ECEN 667 Power System Stability

Lecture 8: Synchronous Machine Modeling

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 5; look at Appendix A
- Homework 2 is due today; Homework 3 is due on September 21
 - Good writing is a key engineering skill! There are many books to help. I like, *The Handbook of Technical Writing* by Alred, Brusaw and Oliu (now in the 12th Edition)
- First exam is on Tuesday October 3 during class (except for the distance education students)
- Energy and Power Group seminar speaker on Friday is Maryam Kazerooni giving a talk titled, "Application of Machine Learning in Energy Trading." It is at 11:30 to 12:20 p.m. in Zach 244.
- Maryam will also be giving a special tutorial on Friday from 2 to 4 p.m. titled, "An Introduction to Power Trading with a Focus on US Markets." The location will be announced soon.

In the News: ERCOT Frequency on 9/6/23

• ERCOT entered emergency operations as a result of this frequency decline; there was also a sudden drop of 1300 MW in wind power

ERCOT Grid-Wide Frequency Event. One Hour Window, Beginning 7pm CDT, Wednesday, Sept. 06, 2023

Image Source: Dr. Mack Grady, Baylor University

Physical Structure Power System Components

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

Dynamic Models in the Physical Structure

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

4

Generator Models

- Generators can
 have several
 classes of models
 assigned to them
 - Machine Models
 - Exciter
 - Governors
 - Stabilizers
- Others also available
 - Excitation limiters, voltage compensation, turbine load controllers, and generator relay model

5

Generator Models

Machine Models

Synchronous Machine Modeling

Ă**M**

- Electric machines are used to convert mechanical energy into electrical energy (generators) and from electrical energy into mechanical energy (motors)
 - Many devices can operate in either mode, but are usually customized for one or the other
- Vast majority of electricity is generated using synchronous generators and some is consumed using synchronous motors, so we'll start there
- There is much literature on subject, and sometimes it is overly confusing with the use of different conventions and nomenclature

Synchronous Machine Modeling

3ϕ bal. windings (a,b,c) – stator

Two Main Types of Synchronous Machines

- Round Rotor
 - Air-gap is constant, used with higher speed machines
- Salient Rotor (often called Salient Pole)
 - Air-gap varies circumferentially
 - Used with many pole, slower machines such as hydro
 - Narrowest part of gap in the d-axis and the widest along the q-axis

Dq0 Reference Frame

Ā M

- Stator is stationary, rotor is rotating at synchronous speed
- Rotor values need to be transformed to fixed reference frame for analysis
- Done using Park's transformation into what is known as the dq0 reference frame (direct, quadrature, zero)
 - Parks' 1929 paper voted 2nd most important power paper of 20th century at the 2000 NAPS Meeting
 - (1st was Fortescue's symmetrical components)
- Convention used here is the q-axis leads the d-axis (which is the IEEE standard)

Synchronous Machine Stator

Generator stator showing completed windings for a 757-MVA, 3600-RPM, 60-Hz synchronous generator (Courtesy of General Electric.)

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo

Synchronous Machine Rotors

• Rotors are essentially electromagnets

End view

Side view

Two pole (P) round rotor

Six pole salient rotor

Synchronous Machine Rotor

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

15

Fundamental Laws

 Kirchhoff's Voltage Law, Ohm's Law, Faraday's Law, Newton's Second Law

$$\frac{d\theta_{\text{shaft}}}{dt} = \frac{2}{P}\omega$$
$$J\frac{2}{P}\frac{d\omega}{dt} = T_m - T_e - T_{f\omega}$$

Shaft

The rotor has the field winding and up to three damper windings (added to provide damping)

Dq0 Transformations

$$\begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix} \stackrel{\Delta}{=} T_{dqo} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} \quad \text{or } i, \lambda$$

In the next few slides we'll quickly go through how these basic equations are transformed into the standard machine models; the point is to show the physical basis for the models.

