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Abstract—The spatiotemporal distribution of pollutants plays a
significant role on their impact on ecosystems and human health.
This paper presents a strategy for calculating spatiotemporal
operational emissions of road transportation and the electric
grid to quantify the impact of transportation electrification.
Emissions from internal combustion engine vehicles and offset
emissions from electric vehicles (EVs) are considered using actual
transportation networks and travel data. The spatiotemporal
charging demand for light-duty and medium- and heavy-duty
EVs are estimated in a behaviorally-informed way and mapped
to electrical buses within the power grid and an ac optimal
power flow with unit commitment is solved. The methodology
is demonstrated with ten scenarios simulated on a grid with
7000 electrical buses geographically sited in Texas, created with
actual generator data for the 2020 grid, and a future case
including anticipated generator updates by 2030. Results show
overall transportation emissions reductions in daily operational
emissions of up to 20–30% for all pollutants studied, outweighing
the increase in emissions from the electric grid. Considering
emissions on an hourly basis, up to approximately 1000%
reduction in CO emissions is observed.

Index Terms—Electric Vehicles, Emissions, Power Systems,
Transportation, Charging

I. INTRODUCTION

NEARLY one-third of global emissions are attributed to
the transportation sector [1]. In contrast to conventional

cars with internal combustion engines (ICEs) that produce
harmful emissions, electric vehicles (EVs) produce no direct
tailpipe emissions and have been extensively recognized as a
key solution to environmental concerns, to control oil usage,
and to achieve net-zero emissions in the road transportation
sector. Indirectly, however, EVs add electricity demand to the
grid during charging, resulting in increased generation required
in the electric grid and, in turn, the potential of additional
emissions.

The main pollutants of concern from transportation and
power plants include carbon dioxide (CO2), nitrous oxides
(NOx), particulate matter (PM2.5), volatile organic compounds
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(VOCs), and carbon monoxide (CO) [2]. Each of these pol-
lutants has consequences on either the environment or public
health. The spatiotemporal distribution of PM2.5 determines its
intensity, thus the specific locality and timing of emission is
an important consideration when evaluating its impact. CO2
and CO have a more global impact and are contributors to
climate change [3]. CO is also able to modulate the production
of methane and tropospheric ozone (O3) [4]. O3 is a type of
photochemical oxidant, which is formed in the troposphere
with complex non-linear processes among interaction of NOx,
VOC, temperature, and intensity of solar radiation [5], [6], and
creates issues for ecosystems [7] and human respiratory health
[8]. Therefore, understanding the spatiotemporal distribution
of VOC, NOx, CO, and PM2.5 is important when determining
the production of methane and O3. Power plants that are
far away from large cities and polluted areas have a less
negative impact. Therefore, it is crucial to study the changes
in power plant generation dispatch from incorporating EV
charging demand to ascertain the spatiotemporal impact of
EVs on operational emissions.

A. Policies and Limitations on Emissions

The shift towards the increased prevalence of EVs is mo-
tivated by environmental policies. The main environmental
policies rely on three strategies: carbon pricing, technology
subsidies, and performance standards. Carbon pricing policies
provide a direct financial incentive to reduce emissions, and
they are implemented through tax or fees, or through the
establishment of a market-based cap-and-trade system. Tech-
nology subsidies provide incentives for low-emission technol-
ogy deployment and are implemented through tax credits or
direct public funding. Performance standards require specific
products or processes to meet certain minimum or average
levels of technical performance and range from being flexible,
broad, and market-based, to be prescriptive and site-specific.
Procurement policies, international agreements, and a wide
array of other programs also play important roles in a com-
prehensive climate policy portfolio [9].

The level of hazard of the pollutants studied could be
characterized using permissible exposure limit (PEL) and
permissible exposure time (PET). The more hazardous the
pollutant, the smaller the PEL and PET. Table I presents
the PELs and PETs of the studied pollutants. The PEL and
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TABLE I:
Permissible Exposure Limit (PEL) and Permissible Exposure

Time (PET)

VOC NOx PM2.5 CO2 CO
PEL (ppm) 0.5–0.75 [10] 25 [11] 0.035 [12] 5,000 [13] 50 [14]
PET (hour) 8–10 [15] 8 [11] 24 [12] 8 [13] 8 [14]

PET of VOC is variable depending on the activity level of
the individuals exposed, with more active individuals being at
greater risk of adverse effects.

B. Literature Review

Several studies in the literature focus on the impact of EVs
on the environment. Study [16] reviews the environmental
benefits of transportation electrification with a focus on urban
buses and offers empirical guidance to policymakers consid-
ering investments in this section. Reference [17] analyzes the
role of transportation electrification in the context of energy
system transformation and climate stabilization. Reference
[18] focuses on electrification of government, commercial, and
industrial fleets and studies the technology and market assess-
ment of transportation sector. Since medium- and heavy-duty
vehicles are responsible for a significant portion of greenhouse
gas emissions and harmful particulate emissions, reference
[19] provides an overview of the current and future state
of electrifying this sector. Reference [20] studies and offers
suggestions to support the actualization of benefits for en-
vironmental justice communities through the implementation
of transportation electrification. This reference also provides
additional clarity for policymakers in creating regulations that
best serve their needs.

Several references study different parts of the supply chain
for EV integration and proceed well-to-wheels analysis for
using EV versus ICE. A well-to-wheels analysis [21] compares
different passenger vehicles based on three key indicators:
petroleum energy use, CO2 emissions, and economic cost
is studied in several countries. Authors concluded that the
well-to-wheels emissions from electric vehicles greatly varies
depending on the generation mix or the amount of renewable
generation in the case study [21]. In [22], the authors analyzed
the extent to which the lowering greenhouse gas emissions
associated with EVs differs among 70 countries in the world,
in relation to their domestic electricity generation mix and
concluded that countries with a high percentage of fossil fuels
in their electricity generation mix have higher greenhouse gas
emissions for EVs, and even for some of these countries, EVs
were associated with more greenhouse gas emissions than
ICEs. In [23], the city of Beijing in China is studied as an
important hub for possible EV promotion and air pollution
issues with 2015 electricity generation mix and the predicted
2030 generation mix and the impact of light-duty EVs in well-
to-wheel emissions are studied. Authors of [24] propose an EV
emission approximation to calculate operational emissions of
grid and EVs using hourly data.

C. Contributions

Although many papers in the literature study the impact of
EVs on emissions, there is no prior reference to the study
of a large, industry-size realistic grid using actual generators’
data and actual transportation data for the calculation of the
spatiotemporal impact of ICEs as well as light-duty (LD) and
medium- and heavy-duty (MHD) EVs on large cities. In this
paper, the spatiotemporal operational emissions are calculated
based on a comparison of emissions from ICEs and replacing
a variety of possible ranges of conventional ICE vehicles with
EVs in the current electric grid and future electric grid with
an increased penetration of renewable resources. The proposed
strategy can be implemented to any other industrial case and
can have applications in evaluating the impact of emissions
reduction policies. To choose possible scenarios for future EV
penetrations, several references are studied. According to [25],
it is estimated that global EV sales will grow by 39% annually
and will increase up to 30 million in 2028, which will represent
around 50% of new car sales in 2030. Also, California recently
passed legislation to ban light-duty internal combustion vehicle
sales by 2035 [26]. This puts the state on a faster EV sales
curve than [27]. Based on an established vehicle adoption
model [28], a sales curve according to CA’s legislation will
result in about 20% of the light-duty vehicle population being
EVs by 2029. Overall, it is also expected that 26.4 million
EVs are projected on U.S. roads by 2030, which includes
10% of the 259 million light-duty vehicles [29]. Meanwhile,
commercial medium- and heavy-duty (MHD) vehicles are also
transitioning to EVs. Reference [30] estimates that EVs will
make up about 10% of all MHD vehicles by 2030. Based
on these predictions two different EV penetrations are used
for simulations in this paper. One goal of this paper is to
show the hourly impact of LD and MHD EVs on a realistic
coupled-infrastructure model incorporating realistic transporta-
tion network and electric grid models. The emissions from the
electric power grid generation are considered, accounting for
hourly increase of electrical load for EV charging, in addition
to the transportation emissions. Realistic charging patterns of
LD and MHD EVs are created using actual transportation data
of the greater Houston region in Texas, United States. The
EV charging loads are then mapped to a realistic synthetic
grid on the footprint of Texas. This study is performed on the
synthetic grid in Texas [31] as a case study that is created
based on actual generators’ data from the year 2020 and the
predicted generation mix in 2030 based on an assessment
made by the Electric Reliability Council of Texas (ERCOT)
[32], accounting for changes in the penetration of renewable
resources and results are presented. Since the actual travel
data is used for estimating the required charging demand
for EVs and the generators, which are the main sources of
emissions from EVs are based on actual generators’ data, the
study results are realistic and the proposed strategy can be
implemented in any other case study. Nevertheless, the Texas
region serves as an interesting case study because the Texas
transmission grid is a large grid with nearly 7000 electrical
nodes, called “buses,” and is independent of all other parts of
the U.S. and the impact of EV charging can be studied more
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precisely. ERCOT is facing an extended increase in EVs and
since the electric grid over Texas footprint is separated from
the rest of U.S., this grid is a suitable case for EV studies.
This is the first study to provide spatiotemporal emissions
calculations for the grid and transportation networks at this
spatiotemporal resolution and highlights specific pollutants
including NOx, PM2.5 and VOC for which their distribution is
a crucial consideration for their impacts on human health and
the environment. The methodology is summarized in Figure
1. In summary, the main contributions of this paper are:

