EIA-860 form and data
from thousands of weather stations in the United States
were used, but the methods presented can be applied to
any set of generators with local weather data available. The
calculated capacity of the generators was validated against
published values of actual generation from EIA reports for
the ten states with the most utility-scale solar PV generation
and those with the most wind generation. For many of the



studied states, the generation output values match closely with
the published values. However, as discussed, the differences
from the simulation are more considerable for some regions.
Statistics were presented for historic WRDs and SRDs in
states with the highest level of wind and solar generation,
respectively, and historically long RRDs were identified.

Future extensions of this work will model and simulate the
impacts of RRDs on grid operations and network planning.
As part of this analysis, modifications to the severity and
duration thresholds will be considered as functions of current
system conditions. These weather scenarios should be used to
inform network planning to facilitate the anticipated adoption
of additional renewable generation and to ensure the robust
and resilient operation of the power system.
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