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Abstract—This paper finds the relationship between electrical
load and temperatures to improve the creation of synthetic
(”realistic but not realistic”) load. The bus-level impact of
temperatures is demonstrated on a synthetic Texas grid with
6717 buses. The proposed strategy can be used to scale each
load entity to match the calculated load in each area. The load
and temperature correlations are calculated and the curves based
on recent data are presented. The curves are used to create
temperature-aware load profiles. The results show that if the
load curves are partitioned based on the temperatures, there is
a higher correlation between load demand and temperatures in
areas with higher populations. This is most likely due to higher
percentages of residential and commercial load in urban areas,
and illustrates the importance of updating synthetic load curves
based on the changes in weather.

Index Terms—Power Systems, synthetic grids, synthetic load,
weather impact, linear regression

I. INTRODUCTION

Weather conditions not only affect the available capacity of
power generation, transmission and distribution systems, but
they also change the demand as air conditioning constitutes
a significant portion of the residential and commercial load.
Utility companies and grid operators such as ERCOT (Figure
1) monitor weather conditions closely and adjust their oper-
ations as needed to ensure a reliable supply of electricity to
customers. Planning for future weather conditions can also be
considered by analyzing past events or developing hypothetical
models. In our previous work [1] we proposed a strategy for
direct inclusion of weather measurements such as wind speed,
cloud coverage, and temperatures in AC optimal power flow
(OPF) mainly to consider the availability of renewable energy
resources and their available capacities at each hour. In [2]
a strategy is proposed to identify wind and solar resource
droughts in the United States and the renewable generation
dispatch is validated in [3]. In this paper, we focus on the
relationship between the weather and demand.

A variety of strategies are proposed in the literature to find
the correlation between weather and load as it is essential for
accurate load forecasting. Reference [5] proposes a strategy to
predict the impact of weather on energy demand considering
the probability distribution of power demand. A technical re-
port from National Renewable Energy Laboratory [6] analyzes
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Fig. 1. Weather zones in ERCOT [4].

the impact of climate change on electric loads in the United
States by predicting the future electricity load based on hisctor-
ical data and climate change scenarios. Reference [7] examines
the applications of weather data, including modeling outages
and simulating Photovoltaic fleets. Reference [8] presents a
short-term load forecasting of an urban area using an artificial
neural network (ANN) and Bagged Regression Trees.

For studying the impact of weather on the demand, realistic
data is required but the actual grid data are considered to be
critical energy infrastructure information (CEII) with restricted
access for research. We have used U.S. Energy Information
Association (EIA) generation data [9], and census data to ap-
proximate the load in our previous work [10]–[12] and created
realistic synthetic grids, validated using the methodology in
[13]. Also, in our previous work [14], [15], we developed a
strategy for creating synthetic load time series in synthetic
power systems based on high-level system information, such
as load types and their statistical properties. The proposed
strategy includes a three-step approach, which involves se-
lecting representative load profiles, creating synthetic loads
using statistical methods, and validating the synthetic loads
using real-world data and we demonstrated that the proposed
approach is capable of creating realistic load profiles that
represent the characteristics of real-world loads on bus level
over the course of a year. However, the impact of weather
changes on the load is neglected and it is highly required to



adjust the load based on weather changes in different years.
In this paper, we propose a strategy to find the relationship

between temperatures and load to improve the synthetic load
creation in [14], [15] based on the impact of temperatures on
the load at the bus level of synthetic grids. The studied case
is a synthetic grid created over Texas state footprint in the
U.S. with 6717 buses but the proposed strategy can be also
implemented in other cases. The proposed strategy can be used
to scale each load entity to match the determined load in each
area. The load and temperature correlations are calculated and
the curves based on the last 12 years data are presented. The
curves are used to create temperature-aware load profiles. It
should be noted that the proposed strategy is not limited to the
synthetic grids and can be applied to industry cases as well.