• Reviewing the main pollutants from transportation and
electrical sectors and the significance of their spatiotem-
poral distribution on human health

• Creating a coupled-infrastructure model of transportation
network and electrical grid based on publicly-available
data such as generators and road data

• Calculating a detailed spatial and temporal impact of
ICEs on harmful emissions and O3 creation

• Calculating detailed spatial and temporal emissions from
LD and MHD EV charging demand related to O3 creation

• Showing the importance of direct inclusion of weather
data (varying with location and time) in power system
models when quantifying operational emissions

• Simulating the impact of added charging demand from
different types of EVs (LD, MHD) with behaviorally-
informed charging patterns on the grid

• Visualizing the locations and scale of impact of EVs on
the electrical grid emissions

• Visualizing the temporal impact of EVs on hourly graphs

II. MODELING EVS IN THE GRID

A. Modeling EV Charging Demand

1) Traffic Modeling: The traffic modeling used in this paper
is performed using the 2020 regional Travel Demand Model
(TDM) obtained from the Houston-Galveston Area Council
[33]. TDMs are typically used in the regional transportation
planning process. TDMs contain trip origin-destination matri-
ces by vehicle type (light- versus medium- and heavy-duty
vehicles) for multiple time periods throughout a typical day
within the regional transportation network, along with the trip
distances, travel times, and speeds. The information from the
TDM is used to estimate the on-road energy consumption of
vehicles. The classification of light-, medium-, and heavy-
duty vehicles is based on the United States Environmen-
tal Protection Agency’s Motor Vehicle Emission Simulator
(MOVES). Light-duty vehicles are passenger cars and light
trucks. Medium- and heavy-duty trucks are single-unit, refuse,
and combination trucks.

2) Light-Duty Electric Vehicle Charging Load Modeling:
Possible charging scenarios of integrated modeling of LD EVs
are proposed and explained in [34] and [35]. Based on existing
literature [36], we assume an uncontrolled charging scenario
where most EVs are charged at home and overnight using a
level 1 charger, which is the most affordable from the charging
infrastructure perspective. In this model it is assumed that
locations of charging stations are at homes and ending travel
of the day locations.

3) Medium- and Heavy-Duty EV Charging Load Modeling:
Given the current technological and commercial availability
of medium- and heavy-duty (MHD) vehicles and the related
charging infrastructure, this paper considers short-haul MHD
vehicles charging only at their depots. MHD vehicle charging
demand is simulated based on vehicle miles traveled (VMT),
obtained from the TDM, electric MHD vehicle fuel economy,
assembled from online specification sheets of about 100 elec-
tric truck models, and the likelihood of trips ending at depots
by truck type and time of day, estimated from a Bayesian
Network Model based on a Commercial Vehicle Survey [37].
We assume that the vehicles are charged with 100 kW level 3
chargers, given the fact that level 2 chargers are not likely to
meet the operational requirements of heavier vehicles [38].

B. Mapping EV Load to the Transmission System

Once the transportation network with charging locations
is established and EV loads are calculated, the geographic
information from the electric grid is leveraged to map the EV
charging load to the appropriate transmission-level substations.
The mapping methodology used was developed in [34]. The
mapping takes the locations of the transmission substations
and creates tessellating service areas using Voronoi polygons
such that the nodes are central within their respective service
areas.

The process of this mapping for purely transmission-level
simulation is as follows:

1) Using the transmission substation geographic coordi-
nates, create Voronoi polygons to represent the service
area of each substation.

2) For each EV charging location, determine in which
substation service area the charging station lies.

3) Add a load to the electric grid model for the EV charging
load to be added to the system.

C. Load Time Series

The hourly time series of bus-level load for a year are
created based on the strategy explained in previous work [39],
[40]. For the load time series, the geographic coordinates of
each bus are used to determine a unique electricity consump-
tion profile at that location. An iterative aggregation approach
is then taken to integrate publicly available building- and
facility-level load time series to the bus-level. This approach
leverages the composition ratio of residential, commercial, and
industrial loads at each node in the system as well as location-
specific prototypical building and facility-level load time series
to develop the node-level load time series. The synthetic load
time series were validated using time series from the actual
power systems in [40].

Once the load from each EV charging station is mapped
to its substation within the transmission system, the EV load
time series from Section II-A is represented as a load at bus
level within its assigned substation. This load is then added to
the bus-level synthetic load time series.
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Fig. 1: Workflow of the Calculation of the Combined Spatiotemporal Operational Emissions of the Electric Grid and
Transportation Networks

III. TIME STEP SIMULATION

For each scenario, unit commitment (UC) was performed
to determine which generators in the electrical grid would
be online using generator cost curves, and an ac optimal
power flow (OPF) was solved for every hour within the 24-
hour period of simulation, providing cost-optimized dispatch
of generators on an hourly basis feasible within the operational
constraints of the system.

A. Unit Commitment

Unit Commitment (UC) determines if each generating unit
is on or off at each time interval of the study [41]–[43]. Using
binary variables for the on/off status of generating units is
proposed in the literature for dc OPF [44]. The dc OPF with
UC is a mixed-integer linear programming (MILP) and has
created challenges as it is computationally expensive for larger
cases since the size of the optimization problem also grows
non-linearly with the size of variables [45].

However, in this paper to have a more realistic model and
consider reactive power limitations, we propose the use of
ac OPF, which is non-linear and non-convex and makes the
problem further computationally expensive. Since the size of
industrial electrical grids is large and the problem includes
voltage/reactive power control settings, including binary vari-
ables to the ac OPF optimization problem will make it NP-
Hard [46], [47] and much more computationally expensive.
Therefore, instead of adding binary variables, we propose to
solve the UC based on the energy prices in a way that the
cheapest units become online until enough generation capacity
is available to satisfy the load and losses in each hour.

B. Including Weather Data

Since the output power of renewable energy resources
such as wind turbines and solar power plants is directly
related to the weather conditions, weather information was
directly included in the power flow modeling, per the strategy
outlined and validated in our previous work [48], [49]. The
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availability of weather information, the mapping of weather
information to electric grid components, and a flexible and
extensible modeling approach for relating weather values to
the power flow models are introduced in this study. This
strategy is applied to the time step simulation to find the output
generation of renewable resources. In the next step, to find
the optimal dispatch of conventional generators, considering
reactive power limitations, an ac OPF is solved.

C. AC Optimal Power Flow

AC OPF [41] is used to find a steady-state result of a
power system that minimizes the cost of real power generation,
Fc(PG), defined by coefficients a, b, and c, representing
quadratic cost curve parameters of generators. The objective
function can be represented as:

min
PG

Fc(PG) =

|G|∑
g=1

[ag + bgPG, g + cgP
2
G, g] (1)

Solutions must satisfy the power balance equations (Eq.
2-3) and system operational constraints accounting for real
and reactive power limits on generators (Eq. 4-5), bus voltage
magnitude (Eq. 6), and thermal line limits (Eq. 7) [50].

PG,(g∈G(i)) − PD,i = |Vi|
|N |∑
k=1

|Vk|(GY
ikcosθik +BY

iksinθik)

(2)

QG,(g∈G(i)) −QD,i = |Vi|
|N |∑
k=1

|Vk|(GY
iksinθik −BY

ikcosθik)

(3)

Pmin,g ≤ PG,g ≤ Pmax,g ∀g ∈ G (4)

Qmin,g ≤ QG,g ≤ Qmax,g ∀g ∈ G (5)

Vmin,i ≤ |Vi| ≤ Vmax,i ∀i ∈ N (6)

P 2
e +Q2

e ≤ S2
max,e ∀e ∈ E (7)

In the equations, |Vi| presents the voltage magnitude at the
ith bus, and θi variable is the voltage angle at the ith bus.
The θik is the difference in voltage angles of the ith and kth

buses. Here, N is the set of buses in the system. The real and
reactive power demands at the ith bus are represented as PD,i

and QD,i, respectively. Real and reactive power generation of
the gth generator are represented as PG,g and QG,g . Note that
G is the set of all generators in the system. The bus admittance
matrix is represented in its real component as GY

ik, and BY
ik

for its imaginary component. The generator minimum and
maximum operating limits are provided as (Pmin,g, Pmax,g)
for real power, and (Qmin,g, Qmax,g) for reactive power.
Operating limits to the bus voltage magnitude are bounded
by (Vmin,i, Vmax,i). The flow of power on each branch, e, is

limited by its thermal limit, Smax,e, related to the flow of real
and reactive power in Eq. 7, where the power flowing on each
branch is given by the power flow equations (Eq. 8-9). Note
that E is the set of all branches in the system.

