ECEN 667 Power System Stability

Lecture 3: Electromagnetic Transients

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A\&M University
overbye@tamu.edu

Announcements

- Start reading Chapters 1 and 2 from the book (Chapter 1 is Introduction, Chapter 2 is Electromagnetic Transients)
- EPG Dinner is on September 9 at 5pm; please RSVP using the link that was emailed to all.
- Homework 1 is due on Thursday September 7
- Classic reference paper on EMTP is H.W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks," IEEE Trans. Power App. and Syst., vol. PAS-88, pp. 388-399, April 1969

Multistep Methods

- Euler's and Runge-Kutta methods are single step approaches, in that they only use information at $\mathbf{x}(\mathrm{t})$ to determine its value at the next time step
- Multistep methods take advantage of the fact that using we have information about previous time steps $\mathbf{x}(\mathrm{t}-\Delta \mathrm{t}), \mathbf{x}(\mathrm{t}-2 \Delta \mathrm{t})$, etc
- These methods can be explicit or implicit (dependent on $\mathbf{x}(t+\Delta t)$ values; we'll just consider the explicit Adams-Bashforth approach

Multistep Motivation

- In determining $\mathbf{x}(\mathrm{t}+\Delta \mathrm{t})$ we could use a Taylor series expansion about $\mathbf{x}(\mathrm{t})$

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \dot{\mathbf{x}}(t)+\frac{\Delta t^{2}}{2} \ddot{\mathbf{x}}(t)+O\left(\Delta t^{3}\right) \\
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \mathbf{f}(t)+\frac{\Delta t^{2}}{2}\left(\frac{\mathbf{f}(\mathbf{x}(t))-\mathbf{f}(\mathbf{x}(t-\Delta t))}{\Delta t}+O(\Delta t)\right) \\
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t\left(\frac{3}{2} \mathbf{f}(\mathbf{x}(t))-\frac{1}{2} \mathbf{f}(\mathbf{x}(t-\Delta t))\right)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

(note Euler's is just the first two terms on the right-hand side)

Adams-Bashforth

- What we derived is the second order Adams-Bashforth approach. Higher order methods are also possible, by approximating subsequent derivatives. Here we also present the third order Adams-Bashforth Second Order

$$
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\frac{\Delta t}{2}(3 \mathbf{f}(\mathrm{x}(t))-\mathbf{f}(x(t-\Delta t)))+O\left(\Delta t^{3}\right)
$$

Third Order

$$
\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\frac{\Delta t}{12}(23 \mathbf{f}(\mathrm{x}(t))-16 \mathbf{f}(x(t-\Delta t))+5 \mathbf{f}(x(t-2 \Delta t)))+O\left(\Delta t^{4}\right)
$$

Adams-Bashforth Versus Runge-Kutta

- The key Adams-Bashforth advantage is the approach only requires one function evaluation per time step while the RK methods require multiple evaluations
- A key disadvantage is when discontinuities are encountered, such as with limit violations
- In some simulations limits can be hit often
- Another method needs to be used until there are sufficient past solutions
- They also have difficulties if variable time steps are used

Numerical Instability

- All explicit methods can suffer from numerical instability if the time step is not correctly chosen for the problem eigenvalues

Values are scaled by the time step; the shape for RK2 has similar dimensions but is closer to a square. Key point is to make sure the time step is small enough relative to the eigenvalues.

Figure 10.2: The spectrum of A is scaled by h. Stability of the origin is recovered if $h \lambda$ is in t$]$ region of absolute stability $|1+z|<1$ in the complex plane.

