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Announcements
K
 Start reading Chapters 1 and 2 from the book (Chapter 1 is Introduction,
Chapter 2 Is Electromagnetic Transients)

« EPG Dinner is on September 9 at 5pm; please RSVP using the link that
was emailed to all.

 Homework 1 is due on Thursday September 7

* Classic reference paper on EMTP is HW. Dommel, "Digital Computer
Solution of Electromagnetic Transients in Single- and Multiphase
Networks," IEEE Trans. Power App. and Syst., vol. PAS-88, pp. 388-399,
April 1969



Multistep Methods
K
* Euler's and Runge-Kutta methods are single step approaches, in that they
only use information at x(t) to determine its value at the next time step

« Multistep methods take advantage of the fact that using we have
Information about previous time steps X(t-At), X(t-2At), etc

« These methods can be explicit or implicit (dependent on x(t+At) values;
we'll just consider the explicit Adams-Bashforth approach



Multistep Motivation
A]Mm
* In determining x(t+At) we could use a Taylor series expansion about X(t)

X(t + At) = X(t) + Atx(t) + Aztzx(t) +O(A)

X(t+ At) = X(t) + AtF(t) + Aj (f (x(V) ‘Zix(t —AD), O(At)j

X(t + At) = x(t) + At@f (X(t)) - ;f (X(t - At))j +0O(AL?)

(note Euler's is just the first two terms on the right-hand side)



Adams-Bashforth

What we derived is the second order Adams-Bashforth approach.
Higher order methods are also possible, by approximating subsequent
derivatives. Here we also present the third order Adams-Bashforth

Second Order

X(t+ At) = X(t) + Azt(sf (X()) —F (X(t — AL)) ) + O(AL?)

Third Order

x(t + At) = x(t) + fzt(zsf (X(t)) —16F (X(t — At)) + 5F (x(t — 2At)) )+ O(At*)

A] ¥



Adams-Bashforth Versus Runge-Kutta

A]Mm
« The key Adams-Bashforth advantage Is the approach only requires one
function evaluation per time step while the RK methods require multiple
evaluations

* A key disadvantage is when discontinuities are encountered, such as with
limit violations
— In some simulations limits can be hit often
— Another method needs to be used until there are sufficient past solutions

« They also have difficulties if variable time steps are used



Numerical Instability

All explicit methods can suffer from numerical
Instability If the time step Is not correctly chosen for
the problem eigenvalues

s Values are scaled by the time step; the
- shape for RK2 has similar dimensions
but Is closer to a square. Key point is

o ' to make sure the time step is small
- enough relative to the eigenvalues.

Figure 10.2: The spectrum of A is scaled by h. Stability of the origin is recovered if A\ 1s In t]
region of absolute stability |1 + z| < 1 in the complex plane.

Image source: http://www.staff.science.uu.nl/~frank011/Classes/numwisk/ch10.pdf

——————— A]m



Stiff Differential Equations

Stiff differential equations are ones in which the desired solution has
components the vary quite rapidly relative to the solution

Stiffness Is associated with solution efficiency: in order to account for
these fast dynamics we need to take quite small time steps

1= % Stiff differential equations are common
Xp = —1000% -1001x;  jj power systems, but there are efficient
_{ 0 1 }X techniques for handling them
| -1000 -1000

X, (t) = Ae”t + Be 1%

A] ¥



Implicit Methods
K
« Implicit solution methods have the advantage of being numerically stable
over the entire left half plane

* Only methods considered here are the is the Backward Euler and
Trapezoidal
X = (x(t)) = Ax(t)) Initially we’ll assume
Then using backward Euler linear equations
X(t+ At) = x(t) + At A(X(t + At))
[I — AtA]X(t + At) = x(t)

X(t+At) =[1 — At A] " x(t)



Backward Euler Cart Example

« Returning to the cart example

[0 1.
x=| ) o[<®

Then using backward Euler with At =0.25

X(t+At) =[1 — At A] " x(t) =

1

0.25

-0.25

1

X(t)

