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Announcements

• Read Chapter 5; look at Appendix A

• Homework 3 should be done before the first exam, but does not need to be 

turned in. 

• First exam is on Tuesday October 3 during class (except for the distance 

education students)

– It is closed-book and closed-notes, but one 8.5 by 11 inch hand written note sheet 

and calculators allowed

– My first exam from ECEN 667 in Fall 2021 has been posted to Canvas
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ERCOT Opportunity
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Machine Models

3



Final Complete Model

These first three equations define what are known as 

the stator transients; we will shortly approximate 

them as algebraic constraints

( )
( )

( )( )12

q d d
do q d d d d d s d q fd

d s

dE X X
T E X X I X X I E E

dt X X


   −
    = − − − − + − − + 

 −  

( )
( )

( )( )22

q qd
qo d q q q q q s q d

q s

X XdE
T E X X I X X I E

dt X X


  −      = − + − − + − +
  −
 
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Final Complete Model, cont.

( )

( )

( )

1
1

2
2

2

d
do d q d s d

q
qo q d q s q

s

M d q q d FW
s

d
T E X X I

dt

d
T E X X I

dt

d

dt

H d
T I I T

dt








 


 



  = − + − −

  = − − − −

= −

= − − −

TFW is the friction and 

windage component

( )
( )

( )
( )

( )
( )

( )
( )

1

2

d s d s
d d d q d

d s d s

q s q q

q q q d q

q s q s

o s o

X X X X
X I E

X X X X

X X X X
X I E

X X X X

X I

 

 



 − −
 = − + +

 − −

  − −
 = − − +

 − −

= −
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Single-Machine Steady-State

The key variable we need to determine the 

initial conditions is actually , which doesn't 

appear explicitly in these equations!

( )

( )1

0

0

0

0

0

s d q d

s q d q

s o o

q d d d fd

d q d s d

R I V

R I V

R I V

E X X I E

E X X I







= + +

= − +

= +

 = − − − +

 = − + − −

( )s =

d q d d

q q q d

o s o

E X I

X I E

X I







 = −

 = − −

= −

( )

( )

( )

2

0

0

0

0

d q q q

q d q s q

s

m d q q d FW

E X X I

E X X I

T I I T



 

 

 = − + −

 = − − − −

= −

= − − −
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The top two are 

equations 3.222 and 

3.223 from the book



Single-Machine Steady-State

• Previous derivation was done assuming a linear magnetic circuit

• We'll consider the nonlinear magnetic circuit later but will first do 

the steady-state condition (3.6)

• In steady-state the speed is constant (equal to s),  is constant, and 

all the derivatives are zero

• Initial values are determined from the terminal conditions: voltage 

magnitude, voltage angle, real and reactive power injection 

7



Determining  without Saturation

• In order to get the initial values for the variables we need to determine 

• We'll eventually consider two approaches: the simple one when there is 

no saturation, and then later a general approach for models with 

saturation

• To derive the simple approach we have

d s d d q q

q s q q d d

V R I E X I

V R I E X I

 = + +

 = − + −
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These are derived by combining

0

0

s d q d

s q d q

R I V

R I V





= + +

= − +

d q d d

q q q d

E X I

X I E





 = −

 = − −

with



Determining  without Saturation

• In terms of the terminal values

( )

( )

/2
Since 

j

j
q d d q

j e

E X X I E e





=

  = − +
 

( )as s q asE V R jX I

The angle on E 

= + +

=

9



D-q Reference Frame 

• Machine voltage and current are “transformed” into the d-q reference 

frame using the rotor angle, 

• Terminal voltage in network (power flow) reference frame are 

VS = Vt = Vr +jVi

sin cos

cos sin

dr

qi

VV

VV

 

 

    
=     

−    

sin cos

cos sin

d r

q i

V V

V V

 

 

  −   
=    
    
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A Steady-State Example

• Assume a generator is supplying 1.0 pu real power at 

0.95 pf lagging into an infinite bus at 1.0 pu voltage 

through the below network.  Generator pu values are 

Rs=0, Xd=2.1, Xq=2.0, X'd=0.3, X'q=0.5   

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Transient Stability Data Not Transferred

Bus 1 Bus 2

Bus 3

Angle =   0.00 DegAngle =   6.59 Deg

Bus 4

Delta (Deg): 52.08

P: 100.00 MW

Speed (Hz):  60.00

Eqp: 1.130

 1.095 pu

Edp: 0.533
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A Steady-State Example, cont.