Stiff Differential Equations

- Stiff differential equations are ones in which the desired solution has components the vary quite rapidly relative to the solution
- Stiffness is associated with solution efficiency: in order to account for these fast dynamics we need to take quite small time steps

Stiff differential equations are common in power systems, but there are efficient techniques for handling them

$$
\begin{aligned}
& \dot{\mathrm{x}}_{1}=x_{2} \\
& \dot{x}_{2}=-1000 x_{1}-1001 x_{2} \\
& \dot{\mathbf{x}} \rightarrow=\left[\begin{array}{cc}
0 & 1 \\
-1000 & -1000
\end{array}\right] \mathbf{x} \\
& x_{1}(t)=A e^{-t}+B e^{-1000 t}
\end{aligned}
$$

Implicit Methods

- Implicit solution methods have the advantage of being numerically stable over the entire left half plane
- Only methods considered here are the is the Backward Euler and Trapezoidal

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t))=\mathbf{A} \mathbf{x}(t))
$$

Then using backward Euler Initially we'll assume
linear equations

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \mathbf{A}(\mathbf{x}(t+\Delta t)) \\
& {[I-\Delta t \mathbf{A}] \mathbf{x}(t+\Delta t)=\mathbf{x}(t)} \\
& \mathbf{x}(t+\Delta t)=[I-\Delta t \mathbf{A}]^{-1} \mathbf{x}(t)
\end{aligned}
$$

Backward Euler Cart Example

- Returning to the cart example

$$
\left.\dot{\mathbf{x}}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{x}(t)\right)
$$

Then using backward Euler with $\Delta t=0.25$

$$
\mathbf{x}(t+\Delta t)=[I-\Delta t \mathbf{A}]^{-1} \mathbf{x}(t)=\left[\begin{array}{cc}
1 & -0.25 \\
0.25 & 1
\end{array}\right]^{-1} \mathbf{x}(t)
$$

Backward Euler Cart Example

- Results with $\Delta \mathrm{t}=0.25$ and 0.05

time	actual	$\mathrm{x}_{1}(\mathrm{t})$ with	$\mathrm{x}_{1}(\mathrm{t})$ with
	$\mathrm{X}_{1}(\mathrm{t})$	$\Delta \mathrm{t}=0.25$	$\Delta \mathrm{t}=0.05$
0	1	1	1
0.25	0.9689	0.9411	0.9629
0.50	0.8776	0.8304	0.8700
0.75	0.7317	0.6774	0.7185
1.00	0.5403	0.4935	0.5277
2.00	-0.416	-0.298	-0.3944

Note: Just because the method is numerically stable doesn't mean it is error free! RK2 is more accurate than backward Euler.

Trapezoidal Linear Case

- For the trapezoidal with a linear system we have

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t))=\mathbf{A x}(t)) \\
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\frac{\Delta t}{2}[\mathbf{A}(\mathbf{x}(t))+\mathbf{A}(\mathbf{x}(t+\Delta t))] \\
& {\left[I-\frac{\Delta t}{2} \mathbf{A}\right] \mathbf{x}(t+\Delta t)=\left[I+\frac{\Delta t}{2} \mathbf{A}\right] \mathbf{x}(t)} \\
& \mathbf{x}(t+\Delta t)=[I-\Delta t \mathbf{A}]^{-1}\left[I+\frac{\Delta t}{2} \mathbf{A}\right] \mathbf{x}(t)
\end{aligned}
$$

Trapezoidal Cart Example

- Results with $\Delta \mathrm{t}=0.25$, comparing between backward Euler and trapezoidal

time	actual $\mathrm{x}_{1}(\mathrm{t})$	Backward Euler	Trapezoidal
0	1	1	1
0.25	0.9689	0.9411	0.9692
0.50	0.8776	0.8304	0.8788
0.75	0.7317	0.6774	0.7343
1.00	0.5403	0.4935	0.5446
2.00	-0.416	-0.298	-0.4067

The Best Numerical Integration Approach Depends on the Application

- There is no single best numerical integration method, with all approaches having advantages and disadvantages
- Issues to consider include
- Speed
- Accuracy
- Numerical stability
- Code complexity; with power system stability this includes the ability to support a wide, and growing list of models
- Explicit methods are commonly used with great success, with numerical instability methods managed through effective engineering
- An analogy is airplane, which through engineering can be made to effectively fly even though there are conditions in which they can crash

