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Announcements

• Start reading Chapters 1 and 2 from the book (Chapter 1 is Introduction, 

Chapter 2 is Electromagnetic Transients)

• EPG Dinner is on September 9 at 5pm; please RSVP using the link that 

was emailed to all.

• Homework 1 is due on Thursday September 7

• Classic reference paper on EMTP is H.W. Dommel, "Digital Computer 

Solution of Electromagnetic Transients in Single- and Multiphase 

Networks," IEEE Trans. Power App. and Syst., vol. PAS-88, pp. 388-399, 

April 1969
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Multistep Methods

• Euler's and Runge-Kutta methods are single step approaches, in that they 

only use information at x(t) to determine its value at the next time step

• Multistep methods take advantage of the fact that using we have 

information about previous time steps x(t-Dt), x(t-2Dt), etc

• These methods can be explicit or implicit (dependent on x(t+Dt) values; 

we'll just consider the explicit Adams-Bashforth approach 
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Multistep Motivation

• In determining x(t+Dt) we could use a Taylor series expansion about x(t)

(note Euler's is just the first two terms on the right-hand side)
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Adams-Bashforth

• What we derived is the second order Adams-Bashforth approach.  

Higher order methods are also possible, by approximating subsequent 

derivatives.  Here we also present the third order Adams-Bashforth
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Adams-Bashforth Versus Runge-Kutta

• The key Adams-Bashforth advantage is the approach only requires one 

function evaluation per time step while the RK methods require multiple 

evaluations

• A key disadvantage is when discontinuities are encountered, such as with 

limit violations

– In some simulations limits can be hit often 

– Another method needs to be used until there are sufficient past solutions

• They also have difficulties if variable time steps are used
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Numerical Instability

• All explicit methods can suffer from numerical 

instability if the time step is not correctly chosen for 

the problem eigenvalues

Image source: http://www.staff.science.uu.nl/~frank011/Classes/numwisk/ch10.pdf

Values are scaled by the time step;  the 

shape for RK2 has similar dimensions 

but is closer to a square.  Key point is 

to make sure the time step is small 

enough relative to the eigenvalues.
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Stiff Differential Equations

• Stiff differential equations are ones in which the desired solution has 

components the vary quite rapidly relative to the solution

• Stiffness is associated with solution efficiency: in order to account for 

these fast dynamics we need to take quite small time steps
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in power systems, but there are efficient 
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Implicit Methods

• Implicit solution methods have the advantage of being numerically stable 

over the entire left half plane

• Only methods considered here are the is the Backward Euler and 

Trapezoidal
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Backward Euler Cart Example

• Returning to the cart example 
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Backward Euler Cart Example

• Results with Dt = 0.25 and 0.05  

time actual 

x1(t)

x1(t) with 

Dt=0.25

x1(t) with 

Dt=0.05

0 1 1 1

0.25 0.9689 0.9411 0.9629

0.50 0.8776 0.8304 0.8700

0.75 0.7317 0.6774 0.7185

1.00 0.5403 0.4935 0.5277

2.00 -0.416 -0.298 -0.3944

Note: Just because the method is numerically stable doesn't mean it 

is error free!  RK2 is more accurate than backward Euler.
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Trapezoidal Linear Case

• For the trapezoidal with a linear system we have 
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Trapezoidal Cart Example

• Results with Dt = 0.25, comparing between backward Euler and 

trapezoidal

time actual 

x1(t)

Backward 

Euler

Trapezoidal

0 1 1 1

0.25 0.9689 0.9411 0.9692

0.50 0.8776 0.8304 0.8788

0.75 0.7317 0.6774 0.7343

1.00 0.5403 0.4935 0.5446

2.00 -0.416 -0.298 -0.4067
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The Best Numerical Integration Approach 
Depends on the Application