A] ¥



Backward Euler Cart Example

Results with At = 0.25 and 0.05

time actual X,(t) with X, (t) with
X,(1) At=0.25 At=0.05
0 1 1 1
0.25 0.9689 0.9411 0.9629
0.50 0.8776 0.8304 0.8700
0.75 0.7317 0.6774 0.7185
1.00 0.5403 0.4935 0.5277
2.00 -0.416 -0.298 -0.3944

A] ¥

Note: Just because the method Is numerically stable doesn't mean it
IS error free! RK2 Is more accurate than backward Euler.



Trapezoidal Linear Case

* For the trapezoidal with a linear system we have
X =T(x(t)) = Ax(1))

X(t+ At) = X(t) + AZt[A(x(t)) + AX(E+ A))]

[l-AZtA}x(HAt) { LA }x(t)

A’[

X(t+At) =1 —AtA] { }x(t)

A] ¥
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Trapezoidal Cart Example

Results with At = 0.25, comparing between backward Euler and

trapezoidal

time

0
0.25
0.50
0.75
1.00
2.00

actual
X,(1)
1
0.9689
0.8776
0.7317
0.5403
-0.416

Backward Trapezoidal

Euler
1
0.9411
0.8304
0.6774
0.4935
-0.298

1
0.9692
0.8788
0.7343
0.5446
-0.4067

A] ¥
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The Best Numerical Integration Approach

N n the Application
Depends on the Applicatio T
« There is no single best numerical integration method, with all approaches

having advantages and disadvantages

 |ssues to consider include
~ Speed
— Accuracy
~ Numerical stability
— Code complexity; with power system stability this includes the ability to support a
wide, and growing list of models
« Explicit methods are commonly used with great success, with numerical
Instability methods managed through effective engineering

- An analogy is airplane, which through engineering can be made to effectively fly

even though there are conditions in which they can crash 13



Electromagnetic Transients
K

« The modeling of very fast power system dynamics (much less than one

cycle) is known as electromagnetics transients program (EMTP) analysis

— Covers issues such as lightning propagation and switching surges; they can also be

used with inverter-based controls

« Concept originally developed by Prof. Hermann Dommel for his PhD in

the 1960's (now emeritus at Univ. British Columbia)

— After his PhD work Dr. Dommel worked at BPA where he was joined by Scott
Meyer in the early 1970's

— Alternative Transients Program (ATP) developed in response to
commercialization of the BPA code

14



Power System Time Frames

Lightning Propagation

Switching

Surges

Inverter-based Controls

Stator Transients and

Subsynchronous Resonance

Transient Stability

Governor and Load
Frequency Control

Boiler Dynamics; Voltage Stability

Power Flow

Unit

Commitment

107

10-°

10 0.1

10 10°

10°

Image source: P.W. Sauer, M.A. Pai, Power System Dynamics and Stability, 1997, Fig 1.2, modified

A] ¥
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Transmission Line Modeling

K
* In power flow and transient stability transmission lines are modeled using a
lumped parameter approach
— Changes in voltages and current in the line are assumed to occur instantaneously

— Transient stability time steps are usually a few ms (1/4 cycle is common, equal to
4.167ms for 60Hz)

* In EMTP time-frame this is no longer the case; speed of light is
300,000km/sec or 300km/ms or 300m/pus

— Change in voltage and/or current at one end of a transmission cannot instantaneously
affect the other end

16



Need for EMTP
Al™m

* The change isn’t instantaneous because of propagation delays, which
are near the speed of light; there also wave reflection issues

ro00isc . : Red is the v, end, green the v, end
" lengtn d=jo0m * 620

* vioRgho V2 by 7l ;
_ NN\

At =,000] sec \\ / \ \

ol A \ 7 \

.\ \ / \
" \/

17



Incremental Transmission Line Modeling

AJF
Ik i+A R' Ax L'Ax im
-~ T AN m;————p—o
+ 7 | +
Vi V + Av G'Ax¥ =—=C'Ax v Vm
T — AX it X !
x=d X=0
ol Define the receiving end as