Electromagnetic Transients

- The modeling of very fast power system dynamics (much less than one cycle) is known as electromagnetics transients program (EMTP) analysis
- Covers issues such as lightning propagation and switching surges; they can also be used with inverter-based controls
- Concept originally developed by Prof. Hermann Dommel for his PhD in the 1960's (now emeritus at Univ. British Columbia)
- After his PhD work Dr. Dommel worked at BPA where he was joined by Scott Meyer in the early 1970's
- Alternative Transients Program (ATP) developed in response to commercialization of the BPA code

Power System Time Frames

[^0]
Transmission Line Modeling

- In power flow and transient stability transmission lines are modeled using a lumped parameter approach
- Changes in voltages and current in the line are assumed to occur instantaneously
- Transient stability time steps are usually a few ms ($1 / 4$ cycle is common, equal to 4.167 ms for 60 Hz)
- In EMTP time-frame this is no longer the case; speed of light is $300,000 \mathrm{~km} / \mathrm{sec}$ or $300 \mathrm{~km} / \mathrm{ms}$ or $300 \mathrm{~m} / \mu \mathrm{s}$
- Change in voltage and/or current at one end of a transmission cannot instantaneously affect the other end

Need for EMTP

- The change isn't instantaneous because of propagation delays, which are near the speed of light; there also wave reflection issues

Incremental Transmission Line Modeling

$\Delta v=R^{\prime} \Delta x i+L^{\prime} \Delta x \frac{\partial i}{\partial t}$
Define the receiving end as bus $m(x=0)$ and the sending end as bus $k(x=d)$

Where We Will End Up

- Goal is to come up with model of transmission line suitable for numeric studies on this time frame

Both ends of the line are represented by Norton equivalents

$$
\begin{aligned}
& I_{k}=i_{m}\left(t-\frac{d}{v_{p}}\right)-\frac{1}{z_{c}} v_{m}\left(t-\frac{d}{v_{p}}\right) \\
& I_{m}=i_{k}\left(t-\frac{d}{v_{p}}\right)+\frac{1}{z_{c}} v_{k}\left(t-\frac{d}{v_{p}}\right)
\end{aligned}
$$

Incremental Transmission Line Modeling

We are looking to determine $\mathrm{v}(\mathrm{x}, \mathrm{t})$ and $\mathrm{i}(\mathrm{x}, \mathrm{t})$
Recall $\Delta i=G^{\prime} \Delta x(v+\Delta v)+C^{\prime} \Delta x \frac{\partial}{\partial t}(v+\Delta v)$
Substitute $\Delta v=\Delta x\left(R^{\prime} i+L^{\prime} \frac{\partial i}{\partial t}\right)$
Into the equation for Δi and divide both by Δx
$\frac{\Delta i}{\Delta x}=G^{\prime} v+G^{\prime}\left(R^{\prime} \Delta x i+L^{\prime} \Delta x \frac{\partial i}{\partial t}\right)+C^{\prime} \frac{\partial v}{\partial t}$
$+C^{\prime}\left[R^{\prime} \Delta x \frac{\partial i}{\partial t}+L^{\prime} \Delta x \frac{\partial^{2} i}{\partial t^{2}}\right]$

Incremental Transmission Line Modeling

Taking the limit we get

$$
\begin{aligned}
& \lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}=\frac{\partial v}{\partial x}=R^{\prime} i+L^{\prime} \frac{\partial i}{\partial t} \\
& \lim _{\Delta x \rightarrow 0} \frac{\Delta i}{\Delta x}=\frac{\partial i}{\partial x}=G^{\prime} v+C^{\prime} \frac{\partial v}{\partial t}
\end{aligned}
$$

