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Abstract—This paper quantifies the likelihood of two substa-
tions being connected based on the topology to improve and
build more realistic synthetic grids with evaluating the idea that
in North American power grids, two substations are more likely
to be connected if they belong to the same area than to different
areas. Statistical methods are used to identify and visualize the
topological differences between real and synthetic grids and how
areas to which a substation belongs influence how likely the
substations are to be connected. This paper defines a new term,
’Area Sparsity,’ to quantify the relationship between substation
connectedness and highlights the need to explicitly incorporate
the power grid areas into creating more realistic synthetic grids.
The results show that the actual grids are more connected in the
same area; however, this is not the case for the existing large-scale
synthetic grids.

I. INTRODUCTION

Historically, electrification was highly regional, with inde-
pendent power companies owning separate local grids. As the
benefits of linking these mostly isolated local networks became
evident, the stakeholders worked towards making a larger
interconnected power grid a reality [1]. Today, even though the
North American electric grid is highly interconnected, it is not
owned by a single entity. Hundreds of entities have a stake in
it and are responsible for its operation and maintenance, such
as different independent system operators (ISOs), regional
transmission organizations (RTOs), electric cooperatives (co-
ops), and utilities.

While interconnected grids are a single electric circuit,
they are often divided into operating areas or zones that
traditionally correspond to a particular electric utility. The
size and boundaries of these areas are not uniform because
of geopolitical reasons, management issues, and technical
limitations.

Each operational area is a more densely connected local
sub-network that is also interconnected to other areas by
transmission lines to form a more extensive grid network.
Examining the grid, one could ask how likely are two given
substations to be connected by a transmission line. Does this
likelihood change when the substations belong to different
areas, and if so, how to quantify this? This paper quantifies the
relationship between the likelihood of two substations being
connected, the areas to which they belong, and the distance
between them. In doing so, this paper defines a new term,
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’Area Sparsity,’ which measures the connectedness of two
substations based on their area affiliation.

Understanding the topological properties of a power grid
is pertinent to creating robust power networks [2]. Interesting
findings from the application of graph theory to the power grid
are shown in [3], [4]. Important network characteristics are
highlighted by treating the power grid as a complex network
[5], [6]. While these works extract topological properties of
the North American grid using statistical and graph measures
like node degree distribution, characteristic path length, node
clustering coefficient, and betweenness centrality, the impact
of areas on actual grid topology is not discussed and ultimately
not considered in the formation of synthetic grids. However,
it is worth noting that [7] recognizes that the average node
degree does not scale with an increase in network size and is
area dependent.

Since the North American grid data in the United States
is considered critical energy/electric infrastructure information
(CEII), [8]–[11] introduced the creation of a fictitious but
realistic power system model based on census data and U.S.
Energy Information Association (EIA) generation data [12],
which span on the actual geographic footprints of the United
States. These large-scale grids are used to perform analysis
and develop algorithms to be implemented in the planning
or operation of actual power grids. Additionally, [13]–[15]
validated synthetic grids using metrics extracted from actual
North American electric grid models to ensure the realism
and usefulness of the synthetic grids for studies and research
to develop new algorithms and applications. These metrics
follow the structure, proportions, and parameters of key power
system elements, which can be used in assessing and validating
the quality of synthetic power grids. However, these metrics
do not evaluate the nature of North American power grid
areas and the likelihood of a transmission line connecting
two substations; hence, their impact is not considered when
creating synthetic grids.

This paper tests the hypothesis that in North American
power grids two substations are more likely to be connected if
they belong to the same area than to different areas. Once this
is demonstrated, the paper then provides a way to quantify this
relationship so that it can be used to generate more realistic
synthetic grids. The paper is divided as follows: Section II
discusses the synthetic and real-world grids considered for
the analysis. Two indices are defined in Section III. Section



IV analyses the results using box plots and quantifies the
relationship between the likelihood of two substations being
connected and whether they belong to the same area. Finally,
Section V discusses potential future work.