AV = R'AXi + L Axa bus m (x=0) and the sending

5 end as bus k (x=d)
Ai = G’Ax(v+Av)+C’Axa(v+AV)
18



Where We Will End Up
A]m

« Goal is to come up with model of transmission line
sultable for numeric studies on this time frame

1 Both ends of the line are
V,EQ @i :’n represented by Norton
2 il equivalents

Assumption 1s we don’t care
about what occurs along the line

| = ik(t—dJ—Fle[t—dj
Vo ) 7 Vi o



Incremental Transmission Line Modeling

We are looking to determine v(x,t) and i(X,t)

Recall Ai = G'Ax(V +Av) + C’Axg(v + Av)

ot

Substitute Av = Ax(R’i + L’%)

Into the equation for Al and divide both by Ax

ﬂ = G’V+G’(R’Axi + L’Ax@j+C’@
AX ot ot

) _ . -
+C’ R’Axg+ L’Axg—zI
ot ot |

A] ¥



Incremental Transmission Line Modeling

A] ¥

Taking the limit we get
lim '
av_| ¥ Rl + L’@
AX — 0 AX OX ot
lim  Aj -
o= Q:G’VJFC’@
AX — 0 AX OX ot

Some authors have a negative sign with these equations; it just depends on
the direction of increasing X; note that the values are function of both x and t



Special Case 1

C'= G' =0 (neglect shunts)

v(x,t)=v(0,t)+ R'x; + L’xgi
R &d ¢
4 —-—M——,-T
’V’(J,'C‘) I\r(O,i)

This just gives a lumped parameter model, with all electric field effects
neglected

A] ¥

22



Special Case 2: Wave Equation

A] ¥

The lossless line (R'=0, G'=0), which gives

N8 a
OX ot OX ot

This is the wave equation with a general solution of

Z_ Is the characteristic

(xt)=~- fl(x_vpt)_ fz(x+vpt) impedance and v, is the

v(X,t) =z, f1(X —vpt) -z.f, (x +th) velocity of propagation
z.=~L'/C", v, :\/%

23



Special Case 2: Wave Equation

A] ¥

« This can be thought of as two waves, one traveling in the positive X
direction with velocity v, and one in the opposite direction

* The values of f; and f, depend upon the boundary (terminal)
conditions

. o ) Boundaries are receiving end
(%)= fl(x th) f2 (X+th) with x=0 and the sending
v(x,t) =1z, fl(x—vpt)—chz(x+vpt) end with x=d

z. =~L'IC", vsz%

24



Calculating v,

* To calculate v, for a line in air we go back to the
definition of L' and C'

L' = gloln(Dj C'= 27§°
T r In%
1

V. =

B 1 1
" Jier D i D,
ﬂogoln[% In[%

With r'=0.78r this Is very close to the speed of light

A] ¥

25



Important Insight
K
* The amount of time for the wave to go between the terminals is d/v,= 1
seconds
- To an observer traveling along the line with the wave, x+v,t, will appear constant

* What appears at one end of the line impacts the other end t seconds later

Both sides of
i(xt)=—f,(x=Vt)= f(Xx+Vv,t)  the bottom

equation are
V(X,t): Z, 1‘1(x—vpt)—zC fz(x+vpt) anstant
V(X,t)+z.i(x,t) =—2z, fz(x+vpt) when x+Vv,tis

constant
26



Determining the Constants

 |f just the terminal characteristics are desired, then an
approach known as Bergeron's method can be used.