TABLE I
TEMPERATURE RANGES WHERE LINEARITY WAS OBSERVED

Temperature Range (�F)
60 and below

60-70
70-80

80 and above

II. METHODOLOGY

A. Preparing Input Data of Weather Measurements

The first steps for preparing data include: 1) gathering
adequate weather data for the electric grid areas of interest,
2) mapping weather information to relevant grid components,
and 3) quantifying and analyzing how weather affects the
generation and load. Historical weather information is gathered
with hourly data from around the world dating back to the
1940s. The International Civil Aviation Organization (ICAO)
and the World Meteorological Organization (WMO) provide
data for thousands of weather stations worldwide, and electric
utilities can supplement this information. For example, real-
time weather information for about 5000 stations using the
ICAO identifiers is available at [16] with several weather mea-
surements including temperature, wind speed, and cloud cover
percentage. Geographic information for grid components is
becoming more readily available through geographic informa-
tion systems, visualization techniques, and requirements from
regulatory organizations. The weather stations are mapped
to the electrical buses based on the closest geographical
distance using their latitudes and longitudes. After the weather
information is assigned to each load bus, the relationship
between load and temperatures can be either studied at the
bus level or area level. To find a more general relationship,
we calculated the average hourly temperatures for each area.

B. Preparing Input Load Data

Several utilities such as Electric Reliability Council of
Texas (ERCOT) disclose hourly load data for each area.
[17] However, the load data at the bus level is required for
several power system studies. References [14], [15] provide
a detailed explanation of creating hourly synthetic load time
series based on the publicly available data with realistic

commercial, residential, and industrial demand ratios from
different building types and their load templates for one year.
Several assumptions are made for creating synthetic load data
in [14], [15] including that the statistical properties in data
are not changing over the years; the loads follow a seasonal
pattern dependent on the time of year; there is homogeneity in
the data, meaning that individual loads behave similarly and
the variance is considered to be constant over time.

However, to adjust the load time series based on the weather
measurements, it is required to find the relationship between
the load and temperatures and consider the predicted load
growth over the years. ERCOT load data is used to find
this relationship and improve the synthetic load time series
accordingly.

C. Correlations between hourly load and temperatures

Two techniques were used to determine the relationship of
weather and demand: R2 and correlation. Correlation explains
the strength of the relationship between two variables whereas
R2 explains to what extent the variance of one variable
explains the variance of the second variable. Pearson-r (or cor-
relation) is the ratio between the covariance of two variables
and the product of their standard deviations—this results in
a normalized measurement of the covariance with correlation
values ranging between -1 and 1. Regardless of sign, should
there be a correlation between the two variables, the result
will be between 0.3–0.7 for moderate correlation and above
0.7 if there is a high correlation. R2 is a measure representing
the proportion of the variance for a dependent variable that is
predictable from the independent variable. In other words, this
value represents how close the data are to the fitted regression
line. These statistical measures are used to identify how closely
related are the two variables.

D. Relationship between hourly load and temperatures

Temperatures were partitioned to the ranges where a linear
relationship between the load and temperatures was observed.
Once temperature ranges were identified, a linear regression
model was applied using the sci-kit toolkit in python and
Pearson correlation in the Panda’s library. The relationship is
calculated by fitting a line that is determined by finding the
linear equation with the smallest sum of squared differences
between observed and predicted values so that the error
between the fitted curve and data was optimized without
any overfitting. The calculated regression line is used to find
the proportional increase or decrease in electric consumption
subject to a change in temperature. Load magnitudes were
normalized by dividing by the average peak demand for each
zone to allow comparisons of the correlations across the vari-
ous zones. Since the sign of the correlation coefficient between
temperature and load changes between seasons, the load data
were divided into groups based on the temperature ranges
that resulted in a larger correlation between the two variables.
Each zone has multiple regression lines that represent the
relationship found for each temperature range. Table I shows
temperature ranges where linearity was observed.



TABLE II
TEXAS SYNTHETIC GRID STATISTICS

Parameter Numerical Value
Number of buses 6,717

Number of generators 731
Number of loads 5,095

Number of Switched Shunts 634
Number of substations 4,894

Number of transmission lines 7,173
Maximum load (MW) 74,667

Maximum generation (MW) 104,914

Fig. 2. Correlation for past 10 years (combined)

III. C ASE STUDY

The electric grid used in this study is a synthetic network
geographically sited in Texas, U.S., with around 7000 buses
created based on actual generator data [18] representing trans-
mission lines with the same voltage levels that are used in
Texas grid as 345 kV, 138 kV, and 69 kV. Table II shows the
main characteristics of this case.

The Texas synthetic grid models are divided into the same
areas as the actual Texas grid so that the study can be
facilitated. Historical publicly available load data is used for
each area. Figure 1 shows the eight weather zones; regions in
light grey fall outside of ERCOT and are serviced by other
system operators.

