ECEN 667 Power System Stability

Lecture 6: Stability Overview with PowerWorld Simulator

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Start reading Chapter 3
- Homework 1 is due today
- Homework 2 is assigned today and due on Thursday Sept 13.

Aside: Ionized Air as a Conductor

An Interesting Video of an Uncleared Fault

- The below video shows an event from September 2, 2022 in the Netherlands (Flevoland province) in which a transmission line fault was not cleared. Note the sag and smoke (steam?) coming from the line
- https://nos.nl/video/2443017-explosies-en-rokende-kabels-bij-verdeelstation-in-dronten

Goal of phasor analysis is to simplify the analysis of constant frequency ac systems

$$v(t) = V_{\max} \cos(\omega t + \theta_v)$$

$$i(t) = I_{\max} \cos(\omega t + \theta_I)$$

Root Mean Square (RMS) voltage of sinusoid

$$\sqrt{\frac{1}{T}\int_{0}^{T} v(t)^{2} dt} = \frac{V_{\text{max}}}{\sqrt{2}}$$

Phasor Representation

Euler's Identity: $e^{j\theta} = \cos\theta + j\sin\theta$

Phasor notation is developed by rewriting using Euler's identity

 $v(t) = \sqrt{2} |V| \cos(\omega t + \theta_V)$ $v(t) = \sqrt{2} |V| \operatorname{Re}\left[e^{j(\omega t + \theta_V)}\right]$

(Note: |V| is the RMS voltage)

Phasor Representation, cont'd

The RMS, cosine-referenced voltage phasor is:

- $V = |V|e^{j\theta_{V}} = |V| \angle \theta_{V}$ $v(t) = \operatorname{Re} \sqrt{2} V e^{j\omega t} e^{j\theta_{V}}$ $V = |V| \cos \theta_{V} + j |V| \sin \theta_{V}$
- $I = |I|\cos\theta_I + j|I|\sin\theta_I$

Advantages of Phasor Analysis

Device	Time Analysis	Phasor
Resistor	v(t) = Ri(t)	V = RI
Inductor	$v(t) = L \frac{di(t)}{dt}$	$V = j\omega LI$
Capacitor	$\frac{1}{C}\int_{0}^{t}i(t)dt + v(0)$	$V = \frac{1}{j\omega C}I$
Z = Impe	dance = $R + jX$ =	$ Z \angle \phi$
R = Resist	stance	
X = Reac	tance	
$ \mathbf{Z} = \sqrt{R^2}$	$+X^2$ $\phi=\arctan($	$\left(\frac{\mathbf{X}}{\mathbf{R}}\right)$

(Note: Z is a complex number but not a phasor)

RL Circuit Example

$$V(t) = \sqrt{2} 100 \cos(\omega t + 30^{\circ})$$

$$f = 60 \text{Hz}$$

$$R = 4\Omega \qquad X = \omega L = 3$$

$$|Z| = \sqrt{4^2 + 3^2} = 5 \quad \phi = 36.9^{\circ}$$

$$I = \frac{V}{Z} = \frac{100 \angle 30^{\circ}}{5 \angle 36.9^{\circ}}$$

$$= 20 \angle -6.9^{\circ} \text{ Amps}$$

$$i(t) = 20\sqrt{2} \cos(\omega t - 6.9^{\circ})$$

Complex Power

Power

$$p(t) = v(t) i(t)$$

$$v(t) = V_{\max} \cos(\omega t + \theta_V)$$

$$i(t) = I_{\max} \cos(\omega t + \theta_I)$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$p(t) = \frac{1}{2} V_{\max} I_{\max} [\cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I)]$$

Complex Power, cont'd

Average Power

$$p(t) = \frac{1}{2} V_{\max} I_{\max} [\cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I)]$$

$$P_{avg} = \frac{1}{T} \int_0^T p(t) dt$$

$$= \frac{1}{2} V_{\max} I_{\max} \cos(\theta_V - \theta_I)$$

$$= |V| |I| \cos(\theta_V - \theta_I)$$

Power Factor Angle = $\phi = \theta_V - \theta_I$

Complex Power

$$S = |V||I|[\cos(\theta_V - \theta_I) + j\sin(\theta_V - \theta_I)]$$

= P + jQ (Note: S is a complex number but not a phasor)