• There is no single best numerical integration method, with all approaches 

having advantages and disadvantages

• Issues to consider include 

– Speed

– Accuracy

– Numerical stability 

– Code complexity; with power system stability this includes the ability to support a 

wide, and growing list of models

• Explicit methods are commonly used with great success, with numerical 

instability methods managed through effective engineering

– An analogy is airplane, which through engineering can be made to effectively fly 

even though there are conditions in which they can crash 
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Electromagnetic Transients

• The modeling of very fast power system dynamics (much less than one 

cycle) is known as electromagnetics transients program (EMTP) analysis

– Covers issues such as lightning propagation and switching surges; they can also be 

used with inverter-based controls

• Concept originally developed by Prof. Hermann Dommel for his PhD in 

the 1960's (now emeritus at Univ. British Columbia)

– After his PhD work Dr. Dommel worked at BPA where he was joined by Scott 

Meyer in the early 1970's

– Alternative Transients Program (ATP) developed in response to 

commercialization of the BPA code
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Power System Time Frames

Image source: P.W. Sauer, M.A. Pai, Power System Dynamics and Stability, 1997, Fig 1.2, modified
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Transmission Line Modeling

• In power flow and transient stability transmission lines are modeled using a 

lumped parameter approach

– Changes in voltages and current in the line are assumed to occur instantaneously

– Transient stability time steps are usually a few ms (1/4 cycle is common, equal to 

4.167ms for 60Hz)

• In EMTP time-frame this is no longer the case; speed of light is 

300,000km/sec or 300km/ms or 300m/ms

– Change in voltage and/or current at one end of a transmission cannot instantaneously 

affect the other end 
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Need for EMTP

• The change isn’t instantaneous because of propagation delays, which 

are near the speed of light; there also wave reflection issues

Red is the vs end, green the v2 end

17



( ) ( )

i
v R xi L x

t

i G x v v C x v v
t


 D = D + D




 D = D + D + D + D



Incremental Transmission Line Modeling

Define the receiving end as 

bus m (x=0) and the sending 

end as bus k (x=d)
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Where We Will End Up

• Goal is to come up with model of transmission line 

suitable for numeric studies on this time frame
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about what occurs along the line
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Into the equation for  and divide both by 
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Incremental Transmission Line Modeling

Taking the limit we get

Some authors have a negative sign with these equations; it just depends on 

the direction of increasing x; note that the values are function of both x and t
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C' = G' = 0 (neglect shunts)

( ) ( )
dt

di
xLxRtvtxv i ++= ,0,

Special Case 1

This just gives a lumped parameter model, with all electric field effects 

neglected
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The lossless line (R'=0, G'=0), which gives

,
v i i v

L C
x t x t
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This is the wave equation with a general solution of 

Special Case 2: Wave Equation
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Special Case 2: Wave Equation

• This can be thought of as two waves, one traveling in the positive x 

direction with velocity vp, and one in the opposite direction

• The values of f1 and f2 depend upon the boundary (terminal) 

conditions
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with x=0 and the sending 

end with x=d
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Calculating vp

• To calculate vp for a line in air we go back to the 

definition of L' and C'

0 0

0 0

2
' ln , '

2 ' ln

1 1 1

' ' ln ln
' '

ln ln

p

D
L C

Dr
r

v c
L C D D

r r
D D

r r

m 



m 

 
= = 

 

= = =

With r'=0.78r this is very close to the speed of light
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Important Insight

• The amount of time for the wave to go between the terminals is d/vp= t 

seconds

– To an observer traveling along the line with the wave, x+vpt, will appear constant 

• What appears at one end of the line impacts the other end t seconds later
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Determining the Constants

• If just the terminal characteristics are desired, then an 

approach known as Bergeron's method can be used.  