Dq0 Transformations

$$T_{dqo} \triangleq \frac{2}{3} \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \cos\frac{P}{2}\theta_{shaft} & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Note that the transformation depends on the shaft angle.

with the inverse,

$$T_{dqo}^{-1} = \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \cos\frac{P}{2}\theta_{shaft} & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & 1 \end{bmatrix}$$

Transformed System

Shaft

We are now in the dq0 space

Electrical & Mechanical Relationships

Electrical system:
$$v = iR + \frac{d\lambda}{dt}$$
 (voltage)
 $vi = i^2R + i\frac{d\lambda}{dt}$ (power)

Mechanical system:

$$J\left(\frac{2}{P}\right)\frac{d\omega}{dt} = T_m - T_e - T_{fw} \quad \text{(torque)}$$
$$J\left(\frac{2}{P}\right)^2 \omega \frac{d\omega}{dt} = \frac{2}{P}\omega T_m - \frac{2}{P}\omega T_e - \frac{2}{P}\omega T_{fw} \quad \text{(power)}$$

P is the number of poles (e.g., 2,4,6); T_{fw} is the friction and windage torque

Torque Derivation

- ĂM
- Torque is derived by looking at the overall energy balance in the system
- Three systems: electrical, mechanical and the coupling magnetic field
 - Electrical system losses are in the form of resistance
 - Mechanical system losses are in the form of friction
- Coupling field is assumed to be lossless, hence we can track how energy moves between the electrical and mechanical systems

Energy Conversion

The coupling field stores and discharges energy but has no losses

Look at the instantaneous power:

$$v_a i_a + v_b i_b + v_c i_c = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o$$

Change to Conservation of Power

$$P_{in} = v_a i_a + v_b i_b + v_c i_c + v_{fd} i_{fd} + v_{1d} i_{1d} + v_{1q} i_{1q}$$

elect

$$+ v_{2q}i_{2q}$$

$$P_{lost} = r_s \left(i_a^2 + i_b^2 + i_c^2 \right) + r_{fd}i_{fd}^2 + r_{1d}i_{1d}^2 + r_{1q}i_{1q}^2 + r_{2q}i_{2q}^2$$

$$elect$$

$$P_{trans} = i_a \frac{d\lambda_a}{dt} + i_b \frac{d\lambda_b}{dt} + i_c \frac{d\lambda_c}{dt} + i_{fd} \frac{d\lambda_{fd}}{dt} + i_{1d} \frac{d\lambda_{1d}}{dt}$$

$$+i_{1q}\frac{d\lambda_{1q}}{dt}+i_{2q}\frac{d\lambda_{2q}}{dt}$$
 We are using $v = d\lambda/dt$

With the Transformed Variables

$$P_{in}_{elect} = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o + v_{fd} i_{fd} + v_{1d} i_{1d} + v_{1q} i_{1q} + v_{2q} i_{2q}$$

$$P_{lost}_{elect} = \frac{3}{2} r_s i_d^2 + \frac{3}{2} r_s i_q^2 + 3r_s i_o^2 + r_{fd} i_{fd}^2 + r_{1d} i_{1d}^2 + r_{1q} i_{1q}^2 + r_{2q} i_{2q}^2$$

$$\begin{split} P_{trans} &= -\frac{3}{2} \frac{P}{2} \frac{d\theta_{shaft}}{dt} \lambda_q i_d + \frac{3}{2} i_d \frac{d\lambda_d}{dt} + \frac{3}{2} \frac{P}{2} \frac{d\theta_{shaft}}{dt} \lambda_d i_q + \frac{3}{2} i_q \frac{d\lambda_q}{dt} + 3i_o \frac{d\lambda_o}{dt} \\ &+ i_{fd} \frac{d\lambda_{fd}}{dt} + i_{1d} \frac{d\lambda_{1d}}{dt} + i_{1q} \frac{d\lambda_{1q}}{dt} + i_{2q} \frac{d\lambda_{2q}}{dt} \end{split}$$

Change in Coupling Field Energy

$$\frac{dW_f}{dt} = \left| \begin{array}{c} T_e \frac{2}{P} \\ \end{array} \right| \frac{d\theta}{dt} + \left[i_a \right] \frac{d\lambda_a}{dt} + \left[i_b \right] \frac{d\lambda_b}{dt} \\ + \left[i_c \right] \frac{d\lambda_c}{dt} + \left[i_{fd} \right] \frac{d\lambda_{fd}}{dt} + \left[i_{1d} \right] \frac{d\lambda_{1d}}{dt} \\ + \left[i_{1q} \right] \frac{d\lambda_{1q}}{dt} + \left[i_{2q} \right] \frac{d\lambda_{2q}}{dt} \\ \end{array}$$

First term on right is what is going on mechanically, other terms are what is going on electrically