 $= V I^*$

- P = Real Power (W, kW, MW)
- Q = Reactive Power (var, kvar, Mvar)
- S = Complex power (VA, kVA, MVA)

Power Factor (pf) = $\cos\phi$

If current leads voltage then pf is leading

If current lags voltage then pf is lagging

Relationships between real, reactive and complex power

$$P = |S| \cos \phi$$

$$Q = |S|\sin\phi = \pm |S|\sqrt{1-pf^2}$$

Example: A load draws 100 kW with a leading pf of 0.85. What are ϕ (power factor angle), Q and |S|?

$$\phi = -\cos^{-1} 0.85 = -31.8^{\circ}$$
$$|S| = \frac{100kW}{0.85} = 117.6 \text{ kVA}$$

 $Q = 117.6 \sin(-31.8^\circ) = -62.0 \text{ kVar}$

Power Flow to Transient Stability

- With PowerWorld Simulator a power flow case can be quickly transformed into a transient stability case
 - This requires the addition of at least one dynamic model
- PowerWorld Simulator supports hundreds of different dynamic models. ECEN 667 covers the major ones, with more being continually add
 - Default values are provided for most models allowing easy experimentation
 - Creating a new transient stability case from a power flow case would usually only be done for training/academic purposes; for commercial studies the dynamic models from existing datasets would be used.

First Example Case

- Open the case Example_13_4_NoModels
 - Cases are on the class website
- Add a dynamic generator model to an existing "no model" power flow case by:
 - In run mode, right-click on the generator symbol for bus 4, then
 select Generator Information Dialog" from the local menu
 - This displays the **Generator Information Dialog**, select the **Stability** tab to view the transient stability models; none are initially defined.
 - Select the Machine Models tab to enter a dynamic machine model for the generator at bus 4. Click
 Insert to enter a machine model. From the Model Type list select GENCLS, which represents a simple "Classical" machine model. Use the default values. Values are per unit using the generator MVA base₄

Adding a Machine Model

🔘 Generato	or Information for Present	- 🗆	×
Bus Number	4 Find By Number Open		
Bus Name	Bus 4 V Find By Name Oclosed		
ID	1 Find Energized NO (Offline)		
Area Name	Home (1) YES (Online)		
Labels	no labels Fuel Type Unknown		\sim
	Generator MVA Base 100.00 Unit Type UN (Unknown)		\sim
Power and Vo	Itage Control Costs OPF Faults Owners, Area, etc. Custom Stability		
Machine Mod	els Exciters Governors Stabilizers Other Models Step-up Transformer Te	rminal and State	
Inse	ert Delete Gen MVA Base 100.0 Show Block Diagram	Create VCurve	
Type Active	- GENCLS V Active (only one may be active) Set to Defaults		
Parameters			
PU values s	mown/entered using device base of 100.0 MVA ~		
н	3.00000		
D	0.00000		
Ra	0.00000		
Xdp	0.20000		
RComp	0.00000		
XComp	0.00000		
OK	Save Save to Aux	Print	

The GENCLS model represents the machine dynamics as a fixed voltage magnitude behind a transient impedance Ra + jXdp.

Press **Ok** when done to save the data and close the dialog

Transient Stability Form Overview

- Most of the PowerWorld Simulator transient stability functionality is accessed using the **Transient Stability Analysis Form**. To view this form, from the ribbon select **Add Ons**, **Transient Stability**
- Key pages of form for quick start examples (listed under Select Step)
 - **Simulation** page: Used for specifying the starting and ending time for the simulation, the time step, defining the transient stability fault (contingency) events, and running the simulation
 - **Options**: Various options associated with transient stability
 - **Result Storage**: Used to specify the fields to save and where they should be saved
 - **Plots**: Used to plot results
 - **Results**: Used to view the results (actual numbers, not plots)