« Knowing the values at the receiving end m (x=0) we get

(%, 1) == fy(x=vyt) = F (x+vt) This can be
V(x,t) =2y (x=vpt) =z fp (X +V,t) glsifr(]ji:}(;tef
1

in (1) =1(0,t) =—f, (—v, t) = f5 (v, t)
Vi, (t) =z, fl(—vp t)— Z, fz(vp t)

A] ¥

27



Determining the Constants

* Eliminating f, we get

Vi, (t) = Z, fl(—vp t)— z.f, (Vp t)

fl(_vp t) _ Imty + 1, (vp t) Solve for f; and replace it
Zc in the equation from the
previous slide
i (t) = 2 f (v t)

A] ¥

28



Determining the Constants

A
» To solve for f, we need to look at what is going on at the sending end (i.e.,
k at which x=d) t = d/v, seconds In the past

(el ofets)

? (t —\?} =—f,(2d —v,t) - f5(v,t)

p

Vi [t —\?J =7, f1(2d —vpt)— z.f, (vpt)

P
29



Determining the Constants

 Dividing v, by z,, and then adding It with I, gives

3 {t —d}ﬂk[t —d) =21, (vt)
Vo |zl v,

* Then substituting for f, in 1., gives

i, (t)= —V”‘Z(t) +i, {t _\?}zlvk [t —3]

p

Hence 1.(t) depends on current conditions at m and past conditions at k

A] ¥

30



Equivalent Circuit

e The receiving end can be

Representation

A] ¥

represented in circuit form as

im(t):—v”‘(t)+ i{t—E

V4 vV

C

) Zc Vp

Since t = d/v,, |, Just depends on the
voltage and current at the other end of the
line from t seconds In the past. Since these
are known values, it looks like a time-
varying current source.

31



Repeating for the Sending End

* The sending end has a similar representation

vh tm _
4 Both ends of the line are
.
V‘E-ﬂ, L, Vi represented by Norton
- - equivalents

A] ¥

32



Lumped Parameter Model

 In the special case of constant frequency, book shows
the derivation of the common lumped parameter model

ik _ sinh¥ i . .
— z 55000 - This is used in power flow

and transient stability; in
X ('Y'd) EMTP the frequency is not
(W ) Vm constant

A] ¥

33



Including Line Resistance
K

« An approach for adding line resistance, while keeping the simplicity of

the lossless line model, is to just to place Y2 of the resistance at each

end of the line

— Another, more accurate approach, is to place ¥ at each end, and %2 in the middle
« Standalone resistance, such as modeling the resistance of a switch, Is

just represented as an algebraic equation

1

ik,m — E(Vk _Vm)

34



Numerical Integration with Trapezoidal Method

A]m
« Numerical integration is often done using the trapezoidal method
discussed last time

~ Here we show how it can be applied to inductors and capacitors
« For a general function the trapezoidal approach Is

X =T(x(t))
Al

X(t+ A =x(0)+ [ ((O) + f (x(t+A)]

» Trapezoidal integration introduces error on the order of At3, but it
IS numerically stable

35



Trapezoidal Applied to Inductor with Resistance

Al™m
 For alossless inductor,
yo &, v i(0)=i" L .
dt dt L This 1s a linear equation

i(t+ AL = i(t) +2A—t(v(t) v(t+At))

« This can be represented as a Norton equivalent with current into the
equivalent defined as positive (the last two terms are the current source)

v(t+At) v(t)
ot O

i(t+ At) =

36



Trapezoidal Applied to Inductor with Resistance

Al™m
* [For an inductor In series with a resistance we have
V=IR+ Lﬂ b
dt -
di R. 1 R

37



Trapezoidal Applied to Inductor with Resistance

A] ¥

This also becomes a Norton
equivalent. A similar
expression will be developed
for capacitors.