Pe = |Vi|2GY
ik − |Vi||Vk|(GY

ikcosθik +BY
iksinθik) (8)

Qe = −|Vi|2BY
ik − |Vi||Vk|(BY

ikcosθik −GY
iksinθik) (9)

IV. CALCULATING OPERATIONAL EMISSIONS

In this section, the main emissions from transportation that
are harmful to human health and environment including CO2,
NOx, PM2.5, VOCs, and CO are studied [2], [51]. These
emissions can be generated directly from ICE tailpipe, or
indirectly from the power plants’ increased generation to
account for the EV charging load. The operational emissions
may be compared across different scenarios. In scenarios in
which EV load is modeled, the emissions impact is captured
within the operational emissions calculated for the grid.

A. Grid Emissions
The emissions from power plants are calculated using

the procedure introduced in [35]. This emissions calculation
process uses the grid dispatch information of the scenario
and pollutant rates provided by fuel type in the Greenhouse
gases, Regulated Emissions, and Energy use in Transportation
(GREET®) model [52]. The emission factors for common
environmental pollutants are provided in Table II, with 2030
emission factors from coal, natural gas, and nuclear from
[52] and petroleum coke from [53]. There are no operational
emissions from renewable energy generation.

TABLE II:
2030 Generator Emission Factors (lb/MWh) by Fuel Type

[52], [53]

Fuel Type VOC NOx PM2.5 CO2 CO
Coal 0.0059 0.45994 0.07575 406.87 0.04944
Natural Gas 0.0064 0.00853 0.00227 165.56 0.07439
Nuclear 0 0 0 0 0
Petroleum Coke 0.01156 2.9796 0.06218 2619.538 0.16296

The operational emissions of power plants in the electric
grid are calculated using Eq. 10. The dispatch over the period
of simulation provides the energy contribution from each
generator, or EG. The emissions factor (EF ) corresponding
to the fuel type of the generator is used. The product of
these provide the operational emissions (OE) of a particular
pollutant and a generator for the duration of the simulation.
This process is repeated for each generator in the case and
aggregated on a case-level by pollutant. Note that renewable
generation including hydro, solar, and wind, have no associ-
ated operational emissions. This calculation is shown in Eq.
10 for the pollutant p, where G is the set of all generators in
the system, and EFp(fi) is the pollutant p emission factor of
the ith generator’s fuel type (fi).

OEp =

|G|∑
i=1

(EGi ∗ EFp(fi)) (10)
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TABLE III:
ICE Emission Factors (g/mile)

VOC NOx PM2.5 CO2 CO
LD 0.005 [56] 0.05 [57] 0.007 [57] 404 [58] 2.2 [57]
MHD 0.033 [56] 1.31 [57] 0.033 [57] 1,766 [59] 5.9 [57]

B. Transportation Emissions

The emissions from traditional ICE vehicles are calculated
based on the hourly miles traveled by LD and MHD EVs in
a region during a sample day. This study adapts this approach
to perform hourly calculations. Table III shows the average
g/mile emissions from CO2, NOx, PM2.5, VOCs, and CO for
different EV types (LD and MHD) and their references. This
table and the estimated amount of miles traveled in each hour
[54] are used to perform hourly emission calculations for
different vehicle types. Also, as explained in [55], a multiplier
is used to scale the running emissions to total emissions as
ICE cars and trucks can generate emissions when they start,
idle, and park with their power on, in addition to when they are
traveling. As it can be observed from Table III, CO2, CO, and
NOx have higher emission rates and are mostly detrimental to
the environment but according to Table I, a smaller amount
of PM2.5 and VOC are more dangerous for human health, so
even small changes in PM2.5 and VOC can be impactful.

V. CASE STUDY

A. Electrical Grid Model

Since the actual grid data are considered to be critical energy
infrastructure information (CEII) with restricted access for
research, we have used U.S. Energy Information Association
(EIA) generation data [60], and census data to approximate
the load in our previous work [61]–[63] and created realistic
synthetic grids, validated using the methodology in [64].

The electric grid used in this study is a synthetic network
geographically sited in Texas, U.S., with around 7000 buses
created based on actual generator data [31]. A diagram de-
picting the transmission lines in this synthetic grid is shown
in Figure 2, with the teal lines representing transmission
lines with a voltage level of 345 kV, black lines showing
transmission lines with a voltage level of 138 kV, and green
lines displaying transmission lines with a voltage of 69 kV.
The synthetic Texas grid was originally created based on
the EIA 860 form of 2019 generator data [60]. The electric
grid models used for simulation in this case study represent
updated versions of this case, representing the 2020 system,
and a future 2030 system. The 2020 case contains the updated
generation included in the 2020 release of the EIA 860 data,
and the 2030 case was created based on proposed gener-
ation changes through 2023 including generator parameters
and locations, and a Long-Term System Assessment (LTSA)
report released from ERCOT including a long-term view of
anticipated changes in the grid [32]. In the EIA 860 data
set, the proposed changes in the generators up to 2023 are
mentioned with details of generators’ parameters and their
proposed locations. In addition, the ERCOT presents a long-
term view of the anticipated changes in the grid in a report
called Long-Term System Assessment (LTSA) [32]. These

TABLE IV:
Comparing Generation Capacity by Fuel Type for Synthetic

Texas Grid Case in 2020 and 2030

2020 Capacity (MW) 2030 Capacity (MW) Difference
Solar 2,335 26,835 24,500
Wind 25,702 55,702 30,000
Natural Gas 56,539 62,434 5,895
Battery 0 1,603 1,603
Coal 14,407 12,966 -1,441

TABLE V:
Texas Synthetic Grid Overview in 2020 and 2030

Value in 2020 Value in 2030
Number of buses 6,717 7,132
Number of substations 4,894 4,894
Number of areas 8 8
Number of transmission lines 7,168 7,223
Number of transformers 1,967 2,332
Number of phase shifters 2 2
Number of loads 4,856 5,095
Number of generators 731 1,058
Number of shunts 634 684

data are used to upgrade the synthetic Texas grid based on the
prediction by year 2030. The main changes by 2030 include
the solar plants increase from 2,335 MW capacity in 2019 to
26,835 MW by 2030 with an increase by a factor of 11.5
and the wind turbines will have 30,000 MW increase by
2030 by a factor of 2.2. The number of generators with the
natural gas fuel type also increases but the main part of added
units include combined cycle power plants. Retirement is also
predicted based on ERCOT LTSA and two coal units with an
overall capacity of 1,441 MW are retired by 2030. This grid,
which is available at [31] is then used for creating synthetic
load at the bus level and mapping EV load to the closest buses.
Table IV compares the generation capacities of the studied
grid in 2020 and 2030 and Table V shows a comparison of
important characteristics of the studied grids in 2020 and 2030.

Fig. 2: Transmission lines in the synthetic Texas grid

B. Transportation Model

The transportation data contains the road data on geo-
graphical footprint of the greater Houston area, Texas, U.S.,
including Harris, Chambers, Galveston, Brazoria, Waller, Fort
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TABLE VI:
Summary of Scenarios

Scenario Name Grid Model Year Grid Loading EV Penetration Renewable Generation
1 2020 High Load Base Case 2020 High 0% LD, 0% MHD Moderate Renewables
2 2020 High Load EV1 2020 High 20% LD, 10% MHD Moderate Renewables
3 2020 High Load EV2 2020 High 30% LD, 20% MHD Moderate Renewables
4 2020 Low Load Base Case 2020 Low 0% LD, 0% MHD Moderate Renewables
5 2020 Low Load EV1 2020 Low 20% LD, 10% MHD Moderate Renewables
6 2020 Low Load EV2 2020 Low 30% LD, 20% MHD Moderate Renewables
7 2030 High Wind Base Case 2030 High 0% LD, 0% MHD High Wind
8 2030 High Wind EV1 2030 High 20% LD, 10% MHD High Wind
9 2030 Low Wind Base Case 2030 High 0% LD, 0% MHD Low Wind
10 2030 Low Wind EV1 2030 High 20% LD, 10% MHD Low Wind

Bend, and Montgomery counties. The EV charging scenarios
presented in this paper were set up to mimic the natural
charging behaviors of drivers and fleets. That is, based on
behaviorally-aware surveys, we assume that drivers prefer to
charge at home as soon as they arrive home. Similarly, fleet
vehicles charge as soon as they arrive at their depots. Thus,
most of the LD EV chargers are represented in residential
areas and the MHD EV chargers are represented at depot
locations. Figure 3 shows the added demand from the LD
and MHD EV charging. Most of the LD EV demand occurs
at home overnight, coincidentally during the power grid’s off-
peak hours. However, since MHD EVs are mostly used for
business, the charging pattern of MHD EVs is flatter with a
minor increase at 7:00 PM which is close to peak load time.
Based on predictions for the level of EV integration by 2030
[65], the scenarios studied represent 20% integration of LD
vehicles and 10% integration MHD vehicles integrated and a
scenario with no transportation electrification.