This requires the lossless coupling field assumption

Change in Coupling Field Energy

For independent states
$$\theta$$
, λ_a , λ_b , λ_c , λ_{fd} , λ_{1d} , λ_{1q} , λ_{2q}

$$\frac{dW_f}{dt} = \left| \frac{\partial W_f}{\partial \theta} \right| \frac{d\theta}{dt} + \left| \frac{\partial W_f}{\partial \lambda_a} \right| \frac{d\lambda_a}{dt} + \left| \frac{\partial W_f}{\partial \lambda_b} \right| \frac{d\lambda_b}{dt}$$

$$+ \frac{\partial W_{f}}{\partial \lambda_{c}} \frac{d\lambda_{c}}{dt} + \frac{\partial W_{f}}{\partial \lambda_{fd}} \frac{d\lambda_{fd}}{dt} + \frac{\partial W_{f}}{\partial \lambda_{1d}} \frac{d\lambda_{1d}}{dt}$$

$$+ \left[\frac{\partial W_f}{\partial \lambda_{1q}} \right] \frac{d\lambda_{1q}}{dt} + \left[\frac{\partial W_f}{\partial \lambda_{2q}} \right] \frac{d\lambda_{2q}}{dt}$$

Equate the Coefficients

$$T_e \frac{2}{P} = \frac{\partial W_f}{\partial \theta}$$
 $i_a = \frac{\partial W_f}{\partial \lambda_a}$ etc.

There are eight such "reciprocity conditions for this model.

These are key conditions - i.e. the first one gives an expression for the torque in terms of the coupling field energy.

Equate the Coefficients

$$\frac{\partial W_f}{\partial \theta_{shaft}} = \frac{3}{2} \frac{P}{2} \left(\lambda_d i_q - \lambda_q i_d \right) + T_e$$

$$\frac{\partial W_f}{\partial \lambda_d} = \frac{3}{2}i_d , \quad \frac{\partial W_f}{\partial \lambda_q} = \frac{3}{2}i_q , \quad \frac{\partial W_f}{\partial \lambda_o} = 3i_o$$

$$\frac{\partial W_f}{\partial \lambda_{fd}} = i_{fd} , \quad \frac{\partial W_f}{\partial \lambda_{1d}} = i_{1d} , \quad \frac{\partial W_f}{\partial \lambda_{1q}} = i_{1q} , \quad \frac{\partial W_f}{\partial \lambda_{2q}} = i_{2q}$$

These are key conditions -i.e. the first one gives an expression for the torque in terms of the coupling field energy.

Coupling Field Energy

- The coupling field energy is calculated using a path independent integration
 - For integral to be path independent, the partial derivatives of all integrands with respect to the other states must be equal

For example,
$$\frac{3}{2} \frac{\partial i_d}{\partial \lambda_{fd}} = \frac{\partial i_{fd}}{\partial \lambda_d}$$

- Since integration is path independent, choose a convenient path
 - Start with a de-energized system so variables are zero
 - Integrate shaft position while other variables are zero
 - Integrate sources in sequence with shaft at final value

Define Unscaled Variables

$$\delta \underline{\underline{\Delta}} \frac{P}{2} \theta_{shaft} - \omega_s t$$

 ω_s is the rated synchronous speed δ plays an important role!

$$\frac{d\lambda_d}{dt} = -r_s i_d + \omega \lambda_q + v_d$$
$$\frac{d\lambda_q}{dt} = -r_s i_q - \omega \lambda_d + v_q$$
$$\frac{d\lambda_o}{dt} = -r_s i_o + v_o$$

$$\begin{aligned} \frac{d\lambda_{fd}}{dt} &= -r_{fd}i_{fd} + v_{fd} \\ \frac{d\lambda_{1d}}{dt} &= -r_{1d}i_{1d} + v_{1d} \\ \frac{d\lambda_{1q}}{dt} &= -r_{1q}i_{1q} + v_{1q} \\ \frac{d\lambda_{2q}}{dt} &= -r_{2q}i_{2q} + v_{2q} \\ \frac{d\delta}{dt} &= \omega - \omega_s \\ J\frac{2}{p}\frac{d\omega}{dt} &= T_m + \left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_d i_q - \lambda_q i_d\right) - T_{f\omega} \end{aligned}$$

Synchronous Machine Equations in Per Unit

$$\frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_d + \frac{\omega}{\omega_s} \psi_q + V_d \qquad \frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_q - \frac{\omega}{\omega_s} \psi_d + V_q \qquad \frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_o + V_o \qquad \frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_o + V_o \qquad \frac{1}{\omega_s} \frac{d\omega_s}{dt} = \omega - \omega_s \qquad \frac{1}{\omega_s} \frac{d\omega_s}{dt} = T_M - \left(\psi_d I_q - \psi_q I_d\right) - T_{FW}$$