Some authors have a negative sign with these equations; it just depends on the direction of increasing x; note that the values are function of both x and t

Special Case 1

$$
\mathrm{C}^{\prime}=\mathrm{G}^{\prime}=0 \text { (neglect shunts) }
$$

$$
v(x, t)=v(0, t)+R^{\prime} x_{i}+L^{\prime} x \frac{d i}{d t}
$$

This just gives a lumped parameter model, with all electric field effects neglected

Special Case 2: Wave Equation

The lossless line $\left(R^{\prime}=0, G^{\prime}=0\right)$, which gives

$$
\frac{\partial v}{\partial x}=L^{\prime} \frac{\partial i}{\partial t}, \quad \frac{\partial i}{\partial x}=C^{\prime} \frac{\partial v}{\partial t}
$$

This is the wave equation with a general solution of

$$
\begin{aligned}
i(x, t) & =-f_{1}\left(x-v_{p} t\right)-f_{2}\left(x+v_{p} t\right) \\
v(x, t) & =z_{c} f_{1}\left(x-v_{p} t\right)-z_{c} f_{2}\left(x+v_{p} t\right) \\
z_{c} & =\sqrt{L^{\prime} / C^{\prime}}, \quad v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}
\end{aligned}
$$

Z_{c} is the characteristic impedance and v_{p} is the velocity of propagation

Special Case 2: Wave Equation

- This can be thought of as two waves, one traveling in the positive x direction with velocity v_{p}, and one in the opposite direction
- The values of f_{1} and f_{2} depend upon the boundary (terminal) conditions

$$
\begin{aligned}
i(x, t) & =-f_{1}\left(x-v_{p} t\right)-f_{2}\left(x+v_{p} t\right) \\
v(x, t) & =z_{c} f_{1}\left(x-v_{p} t\right)-z_{c} f_{2}\left(x+v_{p} t\right) \\
z_{c} & =\sqrt{L^{\prime} / C^{\prime}}, \quad v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}
\end{aligned}
$$

Boundaries are receiving end with $\mathrm{x}=0$ and the sending end with $x=d$

Calculating v_{p}

- To calculate v_{p} for a line in air we go back to the definition of L^{\prime} and C^{\prime}

$$
\begin{aligned}
& L^{\prime}=\frac{\mu_{0}}{2 \pi} \ln \left(\frac{D}{r^{\prime}}\right), \quad C^{\prime}=\frac{2 \pi \varepsilon_{0}}{\ln D / r} \\
& \left.v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0} \frac{\ln D / r^{\prime}}{\ln D / r}}=c \frac{1}{\sqrt{\frac{\ln D / r^{\prime}}{\ln D / r}}}}=\begin{array}{l}
\\
\end{array}\right)
\end{aligned}
$$

With $r^{\prime}=0.78 r$ this is very close to the speed of light

Important Insight

- The amount of time for the wave to go between the terminals is $\mathrm{d} / v_{\mathrm{p}}=\tau$ seconds
- To an observer traveling along the line with the wave, $\mathrm{x}+\mathrm{v}_{\mathrm{p}}$, will appear constant
- What appears at one end of the line impacts the other end τ seconds later

$$
\begin{aligned}
& i(x, t)=-f_{1}\left(x-v_{p} t\right)-f_{2}\left(x+v_{p} t\right) \\
& v(x, t)=z_{c} f_{1}\left(x-v_{p} t\right)-z_{c} f_{2}\left(x+v_{p} t\right) \\
& v(x, t)+z_{c} i(x, t)=-2 z_{c} f_{2}\left(x+v_{p} t\right)
\end{aligned}
$$

Both sides of the bottom
equation are constant
when $\mathrm{x}+v_{\mathrm{p}} \mathrm{t}$ is
constant