C. Simulation Scenarios

The case study presents hourly simulation for ten simulation
scenarios to demonstrate the performance of the compre-
hensive, realistic, and implementable strategy of calculating
spatiotemporal operational emissions proposed in this paper,
summarized in Table VI. The 2020 Texas synthetic case is
used to demonstrate the method strategy in grid conditions of
low and high loads, and two different EV penetrations. The
2030 Texas synthetic case is used to demonstrate the strategies
with low and high levels of wind generation availability.

System loads that are not related to EV charging were
created for the sample day for the case using the approach
outlined in [40]. The grid loading is rated high in both weather
cases in 2030. Note that the load in 2030 will grow by
20% compared to the load in 2020 based on [32]. The EV
penetrations levels simulated include the following:

1) Base Case: No transportation electrification included
2) EV1: 20% LD and 10% MHD transportation electrifi-

cation in the greater Houston area
3) EV2: 30% LD and 20% MHD transportation electrifi-

cation in the greater Houston area
The aggregate time series of EV and power system loads

are shown during the selected 24-hour period of simulation
in Figure 4. The hourly renewable generation time series was
created leveraging real weather data from the same day and
using speed-power curves to translate the wind speed from

Fig. 3: The LD and MHD EV charging load for the greater
Houston region over a 24-hour period

Fig. 4: System load time series for 2020 High Load, 2020
Low Load, and 2030 High Load synthetic Texas grid cases

the weather data to the power generated by the wind turbines,
and cloud coverage to solar cells as demonstrated in [48] and
validated in [49].

For each scenario, the proposed UC and ac OPF are solved
for every hour within the 24-hour period of simulation to
calculate the hourly optimal output of each generator. Using
the methods discussed in Section IV, the operational hourly
emissions of each scenario are calculated and compared to
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those of its respective base case (case of the same conditions
without any transportation electrification).

D. Case Validation
The simulation scenarios are built from real data and vali-

dated models including real generator locations and parameters
[60], real travel demand data [33], validated synthetic electric
grid models, validated bus-level grid loads, validated weather-
informed capacity of renewable generators. The validation of
the grid models, grid loads, and weather-informed renewable
generation capacity compared the performance of these models
to real data, as described below.

The synthetic electric grid models used in the scenarios
have been validated according to [64]. This metric-based
validation process evaluated the realism of synthetic electric
grid models relative to real industrial grid models. The model
was evaluated across eighteen validation metrics including
the number of buses per substation, the percentage of sub-
stations containing buses in voltage ranges, the percentages
of substations that contain loads, the load per bus, the ratio
of generation capacity to load, the number of substations
with generators, the capacities of the generators, the ratio of
maximum reactive and maximum real power of generators,
transformer reactance, ratio of transformer reactance and re-
sistance, lines per substation, lines on a minimum spanning
tree, distance of a line along a Delaunay triangulation, and
total line length. The bus-level grid loads of each scenario have
been validated according to [40]. The synthetic bus-level loads
were compared to real data from electric grids and have been
validated according to metrics including the load factor, load
distribution curves, autocorrelation of load time series, and
power spectral densities. Also, the performance of the weather-
informed calculation of renewable generators’ capacities used
in setting the renewable generation capacity of each scenario is
documented in [49], in which the calculated generation capac-
ity is compared to recorded dispatch of renewable generators
in areas of the United States.

VI. SIMULATION RESULTS

The results show the operational emissions for the elec-
trification of the transportation network of the greater Hous-
ton area and the 7000-bus electric grid on the footprint of
Texas for each scenario discussed in Section V. The electric
grid’s operational emissions are determined by the dispatch of
generators with different fuel types, so the hourly generation
dispatch is presented by fuel type over each 24-hour period.
Results include total emissions of VOC, NOx, PM2.5, CO2,
and CO over the 24-hour period from each sector as well as
temporal and spatial representations of the differences between
the scenarios and their respective base cases. The results are
discussed in Section VII.

A. Transportation Operational Emissions
Reference [55] shows the average miles traveled per mile

in Houston that are used to calculate the overall emissions of
the vehicles for a day. These values were then converted to
standard units and are displayed in Table VII. The combined
LD and MHD results are presented in Table VIII.

B. Generator Dispatch by Fuel Type

Figure 5 presents the grid’s dispatch of generators by fuel
type in the base case (no EV integration). Figure 6 presents the
difference in generation dispatch by fuel type when comparing
the EV scenario to the base case.

Fig. 5: Dispatch of Grid Generators by Fuel Type for the
2030 High Wind Base Case (MW)

Fig. 6: Difference in Dispatch of Grid Generators in 2030
High Wind Case by Fuel Type (MW)
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TABLE VII:
Greater Houston Area ICE Emissions by LD and MHD Vehicles (lb)

VOC NOx PM2.5 CO2 CO

Base Case LD ICE 2,795 24,659 3,836 221,384,752 1,208,300
MHD ICE 2,248 89,459 2,248 120,104,311 402,397

EV1 LD Difference -559 -4,932 -767 -44,276,950 -241,660
MHD Difference -225 -8,946 -225 -12,010,435 -40,240

EV2 LD Difference -839 -7,398 -1,151 -66,415,425 -362,490
MHD Difference -450 -17,892 -450 -24,020,870 -80,480

TABLE VIII:
Operational Emissions of the Greater Houston Area’s Transportation (lb)

VOC NOx PM2.5 CO2 CO
Base Case 5,043 114,119 6,084 236,074,747 1,610,697
EV1 4,259 100,241 5,092 285,201,678 1,328,797
EV2 3,754 88,828 4,483 251,052,768 1,167,727

EV1 Difference (lb) -784 -13,878 -992 -56,287,385 -281,900
Difference (%) -15.55 -12.16 -16.31 -16.48 -17.50

EV2 Difference (lb) -1,289 -25,290 -1,601 -90,436,295 -442,970
Difference (%) -25.56 -22.16 -26.31 -26.48 -27.50

TABLE IX:
Operational Emissions of the Grid’s Generators (lb)

VOC NOx PM2.5 CO2 CO

20
20

H
ig

h
L
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d

C
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e

Base Case 5,029 178,601 23,282 204,932,620 53,169
EV1 5,534 185,972 23,576 218,490,155 59,054
EV2 5,029 178,603 23,282 204,936,148 53,170

EV1 Difference (lb) 505 7,371 294 13,557,535 5,885
Difference (%) 10.04 4.13 1.26 6.62 11.07

EV2 Difference (lb) 0 2 0 3,528 1
Difference (%) 0.00 0.00 0.00 0.00 0.00

20
20

L
ow

L
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d
C

as
e

Base Case 4,450 161,486 21,267 183,637,023 46,875
EV1 4,450 161,487 21,267 183,636,780 46,874
EV2 4,450 161,487 21,267 183,636,744 46,874

EV1 Difference (lb) 0 1 0 -243 -1
Difference (%) 0.00 0.00 0.00 0.00 0.00

EV2 Difference (lb) 0 1 0 -279 -1
Difference (%) 0.00 0.00 0.00 0.00 0.00

20
30
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e

Base Case 5,012 156,980 18,728 190,647,824 54,227
EV1 5,063 158,853 18,977 192,763,928 54,761

EV1 Difference (lb) 51 1,873 249 2,116,104 534
Difference (%) 1.01 1.19 1.33 1.11 0.98

20
30
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e

Base Case 5,152 163,469 19,630 197,393,681 55,641
EV1 5,152 163,469 19,630 197,393,895 55,641

EV1 Difference (lb) 0 0 0 214 0
Difference (%) 0.00 0.00 0.00 0.00 0.00

C. Grid Operational Emissions

Table IX presents the operational emissions from the electric
grid for both scenarios. Emissions from the grid are observed
to increase by between 0% and 11% for each pollutant (most
by either 0% or 1%) when considering the additional demand
from the EV scenario compared to the base case.

D. Combined Operational Emissions

The combined operational emissions of the electrical grid
and transportation network are presented in Table X. For
a more detailed study, we select the 2030 high-wind case
with EV1 penetration levels to take a closer look at the
spatiotemporal resolution of the combined operational emis-
sions. Considering the temporal characteristics of operational
emissions provides useful context for understanding their
impacts. Figures 7 and 8 present the hourly difference in
dispatch comparing the EV scenario to the base case. Hours of

interest within this case include 6:00 AM, 5:00 PM, and 9:00
PM because they present the greatest percentage reduction in
emissions, the greatest absolute reduction in emissions, and
an increase in some emissions, respectively that are coincident
with human outdoor activity.