• Knowing the values at the receiving end m (x=0) we get
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eliminate f1
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Determining the Constants

• Eliminating f1 we get

( ) ( )

( ) ( )

( )

1 2

( )
1 2

2

( )

( ) 2

m c p c p

m t
p p

c

m
m p

c

v t z f v t z f v t

v
f v t f v t

z

v
i t f v t

z

= − −

− = +

= − −

Solve for f1 and replace it 

in the equation from the 

previous slide
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Determining the Constants

• To solve for f2 we need to look at what is going on at the sending end (i.e., 

k at which x=d) t = d/vp seconds in the past
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Determining the Constants

• Dividing vk by zc, and then adding it with ik gives

• Then substituting for f2 in im gives
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Hence im(t) depends on current conditions at m and past conditions at k
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Equivalent Circuit Representation

• The receiving end can be represented in circuit form as
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( ) 1m
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Since t = d/vp, Im just depends on the 

voltage and current at the other end of the 

line from t seconds in the past. Since these 

are known values, it  looks like a time-

varying current source.
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Repeating for the Sending End

• The sending end has a similar representation
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Lumped Parameter Model

• In the special case of constant frequency, book shows 

the derivation of the common lumped parameter model

This is used in power flow 

and transient stability; in 

EMTP the frequency is not 

constant

33



Including Line Resistance

• An approach for adding line resistance, while keeping the simplicity of 

the lossless line model, is to just to place ½ of the resistance at each 

end of the line

– Another, more accurate approach, is to place ¼ at each end, and ½ in the middle

• Standalone resistance, such as modeling the resistance of a switch, is 

just represented as an algebraic equation

( ),k m k m

1
i v v

R
= −
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Numerical Integration with Trapezoidal Method

• Numerical integration is often done using the trapezoidal method 

discussed last time

– Here we show how it can be applied to inductors and capacitors

• For a general function the trapezoidal approach is 

• Trapezoidal integration introduces error on the order of Dt3, but it 

is numerically stable
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Trapezoidal Applied to Inductor with Resistance

• For a lossless inductor, 

• This can be represented as a Norton equivalent with current into the 

equivalent defined as positive (the last two terms are the current source)
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This is a linear equation
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Trapezoidal Applied to Inductor with Resistance

• For an inductor in series with a resistance we have

( ) 01
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i v i i

dt L L

= +

= − + =
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Trapezoidal Applied to Inductor with Resistance

This also becomes a Norton 

equivalent. A similar 

expression will be developed 

for capacitors.
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RL Example

• Assume a series RL circuit with an open switch with 

R= 200W and L = 0.3H, connected to a voltage source 

with 

• Assume the switch is closed at t=0

• The exact solution is 

( )133,000 2 cos 2 60v t=

( )667 0712.4 578.8 2 cos 2 60 29.5ti e t−= − + −

( ) 01
0

di
v iR L

dt

di R
i v i i

dt L L

= +

= − + =
R/L=667, so the dc offset 

decays relatively quickly
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RL Example Trapezoidal Solution

( )
187,957 31.35 6000

0.0001 60.65A
6200 6200

i


= + =Numeric solution:
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t = 0.0002

i(0.0002) = 117.3A

Compare to the exact solution

i(0.0002) = 117.3A

Solving for i(0.0002)

RL Example Trapezoidal Solution
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Full Solution Over Three Cycles
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A Favorite Problem: R=0 Case, with 
v(t) = Sin(2*pi*60)

PWFullMatrixGrid Variables

Column 1 Column 2

Column 1

0.050.0450.040.0350.030.0250.020.0150.010.0050
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2,800
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1,800
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1,200
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800
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400

200

0

Note that the 

current is never 

negative!
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Lumped Capacitance Model

• The trapezoidal approach can also be applied to model 

lumped capacitors

• Integrating over a time step gives

• Which can be approximated by the trapezoidal as
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Lumped Capacitance Model

• Hence we can derive a circuit model similar to what was done 

for the inductor
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This is a current

source that depends

on the past values
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Example 2.1: Line Closing

Switch is closed at

time t = 0.0001 sec
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Initial conditions: i1 = i2 = v1 = v2 =0

    for t < 0.0001 sec

' 1
274 182,574 / sec

' ' '

0.00055sec 2
5000

c p

p

L
z v mi

C L C

d
L

v
t

= = W = =

=
= W

D

Example 2.1: Line Closing

Because of finite propagation speed, the receiving end of the line will 

not respond to energizing the sending end for at least 0.00055 seconds.
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Example 2.1: Line Closing

Note we have two separate circuits, coupled together only by past values.