• First determine the current out of the generator from 

the initial conditions, then the terminal voltage

1.0526 18.20 1 0.3288I j= −  = −

( )( )1.0 0 0.22 1.0526 18.20

1.0946 11.59 1.0723 0.220

sV j

j

=  + − 

=   = +
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A Steady-State Example, cont. 

• We can then get the initial angle and initial dq values

( )( )1.0946 11.59 2.0 1.052 18.2 2.814 52.1

52.1

E j



=  + −  =  

→ = 

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

  −     
= =       
      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

  −     
= =       

−      

( /2 ) 1.0945 (11.6 90 52.1)

1.0945 49.5 0.710 0.832

j j

d q sV jV V e e

j

  −+ = =  + −

=   = +
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A Steady-State Example, cont

• The initial state variable are determined by solving 

with the differential equations equal to zero.

( )( )'

'

'

0.8326 0.3 0.9909 1.1299

0.7107 (0.5)(0.3553) 0.5330

( ) 1.1299 (2.1 0.3)(0.9909) 2.9135

q q s q d d

d d s d q q

fd q d d d

E V R I X I

E V R I X I

E E X X I

= + + = + =

= − − = − =

= + − = + − =

14

( )0 q d d d fdE X X I E = − − − +

The value of Efd is determined 

from the equilibrium condition



Single Machine, Infinite Bus System (SMIB)

Usually the infinite bus

angle, vs, is zero

etc

de d ed

de d ep

se s e

X X X

R R R

  = +

= +

= +

This example can be simplified by combining machine values with line values 
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Introduce New Constants

( )

s

s
s

sst

H
T

T








1

2

=

=

−= “Transient Speed”

Mechanical time constant

A small parameter

We are ignoring the 

exciter and governor for 

now; they will be covered 

in detail later
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Stator Flux Differential Equations

( )

( )

1 sin

1 cos

de
se d t qe s vs

s

qe
se q t de s vs

s

oe
se o

d
R I V

dt T

d
R I V

dt T

d
R I

dt

 
    

 
    




 
= + + + − 

 

 
= − + + − 

 

=

17



Elimination of Stator Transients

• If we assume the stator flux equations are much faster 

than the remaining equations, then letting  go to zero 

allows us to replace the differential equations with 

algebraic equations

( )

( )

0 sin

0 cos

0

se d qe s vs

se q de s vs

se o

R I V

R I V

R I

  

  

= + + −

= − + −

=

This assumption might not be valid 

if we are considering

faster dynamics on other devices 

(such as converter dynamics)
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Impact on Studies

Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994

Stator transients are not usually considered in stability studies
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Machine Variable Summary

• Three fast dynamic states, now eliminated

• Seven not so fast dynamic states

• Eight algebraic states

, ,de qe oe  

1 2, , , , ,q d d q t fdE E E    

, , , , , , ,d q o d q t ed eqI I I V V V  

We'll get to the 

exciter and  

governor shortly

( )

( )

2 2

sin

cos

t d q

d e d ep q s vs

q e q ep d s vs

V V V

V R I X I V

V R I X I V

 

 

= +

= − + −

= + + −
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Network Expressions

( )

( )

sin

cos

d e d ep q s vs

q e q ep d s vs

V R I X I V

V R I X I V

 

 

= − + −

= + + −

These two equations can be written as one complex 

equation.