Determining the Constants

- If just the terminal characteristics are desired, then an approach known as Bergeron's method can be used.
- Knowing the values at the receiving end $m(x=0)$ we get

$$
\begin{aligned}
i(x, t) & =-f_{1}\left(x-v_{p} t\right)-f_{2}\left(x+v_{p} t\right) \\
v(x, t) & =z_{c} f_{1}\left(x-v_{p} t\right)-z_{c} f_{2}\left(x+v_{p} t\right) \\
i_{m}(t) & =i(0, t)=-f_{1}\left(-v_{p} t\right)-f_{2}\left(v_{p} t\right) \\
v_{m}(t) & =z_{c} f_{1}\left(-v_{p} t\right)-z_{c} f_{2}\left(v_{p} t\right)
\end{aligned}
$$

This can be

 used to eliminate f_{1}
Determining the Constants

- Eliminating f_{1} we get

$$
\begin{aligned}
& v_{m}(t)=z_{c} f_{1}\left(-v_{p} t\right)-z_{c} f_{2}\left(v_{p} t\right) \\
& f_{1}\left(-v_{p} t\right)=\frac{v_{m(t)}}{z_{c}}+f_{2}\left(v_{p} t\right) \\
& i_{m}(t)=-\frac{v_{m}}{z_{c}}-2 f_{2}\left(v_{p} t\right) \\
& \text { Solve for } f_{1} \text { and replace it } \\
& \text { in the equation from the } \\
& \text { previous slide }
\end{aligned}
$$

Determining the Constants

- To solve for f_{2} we need to look at what is going on at the sending end (i.e., k at which $\mathrm{x}=\mathrm{d}) \tau=\mathrm{d} / v_{\mathrm{p}}$ seconds in the past

$$
\begin{aligned}
& i_{k}\left(t-\frac{d}{v_{p}}\right)=-f_{1}\left(d-v_{p}\left(t-\frac{d}{v_{p}}\right)\right)-f_{2}\left(d+v_{p}\left(t-\frac{d}{v_{p}}\right)\right) \\
& i_{k}\left(t-\frac{d}{v_{p}}\right)=-f_{1}\left(2 d-v_{p} t\right)-f_{2}\left(v_{p} t\right) \\
& v_{k}\left(t-\frac{d}{v_{p}}\right)=z_{c} f_{1}\left(2 d-v_{p} t\right)-z_{c} f_{2}\left(v_{p} t\right)
\end{aligned}
$$

Determining the Constants

- Dividing v_{k} by z_{c}, and then adding it with i_{k} gives

$$
i_{k}\left(t-\frac{d}{v_{p}}\right)+\frac{v_{k}}{z_{c}}\left(t-\frac{d}{v_{p}}\right)=-2 f_{2}\left(v_{p} t\right)
$$

- Then substituting for f_{2} in i_{m} gives

$$
i_{m}(t)=-\frac{v_{m}(t)}{z_{c}}+i_{k}\left(t-\frac{d}{v_{p}}\right)+\frac{1}{z_{c}} v_{k}\left(t-\frac{d}{v_{p}}\right)
$$

Hence $i_{m}(t)$ depends on current conditions at m and past conditions at k

Equivalent Circuit Representation

- The receiving end can be represented in circuit form as

$$
i_{m}(t)=-\frac{v_{m}(t)}{z_{c}}+i_{k}\left(t-\frac{d}{v_{p}}\right)+\frac{1}{z_{c}} v_{k}\left(t-\frac{d}{v_{p}}\right) \longrightarrow I_{m}
$$

Since $\tau=\mathrm{d} / \nu_{\mathrm{p}}, I_{m}$ just depends on the voltage and current at the other end of the line from τ seconds in the past. Since these are known values, it looks like a timevarying current source.