Further information can be achieved by considering the
locations where the emissions occurred during the noted hours
of interest. Figures 9a, 9b, and 9c show the spatial distribution
of emission changes with the incorporation of EV charging
at 5:00 PM. Figures 10a, 10b, and 10c show the spatial
distribution of emission changes with the incorporation of EV
charging at 9:00 PM and Figures 11a, 11b, and 11c show
the overall differences in NOx, PM2.5 and VOC operational
emissions, from the entire 24-hour simulation period, respec-
tively. In these Figures, each circle represents changes in the
emissions from the grid or transportation and the area of circles
are proportional to the amount of emissions for that time step.
The scales vary for legibility and are indicated in the figure
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TABLE X:
Combined Operational Emissions of the Grid’s Generators and the Greater Houston Area’s Transportation (lb)

VOC NOx PM2.5 CO2 CO

20
20

H
ig

h
L

oa
d

C
as

e

Base Case 10,072 292,719 29,366 558,940,752 1,663,866
EV1 9,793 286,213 28,668 514,958,999 1,387,852
EV2 8,784 267,432 27,766 466,004,179 1,220,898

EV1 Difference (lb) -279 -6,507 -698 -43,981,753 -276,014
Difference (%) -2.77 -2.22 -2.38 -7.87 -16.59

EV2 Difference (lb) -1,288 -25,287 -1,600 -92,936,573 -442,968
Difference (%) -12.79 -8.64 -5.44 -16.63 -26.62

20
20

L
ow

L
oa

d
C

as
e

Base Case 9,493 275,604 27,351 537,645,155 1,657,572
EV1 8,709 261,727 26,360 480,105,624 1,375,671
EV2 8,205 250,315 25,751 444,704,775 1,214,602

EV1 Difference (lb) -784 -13,877 -992 -57,539,531 -281,900
Difference (%) -8.26 -5.04 -3.63 -10.70 -17.01

EV2 Difference (lb) -1,288 -25,289 -1,600 -92,940,381 -442,970
Difference (%) -13.57 -9.18 -5.85 -17.29 -26.72

20
30

H
ig

h
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d
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e

Base Case 10,055 271,098 24,812 426,722,571 1,664,924
EV1 9,322 259,094 24,094 383,092,725 1,383,558

EV1 Difference (lb) -733 -12,004 -743 -43,629,846 -281,366
Difference (%) -7.29 -4.43 -3.00 -10.22 -16.90

20
30

L
ow

W
in

d
C
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e

Base Case 10,195 277,587 25,714 551,401,813 1,666,338
EV1 9,411 263,710 24,722 493,862,739 1,384,438

EV1 Difference (lb) -784 -13,877 -992 -57,539,075 -281,900
Difference (%) -7.69 -5.00 -3.86 -10.44 -16.92

Fig. 7: Hourly difference in emissions between EV and base
scenarios (lb)

captions in relation to the combined transportation emissions.
Exact locations are slightly shifted to enable better visibility
of overlapping circles. The color of the circles represents an
increase (red) or decrease (green) in emissions. Since at 6:00
AM there is almost a pure reduction in the emissions by
considering EV scenario and red circles were barely visible,
those figures are not shown.

VII. DISCUSSION

A variety scenarios are studied and compared in this section.
Comparing 2020 high load and low load scenarios, it is
observed that as the electrical demand is increased in the base
case (ignoring the impact of EVs), more power is needed
from conventional generators (e.g., generators with natural
gas or coal fuel) since renewable resources basically use free
resources and are used to the maximum extent allowed by

Fig. 8: Hourly percentage difference in emissions between
EV and base scenarios (%)

the available resources. These conventional generators, also
called “peakers” (meaning are mostly used for peak loads), are
creating more harmful emissions. Therefore, the advantage of
adding EVs in the low load case is that the difference between
the base load and EV charging load is mostly satisfied with
renewable resources. However, replacing specific percentages
of ICE cars with EVs reduces overall daily emissions of all
pollutants for both studied load scenarios in 2020.

Overall, this study shows a reduction in operational emis-
sions with the electrification of transportation. Table X
presents the combined operational emissions from the grid and
the transportation networks. The electrification 20% of Hous-
ton’s LD vehicles and 10% of its MHD vehicles yields ap-
proximately 19,790 metric tons (10%) daily reduction in CO2
emissions, and nearly 128 metric tons daily (17%) reduction in
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(a) NOx difference in transportation
emissions: -1204 lb.

(b) PM2.5 difference in transportation
emissions: -86 lb.

(c) VOC difference in transportation
emissions: -68 lb.

Fig. 9: Spatial distribution of difference in operational
emissions at 5:00 PM

(green: decreases with EVs, red: increases with EVs).

(a) NOx difference in transportation
emissions: -360 lb.

(b) PM2.5 difference in transportation
emissions: -26 lb.

(c) VOC difference in transportation
emissions: -20 lb.

Fig. 10: Spatial distribution of difference in operational
emissions at 9:00 PM

(green: decreases with EVs, red: increases with EVs).
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(a) NOx difference in transportation
emissions: -13,878 lb.

(b) PM2.5 difference in transportation
emissions: -992 lb.

(c) VOC difference in transportation
emissions: -784 lb.

Fig. 11: Spatial distribution of cumulative difference in
operational emissions over the 24-hour period (green:

decreases with EVs, red: increases with EVs).

CO emissions for the day studied. The effect of emission from
CO and CO2 is cumulative [3], so these emissions reductions
over the total period of simulation are meaningful. Overall,
the reduction in the emissions is attributed to reducing the
operational emissions of transportation (as seen in Table VIII).
Instead, small increases in the grid emissions were observed
(see Table IX). The scale of the transportation emissions
reductions in the EV scenario (-12% to -19%) was larger
than that of the grid emissions increase (+1%), thus the net
operational emissions reductions is observed (-3% to -17%).

A. Generator Dispatch by Fuel Type

Figure 5 presents the grid’s dispatch of generators by fuel
type in the base case (no EV integration). Because the weather
in the studied case presents a windy and cloudy day, wind
accounts for a large portion of the generation mix and solar is
not present in the generation mix. The availability of renewable
generation resources is weather-dependent. Had there been
fewer clouds, the solar availability would have been nonzero
and would have been present in the generation mix. Since there
are no operational costs associated with renewable generation,
the generation from renewable resources is dispatched to the
maximum extent allowed by the transmission network. As
there are no operational emissions associated with renewable
generation, the weather in the simulation impacts the opera-
tional emissions of the generation from the grid. Therefore,
during hours with lower wind and solar availability, conven-
tional power plants account more for the generation and thus
produce the associated emissions. This shows the importance
of including weather data in the OPF input problem when
evaluating operational emissions. However, there are opera-
tional emissions associated with conventional generation (see
Table II). The contribution from nuclear plants is relatively
constant across the hours of simulation, consistent with its
typical dispatch. The coal and nuclear generators’ dispatch
follows load patterns, with light coal dispatch in the nighttime
hours due to its cost relative to that of wind power. The greater
wind availability in the overnight hours provides greater wind
power generation capacity.

Figure 6 presents the difference in generation dispatch by
fuel type when comparing the EV scenario to the base case.
Since the load is higher at all hours in the EV scenario, the
differences in Figure 6 are largely positive. Increased use
of wind generation accounts for much of dispatch changes
observed in the nighttime hours, coincident with the hours of
peak LD EV demand. The EV demand at 6:00 AM is served
by a combination of wind generators and energy storage.
The EV demand from 7:00 AM to 9:00 AM is served by a
combination of coal and natural gas. The daytime EV demand
was largely served by natural gas generators. The daytime use
of conventional generation to serve the added EV demand
within the system is attributed to the cheaper generation
(renewables and nuclear) already being dispatched maximally
within the base case. The EV demand at 8:00 PM is served
by coal generation. The sudden change between the generator
fuel type serving the 7:00 PM and 8:00 PM EV demand is
attributed to the coal generation being dispatched maximally
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in the base case and the dispatch in the EV case from the late
morning to 7:00 PM, so the dispatch of generation serving
the added EV demand is purely natural gas for these hours.
The load and coal dispatch in the base case decreases at 8:00
PM and thus coal capacity will be available to serve the EV
demand at 8:00 PM with less cost than natural gas. The EV
demand at 10:00 PM is served by a combination of wind
generators and energy storage.

Given that coal generation supplies EV demand at 8:00 PM
and 9:00 PM, which results in higher emissions, design of
smart charging strategies and pricing incentives to encourage
drivers and fleets to charge outside those hours, especially in
off-peak hours will be highly beneficial.

B. Temporal and Spatial Operational Emissions

The overall combined operational emissions of the electrical
transmission grid and transportation networks of Houston
are presented in Table X. Since the temporal and spatial
distributions of specific pollutants determine the risk factor
for humans’ health, the distributions of these pollutants are
studied in this paper. Considering the temporal characteristics
of operational emissions provides useful context for under-
standing their impacts. For example, it is advantageous to
the environment and human health if particular pollutants
such as VOC, PM2.5, and NOx are reduced during periods of
outdoor human activity, such as the morning when people are
beginning their day and the evening when people are beginning
post-school and post-work activities. Outdoor human activity
exposes people to the pollutants outside their homes. Addition-
ally, these pollutants in the presence of UV radiation contribute
to O3 creation which presents a hazard to human respiratory
health [8], so emissions associated with the production of O3
should be minimized during daylight hours for optimal human
health outcomes.