This is v3(ti) = 

v2(ti) - 400*i2(ti)
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0.00045 0 0 0

0.00045 0 0.00045 0

2
0.0001 230,000 cos 2 60 0.0001 187,661

3
s

i i

v v

i v

v V

− = =

− = =

− = − =

=  =

Example 2.1: t=0.0001
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Example 2.1: t=0.0001

Sending End

Receiving End
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( )

( )

( )

( )

( )

1

1

2

2

3

0.0001 685

0.0001 187,661

0.0001 0

0.0001 0

0.0001 0

i A

v V

i

v

v

=

=

=

=

=

Instantaneously changed 

from zero at t = 0.0001 sec.

Example 2.1: t=0.0001
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Need:

( )

( )

( )

( )

( )

( )

( )

1

1

2

2

2

3

0.00035 0

0.00035 0

0.00035 0

0.00035 0

0.0001 0

0.0001 0

0.0002 187,261s

i

v

i

v

i

v

v V

− =

− =

− =

− =

=

=

=

Example 2.1: t=0.0002

( )

( )

( )

( )

( )

1

1

2

2

3

0.0002 683

0.0002 187, 261

0.0002 0.

0.0002 0.

0.0002 0.

i A

v V

i

v

v

=

=

=

=

=

Circuit is essentially 

the same

Wave is traveling

down the line
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0.00055 0.0001
p

d
t

v
= D =

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

i

i

t

t

=

=

=

=

=

=

=

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

t

t

= 

=

=

=

=

= 

= 

switch closed

Example 2.1: t=0.0002 to 0.006

With interpolation receiving 

end will see wave
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Need: ( )

( ) ( )

( ) ( ) ( )

1

1 2

2 3

.00015

.00015 , .00015

.0006 , .0006 , .0007s

i

v v

i v v

( )

( ) Ai

Ai

6830002.

6850001.

1

1

=

=

Example 2.1: t=0.0007

( ) ( )

( ) ( )( )0001.0002.

0001.0002.

0001.00015.
0001.00015.

11

11

ii

ii

−

−

−
+

(linear interpolation)
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For ti = .0006 (t = .0007 sec) at the sending end

( )

( ) Vv

Ai

293,1810007.

6620007.

1

1

=

=

Example 2.1: t=0.0007

This current source will stay 

zero until we get a response 

from the receiving end, at 

about 2t seconds
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( )

( ) Ai

Vv

660007.

731,3560007.

2

2

=

=

Example 2.1: t=0.0007

For ti = .0006 (t = .0007 sec) at the receiving end
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Example 2.1: First Three Cycles

Red is the sending end 

voltage (in kv), while 

green is the receiving 

end voltage.  Note the 

approximate voltage 

doubling at the 

receiving end.

PWFullMatrixGrid Variables

Column 2 Column 3

Column 1

0.050.0450.040.0350.030.0250.020.0150.010.0050

V
a
lu

e
s

300

250

200

150

100

50

0

-50

-100

-150

-200
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Example 2.1: First Three Cycles
Column 2

Column 2

Column 1

0.050.0450.040.0350.030.0250.020.0150.010.0050

C
o
lu

m
n
 2

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

-200

-250

-300

-350

-400

-450

Graph shows 

the current (in 

amps) into the 

RL load over 

the first three 

cycles.  

,

, /
. ,  hence a peak value of 439 amps

. .
load rms

230 000 3
I 311 20 6

400 j94 2 j56 5
= =  − 

+ +

To get a ballpark value on the expected current, solve the 

simple circuit assuming the transmission line is just an inductor 
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