Transient Stability Overview Form

🖺 v р 🖪 🛱 🖾 📾 🗐 🛞 🌚 v	Oneliner Tools Ontions Add One	Example_13_4_No	oModels - Case: Example_13_4_NoModels.pwb Stat	us: Initialized Simulator 23	2 3 - 6 X - 6 X
Edit Mode Script v Mode Log Optimal Power fin	Case PV QV Refine Model ATC	Transient Stability Case Info ~ GIC	Scheduled Schedulet Topology Processing Schedulet Topology Processing (ITP)		^
Transient Stability Analysis Smulation Status Not Initialized Run Transient Stability Pause J Select Step Simulation > > Options > Results from RAM Simulation > Transient Limit Monitors > Sister Step Sister Step > Modal Analysis Transient Limit Monitors Sister Step/Manual Control Cite > Validation Modal Analysis Transient Limit Monitors Sister Simulator Options Transient Limit Monitors > States/Manual Control Opynamic Simulator Options Transient Cite Transient Cite Transient Cite Process Contingencies @ Optione Contingencies Cite Cite Cite	Abort Restore Reference For Contingency: Fin Jation Introl Definitions Volations Specify Time ind Time (seconds) 0.000 Specify Time Seconds ind Time (seconds) 0.000 Specify Time Seconds ansient Contingency Elements Seconds Seconds + S Object Pretty Image: The first Apply/Clear/Open Time Seconds + S Object Pretty None Seconds + S Seconds + S Seconds + S	d My Transent Contingency Add Delete Rename Clone Conting Step in Summary Results Step in Controped Relay Tripped Ioad Change Islanded E Shift (seconds) 0.000 € et Columns * 🔄 * 💱 * 🖤 (III) * 🏭 fb() * Time Time Ceconds Deleted Defined Object	ency	Limit Monitor Violations Result Analysis Violations Limit Monitor Name Contingency Name None Defined	JS 2 Infinite Bus
Save All Settings To Load All Set	Show Transient Contour Toolbar	Auto Insert Critical Clearing Time Calculator		Help Close	
un Mode Solution	Animation Stopped	AC View	ing Present		

Infinite Bus Modeling

- Before doing the first transient stability run, it is useful to discuss the concept of an infinite bus. As noted earlier, in the power flow an infinite bus is assumed to have a fixed voltage magnitude and angle; hence its frequency is also fixed at the nominal value
 - In real systems infinite buses obviously do not exist, but they can be a useful concept when learning about transient stability.
 - By default PowerWorld Simulator does NOT treat the slack bus as an infinite bus, but does provide this as an option.
 - For this first example we will use the option to treat the slack bus as an infinite bus. To do this select "Options" from the "Select Step" list. This displays the option page. Select the "Power System Model" tab, and then set Infinite Bus Modeling to "Model the power flow slack bus(es) as infinite buses" if it is not already set to do so.

Transient Stability Options Page

This page is also used to specify the nominal system frequency

Specifying the Contingency Event

- A M
- The grid is pushed away from its equilibrium by a disturbance, known as a contingency; an example would be lightning hitting a transmission line
- To specify the transient stability contingency go back to the "Simulation" page and click on the "Insert Elements" button. This displays the Transient Stability Contingency Element Dialog, which is used to specify the events that occur during the study.
- Usually start at time > 0 to showcase runs flat
- The event for this example will be a self-clearing, balanced 3-phase, solid (no impedance) fault at bus 1, starting at time = 1.00 sec, and clearing at 1.05 sec
 - For the first action just choose all the defaults and select "Insert." Insert will add the action but not close the dialog.
 - For second action change the Time to 1.05 seconds the Type to "Clear Fault." Select "OK," which saves the action and closes the dialog.