Figures 7 and 8 present the hourly difference in dispatch
comparing the EV scenario to the base case. The greatest
absolute reduction of emissions occurred during the afternoon
hours across all emissions studied (Figure 7) whereas the
greatest percentage reduction occurred around 6:00 AM as
desired (see Figure 8). The PM2.5 and NOx increased in the
EV scenario relative to the base scenario at 8:00 PM and 9:00
PM due to the change in the generation of increased demand
from EVs from natural gas to coal which is cheaper but based
on Table II has more contribution in the creation of harmful
emissions.

From 12:00 AM to 6:00 PM when wind was available
to supply the charging demand from EVs, the difference in
grid emissions between the two scenarios was trivial, so the
dominant difference in emissions between the two scenarios
is attributed to the differences in the transportation emissions.
The morning hours showed an overall reduction in emissions
by nearly 30% for VOC, 20% for NOx, 14% for PM2.5, and
approximately 970% for CO.

The evening hours of interest (5:00 PM and 9:00 PM)
demonstrate larger changes in the emissions from the electric
grid between the two scenarios. These changes are represented
in Figures 9a-10c. At 5:00 PM, the NOx emissions are reduced

cumulatively by 12%. In the city of Houston, the emissions
are reduced by over 1200 lb from transportation alone (Fig.
9a). The emissions from the electric power grid’s generators
present smaller increases in NOx emissions. Notably, some
of these small increases occur on the outskirts of Houston
and Austin, both with relatively high population densities.
Other associated increased emissions from the power grid take
place in sparsely-populated areas. At 5:00 PM, cumulatively
PM2.5 emissions are reduced by over 7% with similar spatial
relationships observed, but in even smaller quantities (Fig.
9b). Here, the emissions from the transportation sector are
reduced in Houston by 86 lb, with the changes observed due
to the electric grid generation being substantially less. VOC
emissions at 5:00 PM experience a reduction of approximately
20%. Figure 9c shows the spatial distribution of these changes,
with the reduction from the transportation sector accounting
for 68 lb. Here, some of the small increases in power plant
emissions occur in Houston, Austin, and Dallas, though in
much smaller amounts than the reduction in transportation
emissions.

At 9:00 PM, some of the emissions are increased in the
EV scenario relative to the base scenario. For example, PM2.5
emissions increased by 10% and NOx emissions increased
by about 3%. Because these increases coincide with a time
past sunset, the creation of O3 and since human outdoor
activity is relatively low at 9:00 PM, direct exposure to these
emissions is less of a concern. The spatial distributions of
emissions with a net increase (NOx and PM2.5) are shown in
Figures 10a and 10b, where the emissions reductions from
the transportation sector are 360 lb and 26 lb, respectively.
The increase in emissions is attributed to the same set of
generators in slightly different proportions. Two of the three
clusters of increased power plant emissions occur in rural
areas south of San Antonio and Dallas. The third cluster of
increased power plant emissions occurs in the southern portion
of the greater Houston area. This hour and the preceding are
notably the only hours for which any increase in combined
operational emissions is observed. This is because the demand
from EV scenario is being predominantly supplied by coal
with relatively higher rates of emission for NOx and PM2.5.
All other emissions are reduced at this hour. For example,
the spatial distribution of VOC emissions is shown in Figure
10c. Here, the reduction in emissions from the transportation
sector is 20 lb. The corresponding increase from the electric
grid occurs in the same locations noted for NOx and PM2.5,
but in relatively smaller magnitudes.

C. Sensitivity Analysis

The proposed strategy is adaptable to a variety of input
conditions, a range of which are studied in this paper. By
comparing extreme scenarios, ranges of possible emissions for
a specific grid and transportation data can be estimated. A
sensitivity analysis was conducted to quantify the sensitivity
of the results for specific grid data and transportation data.
The sensitivity of the operational emission results to grid
load level variations show that VOC emissions were the most
sensitive to load variations for EV1, followed by NOx, PM2.5,
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and CO2. CO emissions were not sensitive to changes in the
grid conditions, as it changed by less than 1% for both EV1
and EV2 comparisons of high and low load scenarios. PM2.5
was the most sensitive pollutant to load level changes in EV2,
followed by VOC, NOx, and CO2. Based on the sensitivity
results, CO2 was the most sensitive to wind levels, with a 22%
difference in CO2 emissions was observed when comparing the
high and low wind scenarios. The remaining pollutants were
less sensitive (less than 3% change) to differences in wind
conditions. These sensitivity analyses can be used to bound
expectations of results for each pollutant in the extremes of
grid, weather, and EV penetration conditions.

VIII. CONCLUSIONS

This paper proposes a strategy for obtaining realistic calcu-
lations of spatiotemporal operational emissions from coupled
transportation and power grid sectors. The realism of the
results can be attributed to the scale, realism, and geographic
consistency of the data and models. The transportation net-
works rely on actual transportation data, travel patterns, traffic
models, and behavior-informed simulations of LD and MHD
charging. This methodology can be applied to any power grid
model that includes geographic data and generator cost and
fuel type information. This framework enables the evaluation
of the impact of electrifying transportation on the combined
operational emissions of the transportation network and the
electric power grid. The studied pollutants include CO2, NOx,
PM2.5, VOC, and CO due to their prevalence in the transporta-
tion sector as well as concerns related to environmental and
human health. The impacts of the spatiotemporal operational
emissions are also discussed.

The study was performed using a 7000-bus synthetic electric
grid on the footprint of Texas so as not to compromise any
CEII, created based on publicly available data of actual gener-
ators in 2020 and validated to be structurally and functionally
similar to the actual grid. Then, the grid is updated to reflect
the predicted generation mix in 2030. The study compared
a base case without EV integration to a case that replaces a
variety of possible penetration levels of LD and MHD ICE
vehicles with EVs in the greater Houston area. The studied
days include a variety of high/low load, and high/low wind
availability in 2020 and 2030 based on electrical grid and
demand changes and simulation includes ac OPF with unit
commitment and considers the impact of weather data directly
in the calculations.

The results show a cumulative reduction in emissions by up
to 40,000 metric tons (17%) of CO2 emissions and up to 200
metric tons (27%) in CO emissions over the studied scenarios.
Overall, the changes from the transportation sector yielded
heavier influence than the changes in the electric grid. The
predicted LD EV charging pattern employs mostly overnight
off-peak hours which is coincident with lower demand from
the overall load in the system and higher wind power avail-
ability, yielding lower operational emissions resulting from
the EV charging demand. Also, authors show the importance
of including weather in the ac OPF equations for emission
calculations as it impacts the availability of renewable gener-

ation which is strongly related to the generation dispatch and
resulting emissions of the grid.

The evaluation of emissions with temporal and local impact,
i.e., NOx, PM2.5, and VOC, on a spatiotemporal basis provided
valuable insights into the health and environmental impact
of these emissions. The time of day and locations where
these emissions are present can help evaluate to what extent
people come into contact with the emissions. Periods of human
outdoor activity (before and after work or school) in densely-
populated areas are conditions for the locally-impacting emis-
sions to have the greatest impact on human health outcomes.
The time of day of emissions is also considered with respect
to UV intensity, which can result in the production of O3,
associated with ecological and human health risks.

The methodology presented in this paper quantifies the
spatiotemporal emissions of the electrification of ground
transportation inclusive of ICE tailpipe emissions and grid
emissions attributed to EV charging demand. This framework
can be applied to grid and transportation networks in other
locations, or could be used to study the emissions associated
with different EV charging behaviors, penetration levels, or
various weather and electric grid load scenarios. As transporta-
tion electrification is an important mechanism for reaching
the goals set by emission reduction policies, this methodology
could track the net progress made by such policy initiatives.
Beyond evaluating if a strategy is meeting policy goals,
calculating emissions with spatiotemporal resolution enables
an understanding of the equity in the health and environmental
impacts. This is aligned with the Justice40 Initiative [66] as
it can ensure that the emissions of one area are not causing a
detrimental increase in emissions in other areas, particularly
those with disadvantaged communities. This is enabled by the
spatiotemporal calculation of emissions and by the applica-
bility of this methodology to large, industry-scale cases. In
the future, this framework could additionally evaluate larger
battery sizes of MHD EVs and smart charging schemes in
which EV demand would be coordinated to reduce operational
emissions or costs and perform experimental validation.
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electric vehicle charging patterns, and operating emissions,” Environ-
mental Science & Technology, vol. 54, no. 24, pp. 16 071–16 085, 2020.

[25] “Global car sales estimates”. [Online]. Available: https://canalys.com/
newsroom/canalys-global-electric-vehicle-sales-2020

[26] “Advanced Clean Cars II Regulations Resolution 22-12”. [Online].
Available: https://ww2.arb.ca.gov/sites/default/files/barcu/board/books/
2022/082522/prores22-12.pdf

[27] “Global car sales estimates”. [Online]. Available: https://canalys.com/
newsroom/canalys-global-electric-vehicle-sales-2020

[28] L. Spangher, W. Gorman, G. Bauer, Y. Xu, and C. Atkinson, “Quanti-
fying the impact of us electric vehicle sales on light-duty vehicle fleet

co2 emissions using a novel agent-based simulation,” Transportation
Research Part D: Transport and Environment, vol. 72, pp. 358–377,
2019.