 $\frac{d\psi_{fd}}{dt} = -R_{fd}I_{fd} + V_{fd}$ $\frac{d\psi_{1d}}{dt} = -R_{1d}I_{1d} + V_{1d}$ $\frac{d\psi_{1q}}{dt} = -R_{1q}I_{1q} + V_{1q}$ $\frac{d\psi_{2q}}{dt} = -R_{2q}I2 + V_{2q}$ Units of *H* are seconds

The ψ variables are in the λ variables in per unit (see book 3.50 to 3.52)

Sinusoidal Steady-State

$$\begin{aligned} V_a &= \sqrt{2}V_s \cos(\omega_s t + \theta_{vs}) \\ V_b &= \sqrt{2}V_s \cos\left(\omega_s t + \theta_{vs} - \frac{2\pi}{3}\right) \\ V_c &= \sqrt{2}V_s \cos\left(\omega_s t + \theta_{vs} + \frac{2\pi}{3}\right) \\ I_a &= \sqrt{2}I_s \cos(\omega_s t + \theta_{is}) \\ I_b &= \sqrt{2}I_s \cos\left(\omega_s t + \theta_{is} - \frac{2\pi}{3}\right) \\ I_c &= \sqrt{2}I_s \cos\left(\omega_s t + \theta_{is} + \frac{2\pi}{3}\right) \end{aligned}$$

Here we consider the application to balanced, sinusoidal conditions

Simplifying Using δ

- Define
- Hence

$$E = 2^{s shaft} \cos s^{t}$$

$$V_{d} = V_{s} \sin(\delta - \theta_{vs})$$

$$V_{q} = V_{s} \cos(\delta - \theta_{vs})$$

$$I_{d} = I_{s} \sin(\delta - \theta_{is})$$

$$I_{q} = I_{s} \cos(\delta - \theta_{is})$$

 $\mathcal{S} \wedge \frac{P}{-A} = -\omega t$

The conclusion is if we know δ , then we can easily relate the phase to the dq values!

• These algebraic equations can be written as complex equations $\begin{pmatrix} V_d + jV_q \end{pmatrix} e^{j(\delta - \pi/2)} = V_s e^{j\theta_{VS}} \\ \begin{pmatrix} I_d + jI_q \end{pmatrix} e^{j(\delta - \pi/2)} = I_s e^{j\theta_{iS}}$

Summary So Far

- The model as developed so far has been derived using the following assumptions
 - The stator has three coils in a balanced configuration, spaced 120 electrical degrees apart
 - Rotor has four coils in a balanced configuration located 90 electrical degrees apart
 - Relationship between the flux linkages and currents must reflect a conservative coupling field
 - The relationships between the flux linkages and currents must be independent of θ_{shaft} when expressed in the dq0 coordinate system

Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear function of the currents then we can write

The rotor selfinductance matrix L_{rr} is independent of θ_{shaft} **Ä**M

Conversion to dq0 for Angle Independence

Conversion to dq0 for Angle Independence

$$\lambda_{d} = (L_{\ell s} + L_{md}) i_{d} + L_{sfd} i_{fd} + L_{s1d} i_{1d}$$

$$\lambda_{fd} = \frac{3}{2} L_{sfd} i_{d} + L_{fdfd} i_{fd} + L_{fd1d} i_{1d}$$

$$\lambda_{1d} = \frac{3}{2} L_{s1d} i_{d} + L_{fd1d} i_{fd} + L_{1d1d} i_{1d}$$

$$\lambda_{q} = (L_{\ell s} + L_{mq}) i_{q} + L_{s1q} i_{1q} + L_{s2q} i_{2q}$$

$$\lambda_{1q} = \frac{3}{2} L_{s1q} i_{q} + L_{1q1q} i_{1q} + L_{1q2q} i_{2q}$$

$$\lambda_{2q} = \frac{3}{2} L_{s2q} i_{q} + L_{1q2q} i_{1q} + L_{2q2q} i_{2q}$$

 $\lambda_{o} = L_{\ell_{s}} i_{o}$

$$L_{md} = \frac{3}{2} (L_A + L_B),$$
$$L_{mq} = \frac{3}{2} (L_A - L_B)$$

For a round rotor machine L_B is small and hence L_{md} is close to L_{mq} . For a salient pole machine L_{md} is substantially larger. Note L_A and L_B are defined in book 3.95.