Inserting Transient Stability Contingency Elements

imulation Status Not Initialized		
Run Transient Stability Pause	Abort Restore Reference For Contingency: Find M	My Transient Contingency V
Select Step	Simulation	Add Delete Rename Clone Contingency
Simulation Control	Control Definitions Violations	
Definitions	Simulation Time Values	Summary Results
> Options	Start Time (seconds) 0.000 Specify Time Step	in Tripped 0.00 0.00
> Result Storage	End Time (seconds) 5.000 Seconds	Relay Tripped 0.00
> · Result Analyzer - Domping	Time Step (cycles) 0.500	Model Tripped 0.00
> · Results from RAM	Categories Char	nge Islanded 0.00 0.00
> States/Manual Control	Transient Contingency Elements	
> · Validation SMIB Eigenvalues	Insert Clear All Insert Apply/Clear/Open Time Shift	ift (seconds) 0.000
Modal Analysis	: 🕎 🗔 🖽 ୬/৬ 👯 🕺 🕅 🖓 🛤 🛤 Records ▼ Set ▼	Columns ▼ 📴 ▼ 🟙 ▼ 👹 ▼ 💏 ▼ 🛤 ▼ 🕅 ▼ 🛗 Option
Dynamic Simulator Options	Object Pretty (1	Time Time Enabled Object (Cycles) (Seconds)
	1 Bus Bus 3	60.0 1.000000 CHECK Bus '3'
	2 Line Bus 1 TO Bus 3 CKT 1 3 Line Bus 2 TO Bus 3 CKT 1	63.0 1.050000 CHECK Branch 1. 3: 11 63.0 1.050000 CHECK Branch 2: '3' '1'
S	Run Transient Stability Pause ielect Step • Simulation • Control • Definitions • Niolations • Niolations • Options • Result Storage • Plots • Result Analyzer - Domping • Result Storage • States/Manual Control • Validation • States/Manual Control • Validation • SMIB Eigenvalues • Modal Analysis Dynamic Simulator Options	Run Transient Stability Pause Abort Restore Reference For Contingency: Find N ielect Step Simulation Simulation Simulation Simulation Simulation · Option Definitions Niolations Simulation Time Values Simulation Time Values > Option Result Storge Start Time (seconds) 0.000 ♀ Specify Time Step > Plots Start Time (seconds) 0.500 ♀ O Seconds > Result Analyzer - Demping Results from RAM Categories Char > Transient Limit Monitors States/Manual Control Simulator Options Char > Validation Simulator Options Insert Clear All Insert Apply/Clear/Open Time Shipping > Validation Simulator Options Object Pretty I Bus Bus 3 Records ▼ Set ▼ Upnamic Simulator Options Object Pretty I Bus Bus 3 Inne Bus 2 TO Bus 3 CKT 1 Inne Bus 2 TO Bus 3 CKT 1

AM

Event Contingency Dialog

O Transient Stability Conti	ingency Element Dialog	– 🗆 X	
Description 1.000: [Bu: Insert Object Type Branch/Transformer Bus Generator Load Switched Shunt DC Line Injection Group Line Shunt Simulation Transformer Area Interface	Is Bus 3] FAULT 3PB SOLID ✓ Save Delete Choose the Element Sort by O Name Number Filter Advanced ✓ Bus ✓ Use Area/Zone Filters Quick Define Remove 1 1 (Bus 1) [138.0 kV] 2 (Bus 2) [138.0 kV] 3 (Bus 3) [138.0 kV] 4 (Bus 4) [13.80 kV]		Available element type will vary with different objects
Time (Seconds) 1.0 Description Type Apply Fault Clear Fault Open Comment:	ODOODOO Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 Parameters Calculate Effective Impedance from Sequence Networks Self Clearing Fault		
• ок	? Help X Cancel		

ĀМ

Determining the Results to View

- For large cases, transient stability solutions can generate huge amounts of data. PowerWorld Simulator provides easy ways to choose which fields to save for later viewing. These choices can be made on the "Result Storage" page.
- For this example we'll save the generator 4 rotor angle, speed, MW terminal power and Mvar terminal power.
- From the "Result Storage" page, select the generator tab and double click on the specified fields to set their values to "Yes".

Result Storage Page

Double Click on Fields (which sets them to yes) to Store Their Values

Saving Changes and Doing Simulation

- The last step before doing the run is to specify an ending time for the simulation, and a time step.
- Go to the **Simulation** page, verify that the end time is 5.0 seconds, and that the Time Step is 0.5 cycles
 - PowerWorld Simulator allows the time step to be specified in either seconds or cycles, with 0.25 or 0.5 cycles recommended
- Before doing your first simulation, save all the changes made so far by using the main PowerWorld Simulator Ribbon, select **Save Case As** with a name of "Example_13_4_WithCLSModel_ReadyToRun"
- Click on **Run Transient Stability** to solve.