( ) ( ) ( )( ) ( )

vsj
s

j
qdepe

j
qd

eV

ejIIjXRejVV





+

++=+ −− 22
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Subtransient Algebraic Circuit

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )

2

2
1

q s q q

d q q d q

q s q s

jd s d d
q d

d s d s

X X X X
E X X I

X X X X

X X X X
j E e

X X X X

 




−

   − −
    − + −
  − − 

   − −
+ +  

 − −  
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Network Reference Frame

• In transient stability the initial generator values are set from a power flow 

solution, which has the terminal voltage and power injection

– Current injection is just conjugate of Power/Voltage

• These values are on the network reference frame, with the angle given by 

the slack bus angle

• Voltages at bus j converted to d-q reference by

, ,   or   j r j i j j Dj QjV V jV V V jV= + = +

, ,

, ,

sin cos

cos sin

d j r j

q j i j

V V

V V

 

 

   − 
=    
    

, ,

, ,

sin cos

cos sin

r j d j

i j q j

V V

V V

 

 

    
=    

−    
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Network Reference Frame

• Issue of calculating , which is key, will be considered for each model

• Starting point is the per unit stator voltages 

• Sometimes the scaling of the flux by the speed is neglected, but this can 

have a major solution impact

• In per unit the initial speed is unity

( ) ( ) ( )d q d qEquivalently, V +jV +jI

d q s d

q d s q

s q d

V R I

V R I

R I j

 

 

  

= − −

= −

+ = − +
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Simplified Machine Models

• Often more simplified models were used to represent synchronous 

machines

• These simplifications are becoming much less common but they are still 

used in some situations and can be helpful for understanding generator 

behavior

• Next several slides go through how these models can be simplified, then 

we'll cover the standard industrial models
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Two-Axis Model

• If we assume the damper winding dynamics are 

sufficiently fast, then T"do and T"qo go to zero, so there 

is an integral manifold (covered in Appendix A of the 

book) for their dynamic states

( )

( )
1

2

d q d s d

q d q s q

E X X I

E X X I





 = − −

 = − − −
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Two-Axis Model

( )

( )

( )
( )( )

( )

1
1

12

0

            

Which can be simplified to 

d
do d q d s d

q
do q d d

d d
d d d s d q fd

d s

q
do q d d d fd

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E E

X X

dE
T E X X I E

dt






  = − + − − =


  = − − − 

  −
  − + − − +

 −  


  = − − − +

Note this entire term becomes zero using 

the equation from the previous slide
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Two-Axis Model

( )

( )

( )
( )( )

( )

2
2

22

0

                

Which can simplified to 

q
qo q d q s q

d
qo d q q

q q
q q q s q d

q s

d
qo d q q q

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E

X X

dE
T E I X X

dt






  = − − − − =


  = − + − 

 
 −

  − + − +
  −
 


  = − + −

Likewise this entire 

term becomes zero
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Two-Axis Model

( ) ( ) ( )vssdqepqdes VEIXXIRR  −+−+−+= sin0

( ) ( ) ( )vssqdepdqes VEIXXIRR  −+−+++= cos0
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Two-Axis Model

( ) ( ) ( )

( ) ( ) ( )

( )

( )

2 2

0 sin

0 cos \

sin

cos

s e d q ep q d s vs

s e q d ep d q s vs

d e d ep q s vs

q e q ep d s vs

t d q

R R I X X I E V

R R I X X I E V

V R I X I V

V R I X I V

V V V

 

 

 

 

 = + − + − + −

 = + + + − + −

= − + −

= + + −

= +

No saturation effects are

included with this model
( )

( )

( )
2

q
do q d d d fd

d
qo d q q q

s

M d d q q q d d q FW
s

dE
T E X X I E

dt

dE
T E X X I

dt

d

dt

H d
T E I E I X X I I T

dt


 






  = − − − +


  = − + −

= −

   = − − − − −
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Example (Used for All Models)