Convert to Normalized at f = \omega_s

A M

- Convert to per unit, and assume frequency of ω_s
- Then define new per unit reactance variables

$$\begin{split} X_{\ell s} &= \frac{\omega_{s} L_{\ell s}}{Z_{BDQ}}, \quad X_{m d} = \frac{\omega_{s} L_{m d}}{Z_{BDQ}}, \quad X_{m q} = \frac{\omega_{s} L_{m q}}{Z_{BDQ}} \\ X_{f d} &= \frac{\omega_{s} L_{f d f d}}{Z_{BFD}}, \quad X_{1 d} = \frac{\omega_{s} L_{1 d 1 d}}{Z_{B1D}}, \quad X_{f d 1 d} = \frac{\omega_{s} L_{f d 1 d} L_{s f d}}{Z_{BFD} L_{s 1 d}} \\ X_{1 q} &= \frac{\omega_{s} L_{1 q 1 q}}{Z_{B1Q}}, \quad X_{2 q} = \frac{\omega_{s} L_{2 q 2 q}}{Z_{B2Q}}, \quad X_{1 q 2 q} = \frac{\omega_{s} L_{1 q 2 q} L_{s 1 q}}{Z_{B1Q} L_{s 2 q}} \\ X_{\ell f d} &= X_{f d} - X_{m d}, \quad X_{\ell 1 d} = X_{1 d} - X_{m d} \\ X_{\ell 1 q} &= X_{1 q} - X_{m q}, \quad X_{\ell 2 q} = X_{2 q} - X_{m q} \\ X_{d} &= X_{\ell s} + X_{m d}, \quad X_{q} = X_{\ell s} + X_{m q} \end{split}$$

Key Simulation Parameters

• The key parameters that occur in most models can then be defined as

These values will be used in all the synchronous machine models

In a salient rotor machine X_{mq} is small so $X_q = X'_{q;}$ also X_{1q} is small so T'_{q0} is small

Key Simulation Parameters

• And the subtransient parameters

Example Xd/Xq Ratios and X'q/Xq Ratios for a WECC Case

About 75% are Clearly Salient Pole Machines!

AM

Internal Variables

- A M
- Define the following variables, which are quite important in subsequent models

Hence E'_{q} and E'_{d} are scaled flux linkages (with E'_{q} associated with the field flux linkage and E'_{d} the damper winding). E_{fd} is the scaled field voltage.

Dynamic Model Development

- In developing the dynamic model not all of the currents and fluxes are independent
 - In this formulation only seven out of fourteen are independent
- Approach is to eliminate the rotor currents, retaining the terminal currents (I_d, I_q, I_0) for matching the network boundary conditions

Rotor Currents

• Use new variables to solve for the rotor currents

$$\begin{split} \psi_{d} &= -X_{d}''I_{d} + \frac{\left(X_{d}'' - X_{\ell s}\right)}{\left(X_{d}' - X_{\ell s}\right)}E_{q}' + \frac{\left(X_{d}' - X_{d}''\right)}{\left(X_{d}' - X_{\ell s}\right)}\psi_{1d} \quad \psi_{q} = -X_{q}''I_{q} - \frac{\left(X_{q}'' - X_{\ell s}\right)}{\left(X_{q}' - X_{\ell s}\right)}E_{d}' + \frac{\left(X_{q}' - X_{q}''\right)}{\left(X_{q}' - X_{\ell s}\right)}\psi_{2q} \\ I_{fd} &= \frac{1}{X_{md}}\left[E_{q}' + \left(X_{d} - X_{d}'\right)\left(I_{d} - I_{1d}\right)\right] \qquad I_{1q} = \frac{1}{X_{mq}}\left[-E_{d}' + \left(X_{q} - X_{q}'\right)\left(I_{q} - I_{2q}\right)\right] \\ I_{1d} &= \frac{X_{d}' - X_{d}''}{\left(X_{d}' - X_{\ell s}\right)^{2}}\left[\psi_{1d} + \left(X_{d}' - X_{\ell s}\right)I_{d} - E_{q}'\right] \qquad I_{2q} = \frac{X_{q}' - X_{q}''}{\left(X_{q}' - X_{\ell s}\right)^{2}}\left[\psi_{2q} + \left(X_{q}' - X_{\ell s}\right)I_{q} + E_{d}'\right] \\ \psi_{o} &= X_{\ell s}\left(-I_{o}\right) \end{split}$$

Final Complete Model

$$\frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_d + \frac{\omega}{\omega_s} \psi_q + V_d$$
$$\frac{1}{\omega_s} \frac{d\psi_q}{dt} = R_s I_q - \frac{\omega}{\omega_s} \psi_d + V_q$$
$$\frac{1}{\omega_s} \frac{d\psi_o}{dt} = R_s I_o + Vo$$