38



RL Example

« Assume a series RL circuit with an open switch with
R= 2002 and L = 0.3H, connected to a voltage source

with v =133,000/2 cos(2760t) ¢
 Assume the switch Is closed at t=0 + R
»  The exact solution is A L

-

i=_712. 4e—667t +578.82 cos(27z60t 29. 50)

d R. 1 . o R/L=667, so the dc offset
= decays relatively quickly

A] ¥

39



RL Example Trapezoidal Solution

A] ¥

2L 2*0.3
At 0.0001
At =0.0001sec

t=0 i(0)=0
t =0.0001
(0)+ VO =Ri(0)

Numeric solution: i(0.0001) _

= 6000 ‘.(.”g') 200

197,957 3,35

L.(o;;:'}= ¢ 0.6 A
=31.35A

187,957 N 31.35x6000
6200 6200

= 60.65A

EXxact solution:
i(0.0001) = —712.4e%" +578.82 COS(Z%GOX 0001 29.5%)

=—666.4+727.0=60.6A
40



RL Example Trapezoidal Solution

t=0.0002 cllowod) 290a

Solving for i(0.0002) 87,$5¢ 6000 (NGok
| | +(97,q:7 ‘>

_ ~ - 200% 0.
i(0.0002) = 117.3A 7000

Compare to the exact solution §9.94

i(0.0002) = 117.3A

A] ¥
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Full Solution Over Three Cycles

1000

800

600

400

200

-200

-400

-600

-800

-1000

/\

|

0.01 0.02 0.

A] ¥
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A Favorite Problem: R=0 Case, with
v(t) = Sin(2*p1*60)

PWFullMatrixGrid Variables

3,200 N T— _— N\
3,000 1 \

Note that the
current 1S never
negative!

2800 ] W— _ )
7 / \

2,600 ........................ ....................... ................
2,400 - / \

200 o N
000 N e\
01,800 - I \

\

Sre0 ]| o o\ o éll

1,400 B
1’200 A R

ool N /
| |

800 U l

600 A e R /

400 -SR-S S, /
200 -SRI, \/
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Column 1

A] ¥



Lumped Capacitance Model

The trapezoidal approach can also be applied to model

lumped capacitors
i(t)=C —d‘(;it)

Integrating over a time step gives

V(t+At) = v(t) + — [ i)

C Jt
Which can be approximated by the trapezoidal as

At . .
V(t +At) = v(t) +E(|(t +At) +i(t))

A] ¥
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Lumped Capacitance Model

At . .
v(t +At) = v(t) +E(|(t +At) +i(t))

v(t+At)  v(t) ~it)
At/2C  At/2C

Hence we can derive a circuit model similar to what was done

for the inductor

(T +Al) =

qg;, it - v(t) This is a current
4 nt _ —1(t)  source that depends
() T At/ZC P

on the past values

A] ¥
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Example 2.1: Line Closing

000! .
t: feC ¢

‘ e,
~ ng)‘ (e d 21000 "€ 0ac
S

\ V| ’Q'g 6'30 VL Yoon
_L _ -

At 2,000] see

L' =1.5x10"3H /mi
C'=0.02x10"°F /mi

Switch iIs closed at
time t = 0.0001 sec

A] ¥
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Example 2.1: Line Closing

Initial conditions: 1, =1,=v, =V, =0

for t < 0.0001 sec
L' 1 .
.=, |—=274Q0 v _= =182.574mi1/ sec
“ \c " JLe
d4 =0.00055sec L
Vi A_t = 500002

Because of finite propagation speed, the receiving end of the line will
not respond to energizing the sending end for at least 0.00055 seconds.

A] ¥
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Example 2.1: Line Closing
K]

i1 (t; + 0.0001)

-
+
i2 (1; — 0.00045)
Ve (1 +0.0001) C)‘” i +°'°”0”§ 274 Q (D
V5 (1;-0.00045)
- 274
i (1 + 0.0001) This is v4(t;) =