• Below example will be used with all models.  Assume a 100 MVA 

base, with gen supplying 1.0 + j0.3286 power into infinite bus with 

unity voltage through network impedance of j0.22

– Gives current of 1.0 - j0.3286 =  1.0526-18.19 

– Generator terminal voltage of 1.072+j0.22 = 1.0946 11.59 

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Bus 1 Bus 2

Bus 3

  0.00 Deg  6.59 Deg

Bus 4

1.0463 pu

 11.59 Deg

1.0000 pu

1.0946 pu -100.00 MW

-32.86 Mvar

100.00 MW

57.24 Mvar

Current sign 

convention is out of 

generator positive

31



Two-Axis Example

• For the two-axis model assume H = 3.0 per unit-seconds,  Rs=0, Xd = 

2.1, Xq = 2.0, X'd= 0.3, X'q = 0.5, T'do = 7.0, T'qo = 0.75 per unit using 

the 100 MVA base. 

• Solving we get  

( )( )1.0946 11.59 2.0 1.0526 18.19 2.81 52.1

52.1

E j



=  + −  =  

→ = 

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

  −     
= =       
      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

  −     
= =       

−      
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Two-Axis Example

• And

• Assume a fault at bus 3 

at time t=1.0, cleared by 

opening both lines into 

bus 3 at time t=1.1 seconds

( )( )0.8326 0.3 0.9909 1.130

0.7107 (0.5)(0.3553) 0.533

1.1299 (2.1 0.3)(0.9909) 2.913

q

d

fd

E

E

E

 = + =

 = − =

= + − =

Saved as case 

B4_TwoAxis

Gen Bus 4 #1 Rotor Angle

Time

543210

G
en

 B
us

 4
 #

1 
Ro

to
r A

ng
le

74

72

70

68

66

64

62

60

58

56

54

52

50

48

46

44

Gen Bus 4 #1 Rotor Angle
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Two-Axis Example

• PowerWorld allows the gen states to be easily stored

Gen Bus 4 #1 Machine State\Edp

Time

543210

G
en

 B
us

 4
 #

1 
M

ac
hi

ne
 S

ta
te

\E
dp 0.56

0.54

0.52

0.5

0.48

0.46

0.44

0.42

Gen Bus 4 #1 Machine State\Edp

Graph shows

variation in Ed’
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Flux Decay Model

• If we assume T'qo is sufficiently fast that its equation becomes 

an algebraic constraint

( )

( )

( )

( ) ( )

( )

d
qo d q q q

q

do q d d d fd

s

M d d q q q d d q FW

s

M q q q d q q q d d q FW

M q q q d d q FW

dE
T E X X I 0

dt

dE
T E X X I E

dt

d

dt

2H d
T E I E I X X I I T

dt

T X X I I E I X X I I T

T E I X X I I T


 






  = − + − =


  = − − − +

= −

   = − − − − −

   = − − − − − −

 = − − − −

In previous example

Tq0’=0.75
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Rotor Angle Sensitivity to Tqop

• Graph shows variation in the rotor angle as Tqop is varied, showing the 

flux decay is the same as Tqop = 0
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Classical Model

dt
s

d
 = −

( )
0

0

0

2
sins

M vs FW
d ep

H d E V
T T

dt X X


 




= − − −

 +

This is a pendulum model

The classical model had  been 

widely used because it is simple.

At best it can only approximate

a very short term response. It is no 

longer common.
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Classical Model Justification

• It is difficult to justify.  One approach would be to go from the flux decay 

model and assume

• Or go back to the two-axis model and assume

0 0

q d do

q

X X T

E E 

 = = 

  = =

( const const)

q d do qo

q d

X X T T

E E

   = =  = 

 = =

2 20 0

0
0 1

0tan 2

q d

q

d

E E E

E

E
 −

  = +

 
 = − 


 
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Classical Model Response

• Rotor angle variation for same fault as before
Gen Bus 4 #1 Rotor Angle
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Gen Bus 4 #1 Rotor Angle

Notice that even though the rotor

angle is quite different, its initial increase 

(of about 24 degrees) is similar.  