[29] “EEI Projects 26 Million Electric Vehicles Will be on US Roads in
2030”. [Online]. Available: https://www.eei.org/News/news/All/eei-
projects- 26- million- electric- vehicles- will- be- on- us- roads- in- 2030#:
∼:text=The%20number%20of%20EVs%20on,on%20U.S.%20roads%
20in%202030.

[30] “Are You Ready for the Future with Electric Trucks and Electric
Buses?”. [Online]. Available: https://www.electrotempo.com/wp-
content/uploads/2022/09/Samuel-McKirahan-Technical-Paper-TSDOS.
pdf

[31] [Online]. Available: https://electricgrids.engr.tamu.edu/electric-grid-
test-cases/datasets-for-arpa-e-perform-program/

[32] “Electric Reliability Council of Texas Long-Term System
Assessment”. [Online]. Available: http://www.ercot.com/content/wcm/
key documents lists/189719/2020 LTSA Update May2020 v3.pdf

[33] Houston-Galveston Area Council, “Regional travel models: 2016 model
validation and documentation report,” Houston-Galveston Area Council,
Tech. Rep., March 2019.

[34] J. L. Wert, K. S. Shetye, H. Li, J. H. Yeo, X. Xu, A. Meitiv, Y. Xu,
and T. J. Overbye, “Coupled infrastructure simulation of electric grid
and transportation networks,” in 2021 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT), 2021.

[35] K. S. Shetye, H. Li, J. L. Wert, X. Xu, A. Meitiv, Y. Xu, and T. J.
Overbye, “Generation Dispatch and Power Grid Emission Impacts of
Transportation Electrification,” in 2021 North American Power Sympo-
sium (NAPS), 2021, pp. 01–06.

[36] Q.-S. Jia and T. Long, “A review on charging behavior of electric
vehicles: data, model, and control,” Control Theory and Technology,
vol. 18, no. 3, pp. 217–230, Aug 2020. [Online]. Available:
https://doi.org/10.1007/s11768-020-0048-8

[37] A. Meitiv, “Commercial vehicle trip generator based on the
houston-galveston area council survey,” CARTEEH DATA:HUB, 2021.
[Online]. Available: http://carteehdata.org/library/dataset/commercial-
vehicle-trip-g-94c7(accessedFeb012022)

[38] (2020) “Why most eTrucks will choose overnight charging”.
[Online]. Available: https://www.mckinsey.com/industries/automotive-
and- assembly/our- insights/why- most- etrucks- will- choose- overnight-
charging

[39] H. Li, A. L. Bornsheuer, T. Xu, A. B. Birchfield, and T. J. Overbye,
“Load modeling in synthetic electric grids,” in 2018 IEEE Texas Power
and Energy Conference (TPEC). IEEE, 2018, pp. 1–6.

[40] H. Li, J. H. Yeo, A. L. Bornsheuer, and T. J. Overbye, “The creation
and validation of load time series for synthetic electric power systems,”
IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 961–969, 2020.

[41] A. Wood, B. Wollenberg, and G. Sheblé, Power Generation,
Operation, and Control. Wiley, 2013. [Online]. Available: https:
//books.google.com/books?id=JDVmAgAAQBAJ

[42] M. F. Anjos, A. J. Conejo et al., “Unit commitment in electric energy
systems,” Foundations and Trends® in Electric Energy Systems, vol. 1,
no. 4, pp. 220–310, 2017.

[43] K. Hara, M. Kimura, and N. Honda, “A method for planning economic
unit commitment and maintenance of thermal power systems,” IEEE
Transactions on Power Apparatus and Systems, no. 5, pp. 427–436,
1966.

[44] R. Kerr, J. Scheidt, A. Fontanna, and J. Wiley, “Unit commitment,”
IEEE Transactions on Power Apparatus and Systems, no. 5, pp. 417–
421, 1966.

[45] F. Safdarian, A. Mohammadi, and A. Kargarian, “Temporal decomposi-
tion for security-constrained unit commitment,” IEEE Transactions on
Power Systems, vol. 35, no. 3, pp. 1834–1845, 2019.

[46] D. Bienstock and A. Verma, “Strong np-hardness of ac power flows
feasibility,” Operations Research Letters, vol. 47, no. 6, pp. 494–501,
2019.

[47] K. Lehmann, A. Grastien, and P. Van Hentenryck, “Ac-feasibility on
tree networks is np-hard,” IEEE Transactions on Power Systems, vol. 31,
no. 1, pp. 798–801, 2015.

[48] T. J. Overbye, F. Safdarian, W. Trinh, J. H. Yeo, Z. Mao, and J. Snod-
grass, “An approach for the direct inclusion of weather information in
the power flow,” in Hawaii International Conference on System Sciences
(HICSS), 2023.

[49] J. L. Wert, T. Chen, F. Safdarian, J. Snodgrass, and T. J. Overbye,
“Calculation and validation of weather-informed renewable generator
capacities in the identification of renewable resource droughts,” in 15th
IEEE PowerTech 2023, 2023.

https://www.epa.gov/ground-level-ozone-pollution/ecosystem-effects-ozone-pollution
https://www.epa.gov/ground-level-ozone-pollution/ecosystem-effects-ozone-pollution
https://www.epa.gov/ground-level-ozone-pollution/ecosystem-effects-ozone-pollution
https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution
https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution
https://www7.nau.edu/itep/main/eeop/docs/airqlty/AkIAQ_VolatileOrganicCompounds.pdf
https://www7.nau.edu/itep/main/eeop/docs/airqlty/AkIAQ_VolatileOrganicCompounds.pdf
https://nj.gov/health/eoh/rtkweb/documents/fs/1357.pdf
https://nj.gov/health/eoh/rtkweb/documents/fs/1357.pdf
https://www.indoorairhygiene.org/pm2-5-explained/#:$\sim $:text=Most%20studies%20indicate%20PM2.,breathing%20issues%20such%20as%20asthma.
https://www.indoorairhygiene.org/pm2-5-explained/#:$\sim $:text=Most%20studies%20indicate%20PM2.,breathing%20issues%20such%20as%20asthma.
https://www.indoorairhygiene.org/pm2-5-explained/#:$\sim $:text=Most%20studies%20indicate%20PM2.,breathing%20issues%20such%20as%20asthma.
https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf
https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf
https://gaslab.com/blogs/articles/carbon-monoxide-levels-chart#:$\sim $:text=The%20OSHA%20personal%20exposure%20limit,an%208%2Dhour%20time%20period
https://gaslab.com/blogs/articles/carbon-monoxide-levels-chart#:$\sim $:text=The%20OSHA%20personal%20exposure%20limit,an%208%2Dhour%20time%20period
https://gaslab.com/blogs/articles/carbon-monoxide-levels-chart#:$\sim $:text=The%20OSHA%20personal%20exposure%20limit,an%208%2Dhour%20time%20period
https://gaslab.com/blogs/articles/carbon-monoxide-levels-chart#:$\sim $:text=The%20OSHA%20personal%20exposure%20limit,an%208%2Dhour%20time%20period
https://www.osha.gov/annotated-pels/table-z-1
https://www.osha.gov/annotated-pels/table-z-1
https://canalys.com/newsroom/canalys-global-electric-vehicle-sales-2020
https://canalys.com/newsroom/canalys-global-electric-vehicle-sales-2020
https://ww2.arb.ca.gov/sites/default/files/barcu/board/books/2022/082522/prores22-12.pdf
https://ww2.arb.ca.gov/sites/default/files/barcu/board/books/2022/082522/prores22-12.pdf
https://canalys.com/newsroom/canalys-global-electric-vehicle-sales-2020
https://canalys.com/newsroom/canalys-global-electric-vehicle-sales-2020
https://www.eei.org/News/news/All/eei-projects-26-million-electric-vehicles-will-be-on-us-roads-in-2030#:~:text=The%20number%20of%20EVs%20on,on%20U.S.%20roads%20in%202030.
https://www.eei.org/News/news/All/eei-projects-26-million-electric-vehicles-will-be-on-us-roads-in-2030#:~:text=The%20number%20of%20EVs%20on,on%20U.S.%20roads%20in%202030.
https://www.eei.org/News/news/All/eei-projects-26-million-electric-vehicles-will-be-on-us-roads-in-2030#:~:text=The%20number%20of%20EVs%20on,on%20U.S.%20roads%20in%202030.
https://www.eei.org/News/news/All/eei-projects-26-million-electric-vehicles-will-be-on-us-roads-in-2030#:~:text=The%20number%20of%20EVs%20on,on%20U.S.%20roads%20in%202030.
https://www.electrotempo.com/wp-content/uploads/2022/09/Samuel-McKirahan-Technical-Paper-TSDOS.pdf
https://www.electrotempo.com/wp-content/uploads/2022/09/Samuel-McKirahan-Technical-Paper-TSDOS.pdf
https://www.electrotempo.com/wp-content/uploads/2022/09/Samuel-McKirahan-Technical-Paper-TSDOS.pdf
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/datasets-for-arpa-e-perform-program/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/datasets-for-arpa-e-perform-program/
http://www.ercot.com/content/wcm/key_documents_lists/189719/2020_LTSA_Update_May2020_v3.pdf
http://www.ercot.com/content/wcm/key_documents_lists/189719/2020_LTSA_Update_May2020_v3.pdf
https://doi.org/10.1007/s11768-020-0048-8
http://carteehdata.org/library/dataset/commercial-vehicle-trip-g-94c7 (accessed Feb 01 2022)
http://carteehdata.org/library/dataset/commercial-vehicle-trip-g-94c7 (accessed Feb 01 2022)
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-most-etrucks-will-choose-overnight-charging
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-most-etrucks-will-choose-overnight-charging
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-most-etrucks-will-choose-overnight-charging
https://books.google.com/books?id=JDVmAgAAQBAJ
https://books.google.com/books?id=JDVmAgAAQBAJ


16

[50] M. Jereminov, A. Pandey, and L. Pileggi, “Equivalent circuit formulation
for solving ac optimal power flow,” IEEE Transactions on Power
Systems, vol. 34, no. 3, pp. 2354–2365, 2019.