.- — I -
i1 (t; — 0.00045) N | VZ(ti) 400*'2(t|)
@) g 274 O 400 ©Q /

L ¥1 (i 0.00045) v (1 +0.0001) + i
- . 3 I
214 5000 S5 (¢; + 0.0001 2 (1) + s

Q

Figure 2.8: Swingle line and R-L load circust at ¢ = t; + 0.0001

Note we have two separate circuits, coupled together only by past values.
48



Example 2.1: t=0.0001

Need: i (—0.00045), v;(—0.00045),
v, (~0.00045), i,(0), v4(0),

i, (—0.00045)=0 i,(0)=0
( 000045)_0 V3(0)=0
i,(~0.00045)=0 v, (-0.
(

Vi
00 045
2

V, OOOOl 230, OOO\/7008 27160 x0. OOOl) 187,661V

3

i, (~0.00045),
v, (0.0001)

A] ¥
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Example 2.1: t=0.0001

':' (.O 00‘)

Sending End
0

“l (0009')

Recelving End

A] ¥
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Example 2.1: t=0.0001

,(0.0001) = 685A

v, (0.0001) = 187,661V
i,(0.0001) =0

v, (0.0001) =0

v, (0.0001) =0

Instantaneously changed
from zero at t = 0.0001 sec.

A] ¥

ol



Example 2.1: t=0.0002

Need:

i (~0.00035) =0 (0.0002) = 683A Circuit Is essentially

v,(-0.00035)=0  “4(0.0002)=187,261V  the same

,(-0.00035)=0  =(0:0002)=0

0.0002)=0

V2 (_0-00035) =0 3 ) Wave Is traveling
i,(0.0001)=0 v;(0.0002) =0 down the line
v5(0.0001) =0
v, (0.0002) =187,261V

A] ¥



Example 2.1: t=0.0002 to 0.006

d

— =0.00055 At=0.0001

Vo

t =0
t. =0.0001
= 0.0002
= 0.0003
= 0.0004
= 0.0005
= 0.0006

t =0.0001« switch closed
t =0.0002

=0.0003

=0.0004

=0.0005

=0.0006 <— iith interpolation receiving
=0.0007 « end will see wave

A] ¥
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Example 2.1: t=0.0007
A

Need:  i,(-00015) i(.0001) = 685A
v; (.00015), v,(.00015) (.:0002) = 683A
i,(.0006), v5(.0006), v, (.0007)

(linear interpolation) .00015-.0001

.0002-.0001
| ‘ X (il(.OOOZ)— il(.OOOl))
(s o c,(.ooolr)‘::

ced TThmeees, {3y p
: + ,

i,(.00015) ~ if(.0001) +

o4



Example 2.1: t=0.0007
A

For t. = .0006 (t = .0007 sec) at the sending end
¢,(,0007)
This current source will stay
293 /i) 0 o zero until we get a response
125 Mn from the receiving end, at
about 2t seconds

i,(.0007) = 662 A
v1(.0007) =181,293V

95



Example 2.1: t=0.0007

For t; = .0006 (t = .0007 sec) at the receiving end

v,(.0007) = 356,731V
i,(.0007) = 66 A

A] ¥
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Example 2.1: First Three Cycles

300 4
250 11
200 M-
150

100

-50 4
-100 -
-150

-200 -

> 50' |

PWFullMatrixGrid Variables

Red Is the sending end
voltage (in kv), while
green is the receiving
end voltage. Note the
approximate voltage
doubling at the
recelving end.

A] ¥
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Example

450
400
350
300
250
200
150
100
50
0
-50
-100
-150
-200
-250
-300
-350
-400
-450

Column 2

2.1: First Three Cycles
A
7\ /[ ,
[ / \\ / Graph shows
\ [ [ the current (in

[ \ / \ / -

[ [ / amps) into the

l \ [ \ [

/ \ \ / RL load over
. \ \ the first three
At \ / cycles.
|/ \ \

L./ \./ \../
A N/ \/

0 0.005 0.01 0.015

0.02 0.025 0.03 0.035 0.04

Column 1

0.045

1
0.05

To get a ballpark value on the expected current, solve the
simple circuit assuming the transmission line is just an inductor

230.000/+/3

load,rms ~—

400 + j94.2 + j56.5

=311/ —-20.6°, hence a peak value of 439 amps

58
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