However, there is no damping. 

Saved as case B4_GENCLS
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Subtransient Models

• The two-axis model is a transient model

• Essentially all commercial studies now use subtransient models

• First models considered are GENSAL and GENROU, which 

require X"d=X"q

• This allows the internal, subtransient voltage to be represented as 

( )sE V R jX I = + +

( )d q q dE jE j     + = − +
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Subtransient Models

• Usually represented by a Norton Injection with

• May also be shown as

( )q dd q

d q

s s

jE jE
I jI

R jX R jX

   − + +
+ = =

 + +

( )
( ) ( )q d d q

d q q d

s s

j j j
j I jI I jI

R jX R jX

        − − + +
− + = − = =

 + +

In steady-state  = 1.0
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Standards

• Standards play important roles in many aspects of engineering analysis by 

providing public (though often not free) access to standard models and 

other things (such as data formats)

– Standards can be updated (e.g., 1110-2019 

updated 1110-2002)

• The standards are then used by manufacturers

(and others) to create compatible products

• However, manufacturers do not need to 

always follow the standards
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GENSAL

• The GENSAL model had been widely used to model salient pole 

synchronous generators

– In salient pole models saturation is only assumed to affect the d-axis

– In the 2010 WECC cases about 1/3 of machine models were GENSAL; in 2013 

essentially none are, being replaced by GENTPF or GENTPJ

– A 2014 series EI model had about 1/3 of its machines models set as GENSAL

– In November 2016 NERC issued a recommendation to use GENTPJ rather than 

GENSAL for new models. See
  www.nerc.com/comm/PC/NERCModelingNotifications/Use%20of%20GENTPJ%20Generator%20Model.pdf

• GENSAL is now considered obsolete, but is still a useful introduction to 

the subtransient models 
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GENSAL Block Diagram

A quadratic saturation 

function is used; for

initialization it only 

impacts the Efd value 
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GENSAL Example

• Assume same system as before with same common generator parameters: 

H=3.0, D=0, Ra = 0, Xd = 2.1, Xq = 2.0, X'd = 0.3, X"d=X"q=0.2, Xl = 0.13, 

T'do = 7.0, T"do = 0.07, T"qo =0.07, S(1.0) =0, and S(1.2) = 0.

• Same terminal conditions as before
• Current of 1.0-j0.3286 and generator terminal voltage of 1.072+j0.22 = 1.0946 11.59 

•  Use same equation to get initial  

( )
1.072 0.22 (0.0 2)(1.0 0.3286)

1.729 2.22 2.81 52.1

s qE V R jX I

j j j

j

 = + +

= + + + −

= + =  

Same delta as with 

the other models 

Saved as case 

B4_GENSAL
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GENSAL Example

• Then as before

and   

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

  −     
= =       
      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

  −     
= =       

−      

( )

1.072 0.22 (0 0.2)(1.0 0.3286)

1.138 0.42

s r iE V R jX I E E

j j j

j

   = + + = +

= + + + −

= +
46

Needs to be 

converted to dq



GENSAL Example

• Giving the initial fluxes (with  = 1.0) of

• To get the remaining variables set the differential equations to zero, 

0.7889 0.6146 1.138 0.6396

0.6146 0.7889 0.420 1.031

q

d





− −       
= =              

( ) ( )( )2 0.2 0.3553 0.6396

1.1298, 0.9614

q q q q

q d

X X I

E





 = − − = − − = −

 = = Solving the d-axis requires 

solving two linear equations for 

two unknowns

47

( )Recall d q q dE jE j     + = − +



GENSAL Example

0.4118

0.5882

0.17

Id=0.9909

d”=1.031

1.8

Eq’=1.1298
d’=0.9614

3.460

Efd = 1.1298+1.8*0.991=2.912
48

Iq=0.3553



Comparison Between Gensal and Flux Decay
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