These first three equations define what are known as the stator transients; we will shortly approximate them as algebraic constraints

$$T'_{do} \frac{dE'_{q}}{dt} = -E'_{q} - (X_{d} - X'_{d}) \left[I_{d} - \frac{X'_{d} - X''_{d}}{(X'_{d} - X_{\ell s})^{2}} (\psi_{1d} + (X'_{d} - X_{\ell s})I_{d} - E'_{q}) \right] + E_{fa}$$

$$T'_{qo} \frac{dE'_{d}}{dt} = -E'_{d} + (X_{q} - X'_{q}) \left[I_{q} - \frac{X'_{q} - X''_{q}}{(X'_{q} - X_{\ell s})^{2}} (\psi_{2q} + (X'_{q} - X_{\ell s})I_{q} + E'_{d}) \right]$$

Final Complete Model, cont.

$$\begin{split} T_{do}'' \frac{d\psi_{1d}}{dt} &= -\psi_{1d} + E_{q}' - (X_{d}' - X_{\ell s})I_{d} \quad \psi_{d} = -X_{d}''I_{d} + \frac{(X_{d}'' - X_{\ell s})}{(X_{d}' - X_{\ell s})}E_{q}' + \frac{(X_{d}' - X_{\ell s})}{(X_{d}' - X_{\ell s})}\psi_{1d} \\ T_{qo}'' \frac{d\psi_{2q}}{dt} &= -\psi_{2q} - E_{d}' - (X_{q}' - X_{\ell s})I_{q} \\ \frac{d\delta}{dt} &= \omega - \omega_{s} \\ \frac{d\delta}{dt} &= \omega - \omega_{s} \\ \frac{2H}{\omega_{s}}\frac{d\omega}{dt} &= T_{M} - (\psi_{d}I_{q} - \psi_{q}I_{d}) - T_{FW} \end{split}$$

 T_{FW} is the friction and windage component

AM

Single-Machine Steady-State

$$0 = R_s I_d + \psi_q + V_d \qquad (\omega = \omega_s)$$

$$0 = R_s I_q - \psi_d + V_q$$

$$0 = R_s I_o + V_o$$

$$0 = -E'_q - (X_d - X'_d) I_d + E_{fd}$$

$$0 = -\psi_{1d} + E'_q - (X'_d - X_{\ell s}) I_d$$

$$0 = -E'_d + (X_q - X'_q) I_q$$

$$0 = -\psi_{2q} - E'_d - (X'_q - X_{\ell s}) I_q$$

$$0 = \omega - \omega_s$$

$$0 = T_m - (\psi_d I_q - \psi_q I_d) - T_{FW}$$

$$\psi_d = E'_q - X''_d I_d$$
$$\psi_q = -X''_q I_q - E'_d$$
$$\psi_o = -X_{\ell s} I_o$$

The key variable we need to determine the initial conditions is actually δ , which doesn't appear explicitly in these equations!

Field Current

• The field current, I_{fd} , is defined in steady-state as

 $I_{fd} = E_{fd} / X_{md}$

• However, what is usually used in transient stability simulations for the field current is the product

 $I_{fd}X_{md}$

• So the value of X_{md} is not needed

Single-Machine Steady-State

- Previous derivation was done assuming a linear magnetic circuit
- We'll consider the nonlinear magnetic circuit later but will first do the steady-state condition (3.6)
- In steady-state the speed is constant (equal to ω_s), δ is constant, and all the derivatives are zero
- Initial values are determined from the terminal conditions: voltage magnitude, voltage angle, real and reactive power injection

Determining δ without Saturation

- In order to get the initial values for the variables we need to determine δ
- We'll eventually consider two approaches: the simple one when there is no saturation, and then later a general approach for models with saturation
- To derive the simple approach we have

$$V_d = R_s I_d + E'_d + X'_q I_q$$
$$V_q = -R_s I_q + E'_q - X'_d I_d$$

Determining δ without Saturation

Since
$$j = e^{j(\pi/2)}$$

 $\tilde{E} = \left[\left(X_q - X'_d \right) I_d + E'_q \right] e^{j\delta}$

• In terms of the terminal values

$$\tilde{E} = \tilde{V}_{as} + (R_s + jX_q)\tilde{I}_{as}$$

The angle on $\tilde{E} = \delta$ \tilde{E}