Repeating for the Sending End

- The sending end has a similar representation

$$
I_{m}=i_{k}\left(t-\frac{d}{v_{p}}\right)+\frac{1}{z_{c}} v_{k}\left(t-\frac{d}{v_{p}}\right)
$$

Lumped Parameter Model

- In the special case of constant frequency, book shows the derivation of the common lumped parameter model

This is used in power flow and transient stability; in EMTP the frequency is not constant

Including Line Resistance

- An approach for adding line resistance, while keeping the simplicity of the lossless line model, is to just to place $1 / 2$ of the resistance at each end of the line
- Another, more accurate approach, is to place $1 / 4$ at each end, and $1 / 2$ in the middle
- Standalone resistance, such as modeling the resistance of a switch, is just represented as an algebraic equation

$$
i_{k, m}=\frac{1}{R}\left(v_{k}-v_{m}\right)
$$

Numerical Integration with Trapezoidal Method

- Numerical integration is often done using the trapezoidal method discussed last time
- Here we show how it can be applied to inductors and capacitors
- For a general function the trapezoidal approach is

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t)) \\
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\frac{\Delta t}{2}[f(\mathbf{x}(t))+f(\mathbf{x}(t+\Delta t))]
\end{aligned}
$$

- Trapezoidal integration introduces error on the order of Δt^{3}, but it is numerically stable

Trapezoidal Applied to Inductor with Resistance

- For a lossless inductor,

$$
\begin{array}{ll}
v=L \frac{d i}{d t} \rightarrow \frac{d i}{d t}=\frac{v}{L} \quad i(0)=i^{0} & \text { This is a linear equation } \\
i(t+\Delta t)=i(t)+\frac{\Delta t}{2 L}(v(t)+v(t+\Delta t)) &
\end{array}
$$

- This can be represented as a Norton equivalent with current into the equivalent defined as positive (the last two terms are the current source)

$$
i(t+\Delta t)=\frac{v(t+\Delta t)}{2 L / \Delta t}+i(t)+\frac{v(t)}{2 L / \Delta t}
$$

Trapezoidal Applied to Inductor with Resistance

- For an inductor in series with a resistance we have

$$
\begin{aligned}
v & =i R+L \frac{d i}{d t} \\
\frac{d i}{d t} & =-\frac{R}{L} i+\frac{1}{L} v
\end{aligned} \quad i(0)=i^{0} \quad \text { v }
$$

Trapezoidal Applied to Inductor with Resistance

$$
\begin{aligned}
& i\left(t_{i}+\Delta t\right) \approx i\left(t_{i}\right)+\frac{\Delta t}{2}\left[-\frac{R}{L} i\left(t_{i}\right)+\frac{1}{L} v\left(t_{i}\right)\right. \\
& \left.-\frac{R}{L} i\left(t_{i}+\Delta t\right)+\frac{1}{L} v\left(t_{i}+\Delta t\right)\right]
\end{aligned}
$$

$\begin{aligned} & \text { This also becomes a Norton } \\ & \text { equivalent. A similar }\end{aligned}$
expression will be developed
for capacitors.

RL Example

- Assume a series RL circuit with an open switch with $\mathrm{R}=200 \Omega$ and $\mathrm{L}=0.3 \mathrm{H}$, connected to a voltage source with $v=133,000 \sqrt{2} \cos (2 \pi 60 t)$
- Assume the switch is closed at $\mathrm{t}=0$
- The exact solution is

$$
\begin{aligned}
i & =-712.4 e^{-667 t}+578.8 \sqrt{2} \cos \left(2 \pi 60 t-29.5^{0}\right) \\
v & =i R+L \frac{d i}{d t}
\end{aligned}
$$

$$
\frac{d i}{d t}=-\frac{R}{L} i+\frac{1}{L} v \quad i(0)=i^{0}
$$

$R / L=667$, so the dc offset decays relatively quickly

RL Example Trapezoidal Solution

$$
\begin{aligned}
& \frac{2 L}{\Delta t}=\frac{2 * 0.3}{0.0001}=6000 \\
& \Delta t=0.0001 \mathrm{sec} \\
& t=0 \quad i(0)=0 \\
& t=0.0001 \\
& i(0)+\frac{v(0)-R i(0)}{6000}=31.35 \mathrm{~A}
\end{aligned}
$$