II. STUDIED SYNTHETIC GRIDS AND NORTH AMERICAN
GRIDS

Since the paper focuses on understanding how areas in the
North American grid dictate the likelihood of two substations
being connected, extracting information from these North
American grids is essential. This real-world power grid is
divided into three interconnections – the Western Electricity
Coordinating Council (WECC), Eastern Interconnect (EI), and
the Electric Reliability Council of Texas (ERCOT). The recent
WECC power flow models have about 25,000 buses divided
into 25 areas, ranging in size from less than 100 buses to
more than 4000. The EI model has more than 90,000 buses
divided into 135 areas, with sizes ranging from 1 bus up to
5000. Some of these areas represent an aggregation of multiple
utilities. These grids are studied, and the WECC and the EI
system are investigated more closely.

Overall, the paper aims to quantify the likelihood of two
substations being connected based on the topology to improve
and build more realistic synthetic grids. Hence, it is required
to show that the current large-scale synthetic grids do not
incorporate this relationship. Three synthetic test grids are
used. These are the 2000-bus (2K) case covering Texas, the
10,000-bus (10K) case covering the WECC footprint, and the
70,000-bus (70K) grid over the EI footprint in the US. The
creation and validation of these test grids are discussed in
[8]–[10]. These grids are selected since they are large-scale
electric grids with topological and electrical characteristics of
North American power grids.

III. METHODOLOGY

It is necessary to establish two indices to quantify the
relationship in question. In this paper and future works, a
term is needed to define how likely two substations are to
be connected if they are x-miles apart. A new term, based
on an existing term, is made up called ”Area Sparsity” and
is calculated as shown in Eq. (2). In graph theory, network
density is defined as the ratio between existing edges to
the maximum possible number of edges [16]. This term is
modified into Area Sparsity to make the definition relevant
to a power grid in Eq. (1), where edges are equivalent to
transmission lines between two substations while substations
act as nodes.

Area Sparsity =
Nconnected

Ntotal
(1)

where Nconnected = Number of substations connected by a
transmission line and x-miles apart. Ntotal = Total number of
substations that are x-miles apart. Ntotal represents the total
number of pairs of substations that are x-miles apart, regardless
of whether they are connected or not connected.

Fig. 1. Area Sparsity for WECC for the 345kV and 500kV network.

For example, for the 345kV transmission network of the
WECC case, first, Nconnected is calculated as the number of
substation pairs that are 10 miles apart and have a transmission
line connecting them to each other. Then Ntotal is calculated as
the total possible number of substation pairs that are 10 miles
apart. Ntotal, contains all substation pairs satisfying the dis-
tance category regardless of whether they have a transmission
line between them. Thus, for the 345kv network in WECC,
for a 10-mile distance, Nconnected = 14 and Ntotal = 27. Thus
Area Sparsity for the 10-mile bin is 0.51. This can be seen in
Fig. 1.

In this paper, x is chosen as 10 miles. A lower bin size may
introduce lower values of Area Sparsity, skewing the results
to show lower connectedness. Whereas, in reality, there are
not enough substations that are less than 5 miles apart and
connected. The idea here is not to see if Area Sparsity or
connectedness reduces with distance but to observe the impact
of the area on the likelihood of connectedness. On the other
side, a higher bin size may cause a loss of points, also leading
to a misrepresentation of the trend.

As expected, the likelihood of two substations being con-
nected decreases as the distance between them increases, as
shown in Fig. 1. It is important to note that this plot is not a
probability density function. At first glance, it can be identified
that the likelihood of two substations being connected reduces
as the distance between them increases. This idea has been
identified by Watts and Strogatz [17], where power grids are
categorized as small-world networks. However, networks built
by assuming power grids as small-world networks are not
realistic, as explained in [4].