Doing the Run

Click to	Run Transient Stability Pause Abort Restore Reference For Contingency: Find My Transient Contingency X
run the	Select Step Simulation ✓ Simulation Control Definitions
specified contingency	Image: Control Definitions Image: Definitions Definitions Image: Violations Simulation Time Values Start Time (seconds) 0.000 ♥ Specify Time Step in Specify Time Step in Image: Nesult Storage End Time (seconds) Plots End Time (seconds) Result Analyzer - Damping End Time (seconds) Results from RAM Time Step (cycles) Transient mit Monitors Categories Validation Categories SMIB Eigennalues Insert Clear All Insert Apply/Clear/Open Time Shift (seconds) Modal Analyse Modal Analyse
	Dynamic Simulator Options Object Pretty Time (Cycles) Time (Seconds) Enabled Object Description 1 Bus Bus 1 60.0 1.000000 CHECK Bus '1' FAULT 3PB SOLID 2 Bus Bus 1 63.0 1.050000 CHECK Bus '1' CLEARFAULT

Once the contingency runs the **Results from RAM** page may be opened

Transient Stability Results

- A M
- Once the transient stability run finishes, the **Results from RAM** page provides both a minimum/maximum summary of values from the simulation, and time step values for the fields selected to view.
- The Time Values and Minimum/Maximum Values tabs display standard PowerWorld Simulator case information displays, so the results can easily be transferred to other programs (such as Excel) by right-clicking on a field and selecting **Copy/Paste/Send**

Results: Time Values

Lots of options are available for showing and filtering the results.

Transient Stability Analysis											
Simulation Status Finished at 5.000											
Run Transient Stability Pause Abort Restore Reference For Contingency: My Transient Contingency											
Select Step Results from RAM											
▲ · Simulation … Control	Time Values Minimum/Maximu	um Values	Summary	Events S	olution Detai	s					
Definitions	Generator Bus Load	Switched	Shunt Bra	anch DC Tra	ansmission Li	ne VSC DC	Line Multi-Te	ermir			
 Violations > Options 	Column Order		∰ *k t :8	-08 🏘 (Recor	ds 👻 Set	• Columns •	- [
 ▷ · Plots ▷ Results from RAM 	Column Filtering Filter Modify		Time	Gen Bus 4 #1 Rotor Angle	Gen Bus 4 #1 Speed	Gen Bus 4 #1 MW Terminal	Gen Bus 4 #1 Mvar Terminal				
▷ · Transient Limit Monitors		1	0	20.18	60	100	58.5305				
▷ · States/Manual Control		2	0.008	20.18	60	100	58.5305				
▷ · Validation	Use Area/Zone Hilters	3	0.017	20.18	60	100	58.5305				
SMIB Eigenvalues		4	0.025	20.18	60	100	58.5305				
_	Choose Fields to Display	5	0.033	20.18	60	100	58.5305				
	Accel MM	6	0.042	20.18	60	100	58.5305				
		- /	0.05	20.18	60	100	58,5305				
	Field Current	- 0	0.050	20.18	60	100	58,5305				
	Field Voltage (pu)	10	0.075	20.18	60	100	58,5305				
	🔢 🗹 Mech Input	11	0.083	20,18	60	100	58,5305				
	🔢 📝 Mvar Terminal	12	0.092	20.18	60	100	58.5305				
	MW Terminal	13	0.1	20.18	60	100	58.5305				
	Rotor Angle	14	0.108	20.18	60	100	58.5305				
	Rotor Angle, No Shift	15	0.117	20.18	60	100	58.5305				

By default the results are shown for each time step. Results can be saved saved every "n" timesteps using an option on the Results Storage Page