Numeric solution: $i(0.0001)=\frac{187,957}{6200}+\frac{31.35 \times 6000}{6200}=60.65 \mathrm{~A}$
Exact solution:

$$
\begin{aligned}
i(0.0001) & =-712.4 e^{-.0677}+578.8 \sqrt{2} \cos \left(2 \pi 60 \times .0001-29.5 \frac{\pi}{180}\right) \\
& =-666.4+727.0=60.6 \mathrm{~A}
\end{aligned}
$$

RL Example Trapezoidal Solution

$$
t=0.0002
$$

Solving for $\mathrm{i}(0.0002)$
$i(0.0002)=117.3 \mathrm{~A}$

$i(0.0002)=117.3 \mathrm{~A}$

Full Solution Over Three Cycles

A Favorite Problem: R=0 Case, with $v(t)=\operatorname{Sin}\left(2^{*} \mathrm{pi}^{\star} 60\right)$

Note that the current is never negative!

Lumped Capacitance Model

- The trapezoidal approach can also be applied to model lumped capacitors

$$
i(t)=C \frac{d v(t)}{d t}
$$

- Integrating over a time step gives

$$
v(t+\Delta t)=v(t)+\frac{l}{C} \int_{t}^{t+\Delta t} i(t)
$$

- Which can be approximated by the trapezoidal as

$$
v(t+\Delta t)=v(t)+\frac{\Delta t}{2 C}(i(t+\Delta t)+i(t))
$$

Lumped Capacitance Model

$$
\begin{aligned}
& v(t+\Delta t)=v(t)+\frac{\Delta t}{2 C}(i(t+\Delta t)+i(t)) \\
& i(t+\Delta t)=\frac{v(t+\Delta t)}{\Delta t / 2 C}-\frac{v(t)}{\Delta t / 2 C}-i(t)
\end{aligned}
$$

- Hence we can derive a circuit model similar to what was done for the inductor

$$
-\frac{v(t)}{\Delta t / 2 C}-i(t)
$$

This is a current source that depends on the past values

Example 2.1: Line Closing

$$
\begin{aligned}
L^{\prime} & =1.5 \times 10^{-3} \mathrm{H} / \mathrm{mi} \\
C^{\prime} & =0.02 \times 10^{-6} \mathrm{~F} / \mathrm{mi}
\end{aligned}
$$

Example 2.1: Line Closing

$$
\begin{aligned}
& \text { Initial conditions: } i_{1}=i_{2}=\mathrm{v}_{1}=\mathrm{v}_{2}=0 \\
& \text { for } t<0.0001 \mathrm{sec} \\
& z_{c}=\sqrt{\frac{L^{\prime}}{C^{\prime}}}=274 \Omega \quad v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=182,574 \mathrm{mi} / \mathrm{sec} \\
& \underline{d}=0.00055 \mathrm{sec} \\
& v_{p} \\
& \frac{2 L}{\Delta t}=5000 \Omega
\end{aligned}
$$

Because of finite propagation speed, the receiving end of the line will not respond to energizing the sending end for at least 0.00055 seconds.

Example 2.1: Line Closing

Figure 2.8: Single line and R-L load circuit at $t=t_{i}+0.0001$
Note we have two separate circuits, coupled together only by past values.