[51] Center for Disease Control (CDC), “Air pollutants.” [Online]. Available:
http://https://www.cdc.gov/air/pollutants.htm.

[52] M. Wang, A. Elgowainy, P. T. Benavides, A. Burnham, H. Cai, Q. Dai,
T. R. Hawkins, J. C. Kelly, H. Kwon, D.-Y. Lee, U. Lee, Z. Lu,
and L. Ou, “Summary of expansions and updates in GREET® 2018.”
[Online]. Available: https://www.osti.gov/biblio/1483843

[53] H. Cai, M. Wang, A. Elgowainy, and J. Han, “Updated greenhouse
gas and criteria air pollutant emission factors and their probability
distribution functions for electricity generating units.” [Online].
Available: https://www.osti.gov/biblio/1045758

[54] “Transportation Conformity,” 2019. [Online]. Available: https://www.h-
gac.com/transportation-conformity/2019

[55] A. L. Meitiv and Y. A. Xu, “Tailpipe emission benefits of medium- and
heavy-duty truck electrification in houston,” 2020.

[56] GHG Emission Factors Hub. [Online]. Available: https://www.epa.gov/
climateleadership/ghg-emission-factors-hub

[57] “Estimated U.S. Average Vehicle Emissions Rates per Vehicle by
Vehicle Type Using Gasoline and Diesel”. [Online]. Available: https:
//www.bts.gov/content/estimated-national-average-vehicle-emissions-
rates-vehicle-vehicle-type-using-gasoline-and

[58] Greenhouse Gas Emissions from a Typical Passenger Vehicle.
[Online]. Available: https://www.epa.gov/greenvehicles/greenhouse-
gas-emissions-typical-passenger-vehicle

[59] L. Wilson. Calculate Your Driving Emissions. [Online]. Available:
https://shrinkthatfootprint.com/calculate-your-driving-emissions/

[60] “Form EIA-860,” 2020. [Online]. Available: https://www.eia.gov/
electricity/data/eia860/

[61] A. B. Birchfield, K. M. Gegner, T. Xu, K. S. Shetye, and T. J. Overbye,
“Statistical considerations in the creation of realistic synthetic power
grids for geomagnetic disturbance studies,” IEEE Transactions on Power
Systems, vol. 32, no. 2, pp. 1502–1510, 2017.

[62] K. M. Gegner, A. B. Birchfield, T. Xu, K. S. Shetye, and T. J. Overbye,
“A methodology for the creation of geographically realistic synthetic
power flow models,” in 2016 IEEE Power and Energy Conference at
Illinois (PECI). IEEE, 2016, pp. 1–6.

[63] T. Xu, A. B. Birchfield, K. M. Gegner, K. S. Shetye, and T. J. Overbye,
“Application of large-scale synthetic power system models for energy
economic studies,” in Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[64] A. B. Birchfield, E. Schweitzer, M. H. Athari, T. Xu, T. J. Overbye,
A. Scaglione, and Z. Wang, “A metric-based validation process to
assess the realism of synthetic power grids,” Energies, vol. 10, no. 8,
2017. [Online]. Available: https://www.mdpi.com/1996-1073/10/8/1233

[65] [Online]. Available: https://www.evolvehouston.org/rise-houston
[66] (2021) Justice40 Initiative. [Online]. Available: https://www.energy.gov/

diversity/justice40-initiative

Jessica L. Wert (S’18) received the B.S. degree in engineering sciences from
Smith College, Northampton, MA, USA, in 2018. She is currently working
toward the Ph.D. degree in electrical engineering at Texas A&M University,
College Station, TX, USA.

Farnaz Safdarian is a senior researcher at Texas A&M University, College
Station, TX, USA. She received her Ph.D. in Electrical Engineering at
Louisiana State University and her B.S. and M.S. degrees in Electrical
Engineering, from Amirkabir University of Technology (Tehran Polytechnic)
and Shahid Beheshti University, Iran, in 2011 and 2014, respectively.

Diana Wallison received the B.S. degree in electrical engineering from Texas
A&M University, TX, USA, in 2017. She is currently pursuing a Ph.D. degree
in electrical and computer engineering with Texas A&M University, TX,
USA. Her research interests include co-simulation modeling and simulation,
interactive simulation, dynamic load modeling and time-series simulation.

Jung Kyo Jung is a Master’s student at Texas A&M University, College
Station, TX, USA, 2021–2023. He has worked as a Senior Manager for
KEPCO (Korea Electric Power Corporation), Seoul, Korea, 2006–2021. He
received his B.E. in Electrical Engineering from Hongik University, Korea,
in 2006.

Yijing Liu (S’17–M’22) received her B.S. degree from University of Elec-
tronic Science and Technology of China, Chengdu, P.R.C., and Ph.D. degree
in Electrical and Computer Engineering from Texas A&M University, College
Station, Texas, USA. Her research interests include power system dynamics
modeling, renewable resources modeling and grid integration, and energy
market.

Thomas J. Overbye (S’87-M’92-SM’96-F’05) received B.S., M.S., and Ph.D.
degrees in electrical engineering from the University of Wisconsin Madison,
Madison, WI, USA. He is currently with Texas A&M University where he is
a Professor and holder of the O’Donnell Foundation Chair III.

Yanzhi (Ann) Xu is Cofounder and CEO of ElectroTempo, Inc. in Arlington,
VA, USA. She received her Ph.D. in Transportation Systems Engineering from
Georgia Institute of Technology in Atlanta, GA, USA in 2010 and her B.S.
degree in Environmental Science from Peking University in Beijing, China in
2006.

http://https://www.cdc.gov/air/pollutants.htm.
https://www.osti.gov/biblio/1483843
https://www.osti.gov/biblio/1045758
https://www.h-gac.com/transportation-conformity/2019
https://www.h-gac.com/transportation-conformity/2019
https://www.epa.gov/climateleadership/ghg-emission-factors-hub
https://www.epa.gov/climateleadership/ghg-emission-factors-hub
https://www.bts.gov/content/estimated-national-average-vehicle-emissions-rates-vehicle-vehicle-type-using-gasoline-and
https://www.bts.gov/content/estimated-national-average-vehicle-emissions-rates-vehicle-vehicle-type-using-gasoline-and
https://www.bts.gov/content/estimated-national-average-vehicle-emissions-rates-vehicle-vehicle-type-using-gasoline-and
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://shrinkthatfootprint.com/calculate-your-driving-emissions/
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia860/
https://www.mdpi.com/1996-1073/10/8/1233
https://www.evolvehouston.org/rise-houston
https://www.energy.gov/diversity/justice40-initiative
https://www.energy.gov/diversity/justice40-initiative

	Introduction
	Policies and Limitations on Emissions
	Literature Review
	Contributions

	Modeling EVs in the Grid
	Modeling EV Charging Demand
	Traffic Modeling
	Light-Duty Electric Vehicle Charging Load Modeling
	Medium- and Heavy-Duty EV Charging Load Modeling

	Mapping EV Load to the Transmission System
	Load Time Series

	Time Step Simulation
	Unit Commitment
	Including Weather Data
	AC Optimal Power Flow

	Calculating Operational Emissions
	Grid Emissions
	Transportation Emissions

	Case Study
	Electrical Grid Model
	Transportation Model
	Simulation Scenarios
	Case Validation

	Simulation Results
	Transportation Operational Emissions
	Generator Dispatch by Fuel Type
	Grid Operational Emissions
	Combined Operational Emissions

	Discussion
	Generator Dispatch by Fuel Type
	Temporal and Spatial Operational Emissions
	Sensitivity Analysis

	Conclusions
	References
	Biographies
	Jessica L. Wert
	Farnaz Safdarian
	Diana Wallison
	Jung Kyo Jung
	Yijing Liu
	Thomas J. Overbye
	Yanzhi (Ann) Xu