Results: Minimum and Maximum Values

Minimum and maximum values are available for all generators and buses

Initiation Status		_								
Run Transient Stability Pause	Abort	For Conting	ency: My Trans	ient Contingency						
Gelect Step	Results									
Simulation		= = M		Values		D 1 1				
• Options	Time Valu	Jes From RAM	ninum/Maximum	values Summary	Events Solution	on Details				
🖃 Result Storage	Buses	Generators								
- Store to RAM Options	1	PT. JL. ♦-0 -00	AA BA 211				IXA 🥯 AA	SORT		
Generator	🖂 E	⊞ 1M 166 ¥16	ABCD 1	Records • Set	 Columns * 		₽* Y ₩*		Uptions *	
Bus		Number	Name	Area Name	Original Volt	Min Volt	Time Min Volt	Max Volt	Time Max Volt	Max-
Load	1	1	Bus 1	Home	1.0477	1.0188	1,158	1.0616	4,792	
Branch	2	2	Bus 2	Home	1.0000	1.0000	1.058	1.0000	1.058	
··· DC Transmission Line	3	3	Bus 3	Home	1.0303	1.0082	4.525	1.0409	4.792	
Area	4	4	Bus 4	Home	1.0971	1.0630	3.575	1.1143	4.808	
Zone										
Save to Hard Drive Option:										
Time Values From DAM										
Misimum Maximum Values										
Buces										
Generators										
Summary										
Events										
Solution Details										
Transient Limit Monitors										
States/Manual Control										
SMIB Eigenvalues										
(III)										
Process Contingencies										
One Contingency at a time										
Multiple Contingencies										
	L									

Quickly Plotting Results

- **A**M
- Time value results can be quickly plotted by using the standard case information display plotting capability.
 - Right-click on the desired column
 - Select Plot Columns
 - Use the **Column Plot Dialog** to customize the results.
 - Right-click on the plot to save, copy or print it.
- More comprehensive plotting capability is provided using the Transient Stability **Plots** page; this will be discussed later.

Generator 4 Rotor Angle Column Plot

Notice that the result is undamped; damping is provided by damper windings

Change line color here And re-plot by clicking here

Starting the event at t = 1.0 seconds allows for verification of an initially stable operating point. The small angle oscillation indicates the system is stable, although undamped.

Column Plots Option Page

• The Column Plot page has recently been enhanced to provide more options, so good plots can be quickly made for papers and presentations

Transient Stability Time Step Results Column Plot	C Transient Stability Time Step Results Column Plot	- • ×
Variables Scale/Options Other Plot Options Scales Horizontal (X) Axis X min 0.000 X max 0.000 Increment 0.000 Font Size 10 Label Visible Label Font Size Vertical (Y) Axis Y min 0.000 Font Size 10 Vertical (Y) Axis Y min 0.000 Font Size 10 Vertical (Y) Axis Y min 0.000 Font Size 10 Label Visible Label Font Size Label Visible Label Font Size Diago Bold Gen Bus 4 #1 Rotor Angle Drag the mouse on the plot to zoom in, in and out of the plot to zoom out	Variables Scale/Options Other Plot Options Title Options Image Image Show the Title Font Size 16 + Font Color Change Bold Gen Bus 4 #1 Rotor Angle for ECEN 667 Axis, Label and Background Color Scheme Color Scheme Black on White Yellow on Blue Black on Grey White on Maroon White on Black Image Black ground 1 Change Background 2 Change Axis and Labels Change Grid Lines Change Legend Options Use Custom Position Font Size Image Jake Series Sol + Other Plot Options Image Axis and Labels Change Legend Options Use Custom Position Font Size Image Axis Series Sol + Use One Column for Custom Auto Ignore Series with Bad Data Auto Ignore Series with Bad Data	Gen Bus 4 #1 Rotor Angle for ECEN 667
Plot 🚺 Close	Plot Close	- Gen Bus 4#1 Rotor Angle

Changing the Case

- A M
- PowerWorld Simulator allows for easy modification of the study system. As a next example we will duplicate example 13.4 from earlier editions of the Glover/Overbye/Birchfield/Sarma *Power System Analysis and Design b*ook.
- Back on the one-line, right-click on the generator and use the **Stability/Machine Models** page to change the Xdp field from 0.2 to 0.3 per unit.
- On the **Transient Stability Simulation** page, change the contingency to be a solid three phase fault at Bus 3, cleared by opening both the line between buses 1 and 3 and the line between buses 2 and 3 at time = 1.34 seconds.