IV. RESULTS

Table III shows the relationship between the average temper-
atures and average load in different areas of Texas and Figure 2
shows the absolute correlation of load and temperatures in
Texas zones based on the last 12 years. As expected, there is a
higher correlation between the load and temperatures in higher
and lower temperatures where air conditioning is required.
Also, areas with dominant residential and commercial loads
have a higher correlation but areas such as the Far West with
dominant industrial loads have a lower correlation. Also as
expected, the temperature ranges between 60–70� F and 70–
80� F which are referred to as “nice weather” and reduce
the need for air conditioners, have the lowest correlation for

TABLE III
THE PARAMETERS OFFITTED L INE IN DIFFERENT TEMPERATURE
RANGES AND AREAS, CORRELATIONS AND R-SQUARED CRITERIA

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.00878 1.284209 0.242725 -0.49267
60-70 0.007216 0.345529 0.04897 0.221292
70-80 0.022631 -0.73588 0.308775 0.555676
80 and above 0.032822 -1.50514 0.66224 0.813781

(a) Coast

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.00878 1.284209 0.242725 -0.49267
60-70 0.007216 0.345529 0.04897 0.221292
70-80 0.022631 -0.73588 0.308775 0.555676
80 and above 0.032822 -1.50514 0.66224 0.813781

(b) East

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.00352 1.118819 0.011083 -0.10528
60-70 0.00513 0.600463 0.002554 0.050536
70-80 0.008527 0.35701 0.005908 0.076863
80 and above 0.010601 0.215498 0.027725 0.166508

(c) Far West

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.01172 1.449032 0.56044 -0.74863
60-70 0.008399 0.294721 0.107646 0.328094
70-80 0.020315 -0.53602 0.298574 0.54642
80 and above 0.027657 -1.10742 0.705793 0.840115

(d) North

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.01607 1.651761 0.548497 -0.74061
60-70 0.006726 0.341361 0.039138 0.197833
70-80 0.024513 -0.89971 0.329607 0.574114
80 and above 0.035559 -1.76425 0.778759 0.882473

(e) North Central

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.01966 1.869804 0.418358 -0.64681
60-70 0.00622 0.367771 0.029079 0.170526
70-80 0.02048 -0.62244 0.241543 0.491471
80 and above 0.031014 -1.42672 0.650781 0.80671

(f) South

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.01546 1.623227 0.453906 -0.67373
60-70 0.007477 0.294607 0.047924 0.218916
70-80 0.025879 -0.99479 0.351395 0.592786
80 and above 0.034299 -1.63408 0.773004 0.879206

(g) South Central

Temperature F Coef�cient Intercept R2 Correlation

below 60 -0.01383 1.602931 0.475928 -0.68988
60-70 0.004206 0.556583 0.015264 0.123548
70-80 0.017777 -0.39074 0.19486 0.44143
80 and above 0.02721 -1.12819 0.636748 0.797965

(h) West



(a) 10-60� F

(b) 60-70 � F

(c) 70-80 � F

(d) 80-105� F

Fig. 3. Normalized load based on temperatures in East area over years 2010-
2021.

all weather zones and also contained the most inconsistent
characteristics due to the differences with end-use behavior.
Lower correlations can also be due to the lower number
of weather-dependent loads and dominant industrial load in
areas such as the Far West weather zone, where correlation
coef�cients were lower than in other regions. In general, areas
with higher populations and residential or commercial loads
have a higher impact from temperatures whereas areas with
dominant industrial loads are not in�uenced by temperature
as much.

For a closer look into an area with a dominant residential
and commercial load, the East area is selected. Figure 3
shows the linear relationship of the hourly load and hourly
temperatures while the average values over this area are con-
sidered. The blue dots show the normalized demand based on
temperatures over the recent 12 years (from 2010 to 2021). The
normalized load is the hourly load divided by the average load
for the whole year. The red line is the �tted curve that shows
the linear relationship between the load and temperatures in
this area.

Also, for a more detailed study, we select the years 2020 and
2021. Both of these years are interesting for study as in 2020
COVID became prevalent and changed the overall load pro�le
and in February 2021 the winter storm Uri in Texas created
unusually low temperatures and high demand. Figure Figure 4
shows a comparison of the overall load and temperature curves
in these two years.

(a) 2020

(b) 2021

Fig. 4. Electric consumption pro�les for East weather zone.

Load-temperature pro�le for 2020 remains similar to previ-
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