Hence, we define Area Sparsity by modifying Eq. (1) to
include whether the substations are located in the same or
different areas. Here, the area number or name to which a
substation belongs is unimportant as long as it is investigated
whether the two substations are in the same area or not. Thus,
depending on whether the substations belong to the same area
or a different area, the equation for Area Sparsity is modified
as follows:

Intra−Area Sparsity =
Nconnected and in same area

Ntotal in the same area
(2)



Inter −Area Sparsity =
Nconnected and in diff. area

Ntotal in diff. area
(3)

The procedure for plotting Intra-Area and Inter-Area
Sparsity for a system is to take all the substations in one
voltage network, with their latitude and longitude information,
and calculate a geographical distance matrix between
them. Then, for a total distance of x-miles, calculate the
number of substations in each category: Nconnected; Ntotal;
Nconnected and in same area; Nconnected and in different area;
Ntotal in the same area and Ntotal in different area. The
distance is increased by x-miles, and the calculation is
repeated.

Fig. 2. Area Sparsity for the 345kV network of the WECC Grid

Fig. 3. Area Sparsity for the 500kV network of the WECC Grid

Fig. 4. Area Sparsity for the 230kV network of the EI grid

Using Eq. (2), and (3), the indices are calculated and plotted
for each transmission level voltage network. The WECC cases
have multiple transmission level voltage networks, out of

which the plot for 345kV and 500kV are shown in Fig. 2
and in Fig. 3. Fig. 4 is the line plot for Inter and Intra Area
Sparsity for the 230kV network of the EI case.

The same technique and equations are used to calculate the
Area Sparsity for the synthetic grids. In contrast to Fig. 2, it
can be seen that in Fig. 5, the plot looks a lot like a power
law. It seems like the Area Sparsity, i.e., the likelihood of
connectedness, depends mainly on the distance between the
two substations: As the distance between the two substations
increases, the Area Sparsity decreases. The 230kV network
plot in Fig. 6 is peculiar, given that the Area Sparsity is higher
for substations that belong to two different areas than if they
were in the same area. This means for the 230kV transmission
network of the 24k synthetic grid, if two substations belong
to two different areas and are 10 miles apart, then they are
more likely to have a transmission line connecting them than
if they belonged to the same area.

Fig. 5. Area Sparsity for the 345kV network of the synthetic 10k Grid

Fig. 6. Area Sparsity for the 230kV network of the synthetic 24k Grid

IV. RESULTS AND ANALYSIS

Area Sparsity is calculated for the synthetic and North
American WECC grids using Eq. 2 and 3 defined in section
III. For the WECC and EI networks, from Fig. 2 and 3,
it is seen that generally, the Area Sparsity for substations
belonging to the same area (in blue) is higher than when
they belong to different areas (in orange). That is, Intra-Area
Sparsity is higher than Inter-Area sparsity. These differences
are illustrated using box plots.



Fig. 7. Intra and Inter-Area Sparsity for the actual WECC grid and the synthetic 10k grid.

Using the Area Sparsity equations (2 and 3), line plots
for all voltage networks can be computed. However, only a
visual representation of the Area Sparsity of these networks
is not enough. A tangible plot is required to identify notable
differences between the Area Sparsity of actual North Amer-
ican grids and the large-scale synthetic grids. Thus, in this
paper, box plots are utilized to visualize these differences.
Box plots are a tool to display a dataset’s statistical properties,
mainly the dataset’s dispersion [18]. The lower and upper ends
protruding from the box are called whiskers and show the
maximum and the minimum, respectively. Fig. 7 shows the
corresponding box plots of Area Sparsity for the 345kV and
500kV voltage network of WECC. Similarly, Fig. 8 shows
the corresponding box plots of Area Sparsity for the 230kV
and 345kV voltage network of EI case. The x-axis indicates
whether the substations belong to the same or different areas.

From preliminary observation of Fig. 7, it can be seen that
in the actual WECC case, the Intra Area Sparsity is higher
than Inter Area Sparsity. The result is consistent for the 500

kV network. On the other hand, for the 10k synthetic grid, the
substations that belong to different areas are more likely to be
connected than those in the same area. This is because the
synthetic grid creation algorithms emphasize the geographic
proximity of buses deciding whether two substations should
be connected. Note the difference in the size of the box plots
across different voltage networks. A reason for this difference
is that the number of transmission lines and substations differs
across the voltage networks. As the box plots are negatively
skewed, overall, there is lower Inter-Area Sparsity for synthetic
grids than the real-world grids. These plots aim to show the
difference in Area Sparsity for substations in the same versus
different areas.