Example 2.1: t=0.0001

Need: $i_{1}(-0.00045), v_{1}(-0.00045), i_{2}(-0.00045)$, $v_{2}(-0.00045), i_{2}(0), v_{3}(0), v_{s}(0.0001)$

$$
\begin{array}{ll}
i_{1}(-0.00045)=0 & i_{2}(0)=0 \\
v_{1}(-0.00045)=0 & v_{3}(0)=0 \\
i_{2}(-0.00045)=0 & v_{2}(-0.00045)=0 \\
v_{s}(0.0001)=230,000 \sqrt{\frac{2}{3}} \cos (2 \pi 60 \times 0.0001)=187,661 \mathrm{~V}
\end{array}
$$

Example 2.1: $\mathrm{t}=0.0001$

Example 2.1: t=0.0001

```
\(i_{1}(0.0001)=685 A\)
\(v_{1}(0.0001)=187,661 \mathrm{~V} \longrightarrow \begin{aligned} & \text { Instantaneously changed } \\ & \text { from zero at } t=0.0001 \mathrm{sec} .\end{aligned}\)
\(i_{2}(0.0001)=0\)
\(v_{2}(0.0001)=0\)
\(v_{3}(0.0001)=0\)
```

Instantaneously changed from zero at $t=0.0001 \mathrm{sec}$.

Example 2.1: $\mathrm{t}=0.0002$

Need:

$$
\begin{array}{rlrlrl}
i_{1}(-0.00035) & =0 & & i_{1}(0.0002) & =683 \mathrm{~A} & \\
v_{1}(-0.00035) & =0 & & \text { Circuit is essentially } \\
v_{1}(0.0002) & =187,261 \mathrm{~V} & & \text { the same }
\end{array}
$$

Example 2.1: t=0.0002 to 0.006

$$
\begin{aligned}
\frac{d}{v_{p}} & =0.00055 & \Delta t & =0.0001 \\
t_{i} & =0 & & \\
t_{i} & =0.0001 & & t=0.0001 \leftarrow \quad \text { switch closed } \\
& =0.0002 & & =0.0003 \\
& =0.0003 & & =0.0004 \\
& =0.0004 & & =0.0005 \\
& =0.0005 & & =0.0006 \leftarrow \quad \text { With interpolation receiving } \\
& =0.0006 & & =0.0007 \leftarrow \text { end will see wave }
\end{aligned}
$$

Example 2.1: $\mathrm{t}=0.0007$

```
Need: }\mp@subsup{i}{1}{}(.00015)\quad\mp@subsup{i}{1}{}(.0001)=685
    v
i}\mp@subsup{i}{1}{}(.0002)=683
i
```

(linear interpolation)

$$
\begin{aligned}
i_{1}(.00015) & \approx i_{1}(.0001)+\frac{.00015-.0001}{.0002-.0001} \\
& \times\left(i_{1}(.0002)-i_{1}(.0001)\right)
\end{aligned}
$$

Example 2.1: $\mathrm{t}=0.0007$

For $t_{i}=.0006(t=.0007 \mathrm{sec})$ at the sending end

This current source will stay zero until we get a response from the receiving end, at about 2τ seconds

$$
\begin{aligned}
i_{1}(.0007) & =662 \mathrm{~A} \\
v_{1}(.0007) & =181,293 \mathrm{~V}
\end{aligned}
$$

Example 2.1: $\mathrm{t}=0.0007$

For $t_{i}=.0006(t=.0007 \mathrm{sec})$ at the receiving end

1368A
$v_{2}(.0007)=356,731 \mathrm{~V}$
$i_{2}(.0007)=66 \mathrm{~A}$

Example 2.1: First Three Cycles

Red is the sending end voltage (in kv), while green is the receiving end voltage. Note the approximate voltage doubling at the receiving end.

Example 2.1: First Three Cycles

To get a ballpark value on the expected current, solve the simple circuit assuming the transmission line is just an inductor

$$
I_{\text {load, }, \text { ms }}=\frac{230,000 / \sqrt{3}}{400+j 94.2+j 56.5}=311 \angle-20.6^{\circ}, \text { hence a peak value of } 439 \mathrm{amps}
$$

[^0]: Image source: P.W. Sauer, M.A. Pai, Power System Dynamics and Stability, 1997, Fig 1.2, modified