Changing the Contingency Elements

Change object type to AC Line/Transformer, select the right line, and change the element type to "Open".

	Insert	Save Delete	
	2nocrt	Choose the Element	
Object Type		Sort by Name Number	
Branch/Tr	anstormer	Filter Advanced V Branch V	
Generato	r l	Use Area/Zone Filters Quick Define Remove	
OLoad			
O Switched	Shunt	Search For Near Bus	Select Far Bus, CKT
ODC Line	_	1 (Bus 1) [138.0 kV]	2 (Bus 2) [138.0 kV] CKT 1
	sroup +	2 (Bus 2) [138.0 kV] 3 (Bus 3) [138.0 kV]	3 (Bus 3) [138.0 kV] CKT 1
Simulation		4 (Bus 4) [13.80 kV]	(bus 4) [13:00 KV] CKT 1
O Transform	her		
O Area			
Interface			
Time			
Time (Second	s) 1.3	340000	
Description			
Type		Parameters	
O Apply Fau	ılt	Which End Both Ends	
O Clear Fau	lt	Eault Across called	
Open		Solid	
O Close		Percent Location (near to far) 0.0	
OBypass		PU Resistance 0.00	× · · · · · · · · · · · · · · · · · · ·
O Not Bypa	SS	PU Reactance 0.00	A
○ Set Value	s		
		Self Clearing Fault	
Comment			

Changing the Contingency Elements

Transient Stability Analysis		
Simulation Status Finished at 5.00)	
Run Transient Stability Pause	Abort Restore Reference For Contingency: My Transient Contingency	
Select Step	Simulation Add Delete Rename	
Simulation Control	Control Definitions Violations	
··· Definitions	Simulation Time Values	
Violations	Start Time (seconds) 0.000 Specify Time Step in	
▷·Options ▷·Result Storage	End Time (seconds) 5.000 Seconds	Case Name:
⊳·Plots	Time Step (cycles) 0.500	Cube I fullie.
Results from RAM	Categories	
Generator	Changen	Example 13 4 Rus (Fault
Bus		L'Ampie_10_4_Dubbl aut
Load		
···· Switched Shunt		
···· Branch		
···· DC Transmission Line	Transient Contingency Elements	
···· VSC DC Line	Insert Clear All Insert Apply and Clear Fault Time Shift (seconds) 0.000 🚔	
Multi-Terminal DC Reco		
Area	: 📴 曲 州* 188 🕼 🦛 🦛 Records * Set * Columns * 📴 * 👹 * 🕮 * 🗰 *	$\frac{12V}{ABED}$ f(x) \checkmark III Options \checkmark
Zone	Object Pretty Time Time (Object Description Enabled
Interface	(Cycles) (Seconds)	
Injection Group	1 Bus Bus 3 60.0 1.0000 Bus '3'	FAULT 3PB SOLID CHECK
▷ Minimum/Maximum Values	2 Line Bus 1 TO Bus 3 CKT 1 80.4 1.3400 Branch '1''3''1'	OPEN BOTH CHECK
Summary	3 Line Bus 2 TO Bus 3 CKT 1 80.4 1.3400 Branch 2 3 T	OPEN BOTH CHECK
Events		
Column Databa		

Contingency Elements displays should eventually look like this. Note fault is at bus 3, not at bus 1

Results: On Verge of Instability

Also note that the oscillation frequency has decreased

A More Realistic Generator Model

A M

- The classical model is considered in section 5.6 of the book, as the simplest but also the hardest to justify
 - Had been widely used, but is not rapidly falling from use
- PowerWorld Simulator includes a number of much more realistic models that can be easily used
 - Coverage of these models is beyond the scope of this intro
- To replace the classical model with a detailed solid rotor, subtransient model, go to the generator dialog **Machine Models**, click **Delete** to delete the existing model, select **Insert** to display the **Model Type** dialog and select the **GENROU** model; accept the defaults.