A glaring point of note from both Fig. 7 and Fig. 8 is that
Inter and Intra Area Sparsity is inconsistent for synthetic grids.
It essentially implies that area has not been an explicit factor in
determining the addition of transmission lines when creating
synthetic grids. Thus, to make synthetic grids have realistic
properties of the actual power grids, there is a need to consider



Fig. 8. Intra and Inter-Area Sparsity for the actual EI grid and the synthetic 24k grid.

areas when deciding which substations should be connected by
a transmission line.

Now that it has been established that the location of substa-
tions with respect to areas is essential to determine whether
two substations are connected, the next step is to quantify this
relationship. Thus to determine the correlation, multivariate
linear regression is performed on the data points plotted by
Area Sparsity and Distance as shown in Fig. 9.

TABLE I
COEFFICIENTS OF MULTIVARIATE LINEAR REGRESSION

WECC
Distance -0.0023

Area 0.075

There are two independent variables when setting up the
multivariate linear regression problem. First is the Distance
variable, which is a numeric variable. Second, is the Area
variable, which is a Boolean value where 1 represents that the
substations are intra-area and 0 represents that the substations

Fig. 9. Multivariate Linear Regression fit for the 345 kV Network(WECC)

are inter-area. After linear regression, the coefficients of both
independent variables are shown in Tables I. This clearly
shows that the Area variable has a higher weight (coefficient)



in determining whether there will be a connection between
two substations than the Distance variable.

As observed from Tables II and III, the results of multivari-
ate linear regression for the 345kV and 230kV transmission
networks show that Area Sparsity carries a higher weight than
the distance in deciding whether two substations are con-
nected. Similar results are obtained for the 500kV transmission
network of the WECC and 10k synthetic grid case.

As expected, the coefficient of the Distance variable is con-
sistent across the actual power grid cases and their synthetic
counterparts. This coefficient is negative, correctly signifying
the negative correlation between the likelihood of two substa-
tions being connected as the distance between them increases.
For the synthetic cases, there are multiple inaccuracies for the
Area variable. In the 345 kV networks, the Area variables’
negative signs agree with the real grids but are too close in
magnitude to the Distance variable. For the 230kV network,
the relative magnitudes of the Distance and Area variables
agree for the synthetic grids, but the signs are reversed
compared to the real networks.

TABLE II
COEFFICIENTS FOR THE 345KV NETWORK

WECC EI Syn. 10k grid Syn. 24k grid
Distance -0.0023 -0.0020 -0.0013 -0.0014

Area 0.075 0.317 0.007 0.0009

TABLE III
COEFFICIENTS FOR THE 230KV NETWORK

WECC EI Syn. 10k grid Syn. 24k grid
Distance -0.00048 -0.0022 -0.002 -0.0019

Area 0.0162 0.0532 -0.0519 -0.0648

V. SUMMARY AND FUTURE WORK

This paper provides evidence to evaluate the idea that
substations that belong to the same area exhibit a higher
probability of being connected to each other than the substa-
tions that belong to two different areas. Its key contributions
are as follows. First, a new term called ’Area Sparsity’ is
defined to quantify the likelihood of connectedness of two
substations x-miles apart. This term is modified to include
whether substations are Inter Area or Intra Area. Then, the
topology of the actual North American grids and the synthetic
grids are analyzed. Box plots are used as a statistical measure
to visualize and identify the differences. Finally, multivariate
linear regression is used to quantify these differences into
usable weights.

The coefficient of the Distance variable follows the same
pattern for both the actual and the synthetic grids. This implies
that the current large-scale electric grids are accurate in this
regard. The results also prove the hypothesis that the actual
grids are more connected within the same area than in different
areas. However, this is not the case for the existing large-scale
synthetic grids.

In future work, these weights will be used in synthetic grid
creation algorithms to create topologically enhanced synthetic

grids. The authors believe improved studies can be performed
on the new synthetic grids created using the additional area
weights and provide valuable insights into the topology and
operation of power grids.
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