GENROU Model

Generator Information for Current Case								
Bus Number	4	-	Find By	Number	Status © Open			
Bus Name	Bus 4		 Find By 	/ Name	Closed	Generator MVA Base		
ID	1		Find	ł	Closed	100.00		
Area Name	Home (1)			Fuel Type	Unknown	•		
Labels	no labels			Unit Type	UN (Unknown)	•		
Power and Vo	tage Control Co	sts OPF F	aults Owner	s, Area, etc.	Custom Stability			
Machine Mod	els Exciters Go	vernors Stabil	izers Other N	1odels Step	up Transformer Te	rminal and State		
	nsert [Delete Gen	MVA Base 1	.00.0	Show Diagram	Set to Default		
Type Acti	ve - GENROU	👻 🗸 🗸	tive (only one	may be active	e) Defaults:	-		
Parameters								
PU values s	hown/entered usir	ng device base o	of 100.0 MVA	•				
н	3.0000 🚔 👌	(dpp=Xqpp	0.1800 🚔	S(1.2)	0.0000 🚔			
D	0.0000	XI	0.1500 🚔	RComp	0.0000			
Ra	0.0000 🚔	Tdop	7.0000 🚔	XComp	0.0000			
Xd	2.1000	Tqop	0.7500 🚔					
Xq	0.5000	Tdopp	0.0350 🌲					
Xdp	0.2000	Tqopp	0.0500 🌲					
Хар	0.5000	S(1.0)	0.0000 💂					
🗸 ок	<u>S</u> ave		Cancel	? Hel	p Print			

The GENROU model provides a good approximation for the behavior of a synchronous generator over the dynamics of interest during a transient stability study (up to about 10 Hz). It is used to represent a solid rotor machine with three damper windings.

Repeat of Example 13.1 with GENROU

This plot repeats the previous example with the bus 3 fault. The generator response is now damped due to the damper windings included in the GENROU model. Case is saved in examples as **Example_13_4_GENROU**.

Saving Results Every n Timesteps

- Before moving on it will be useful to save some additional fields. On the Transient Stability Analysis form select the "Result Storage" page. Then on the Generator tab toggle the generator 4 "Field Voltage" field to Yes.
 On the Bus tab toggle the bus 4 "V (pu)" field to Yes.
- At the top of the "Result Storage" page, change the "Save Results Every n Timesteps" to 6.
 - PowerWorld Simulator allows you to store as many fields as desired. On large cases one way to save on memory is to save the field values only every n timesteps with 6 a typical value (i.e., with a ¹/₂ cycle time step 6 saves 20 values per second)

Plotting Bus Voltage

• Change the end time to 10 seconds on the "Simulation" page, and rerun the previous. Then on "Results" page, "Time Values from RAM", "Bus", plot the bus 4 per unit voltage. The results are shown below.

Notice following the fault the voltage does not recover to its pre-fault value. This is because we have not yet modeled an exciter.

Adding a Generator Exciter

- The purpose of the generator excitation system (exciter) is to adjust the generator field current to maintain a constant terminal voltage.
- PowerWorld Simulator includes many different types of exciter models.
 One simple exciter is the IEEET1. To add this exciter to the generator at bus 4 go to the generator dialog, "Stability" tab, "Exciters" page. Click Insert and then select IEEET1 from the list. Use the default values.
- Exciters will be covered in the first part of Chapter 4

IEEET1 Exciter

A M

 Once you have inserted the IEEET1 exciter you can view its block diagram by clicking on the "Show Diagram" button. This opens a PDF file in Adobe Reader to the page with that block diagram. The block diagram for this exciter is also shown below.

The input to the exciter, E_c , is usually the terminal voltage. The output, E_{FD} , is the machine field voltage.

Voltage Response with Exciter

voltage.

• Re-do the run. The terminal time response of the terminal voltage is shown below. Notice that now with the exciter it returns to its pre-fault

Case Name: Example_13_4_GenROU_IEEET1