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Abstract—In this paper, we propose a comprehensive algorithm
for identifying alternative solutions in power flow analysis. Our
approach considers various power system conditions and grid
sizes, from small to large-scale cases. By analyzing the Jacobian
matrix and its singularity, we accurately detect the proximity
to voltage collapse and identify alternative solutions. The results
demonstrate the effectiveness of the algorithm in handling diverse
scenarios and showcasing its capability in identifying alternative
solutions in power flow analysis.

Index Terms—alternative solution, Jacobian, PV-PQ - curves,
ill-conditioned system, voltage stability

I. INTRODUCTION

The power flow (PF) analysis holds significant importance
in power system applications. Achieving accurate and reliable
PF results for different power system conditions is crucial
for the operation and planning of power systems. However,
PF equations are non-convex and nonlinear, so they can have
multiple solutions [1], which makes determining the correct
solution for different power system operating conditions and
characteristics very challenging. These multiple solutions can
be divided into normal or desired solutions, which describe the
operable PF solution with voltages close to one per unit (pu),
and ”alternative” solutions (AS), which often exhibit abnormal
voltage magnitudes far away from one pu at certain buses [2].
These AS can be categorized as low-voltage or high-voltage
solutions.

Accurate identification and understanding of AS in PF
analysis is highly significant. Incorrect solutions can lead to
erroneous operational PF results and undesired scheduling,
leading to potential operational issues and compromised sys-
tem performance.

The Newton-Raphson method is widely used for solving
PF equations due to its effectiveness in iterative calculations.
However, this iterative method might have problems with
convergence. The iterative process may diverge, indicating the
absence of a solution, or it may converge to an AS instead of
the desired solution. Distinguishing between these scenarios
is especially challenging in heavily loaded systems [3]. In-
adequate initial estimates further compound the convergence
challenges. If the initial voltage solution is not accurately
estimated, the iterative process may converge to an AS instead
of the desired solution [4].

Extensive research has been conducted in the literature to
address this problem. Several methods have been proposed to

determine some or all of the PF solutions in power systems
[2], [5]–[7]. Some of these approaches for determining PF
solutions may not be capable of finding all possible solutions,
while others that are capable may not be scalable to larger
systems due to the increasing computational complexity asso-
ciated with the number of power system buses.

The identification of alternative PF solutions traditionally
relied on the observation of positive real parts of eigenvalues
in the PF Jacobian matrix [8], [9]. But negative reactance ap-
pearance in power systems models can significantly affect the
Jacobian matrix and positive real parts of eigenvalues might
appear at the high-voltage operable solution [10]. In [11],
authors propose a strategy for determining AS by analyzing
the sensitivity of voltage magnitude to reactive power injection
at each bus. However, it is important to note that the sign of
dV/dQ may not always be negative in AS.

However, these methods overlook several scenarios in AS
identification and there is no comprehensive study on identi-
fying AS considering possible conditions and most references
focus on small grids as case studies.

In this paper, we propose a novel and general algorithm for
the identification of AS in PF analysis that considers a variety
of power system conditions for large grids and is applicable
for any other grids.

The structure of our paper is organized as follows. In
Section II of the paper, we describe all power system charac-
teristics considered for alternative solution identification and
introduce an initial generalized algorithm. In Section III we
introduce case studies. Section IV algorithm implementation
results with summary and future work direction in Section V.

II. THE PROPOSED STRATEGY TO DETERMINE
ALTERNATIVE SOLUTIONS

Typically, the PF equations can be mathematically formu-
lated as a set of nonlinear equations, where i and k bus
numbers:

Pi =

n∑
k=1

|Vi| |Vk| (Gikcosθik +Biksinθik) (1)

Qi =

n∑
k=1

|Vi| |Vk| (Giksinθik −Bikcosθik) (2)



Pi and Qi are the injected active and reactive power at
bus, Vi bus voltage with θi magnitude, θik angle between
two i and k buses, Gik and Bik real and imaginary parts of
admittance matrix Y . In PF calculations, the results include
voltage magnitudes and angles at each bus, as well as the active
and reactive power flow values in branches. These calculations
involve considering the load demands, generation capacities,
and the overall system structure as initial data [12].

A. B-Matrix

Equations 1-2 clearly demonstrate the fundamental role of
the admittance matrix Y in PF calculations. The admittance
matrix directly influences all PF results and is a key com-
ponent in determining the voltage magnitudes, angles, and
PF distribution throughout the system. The admittance matrix
represents the network’s components, such as transmission
lines, transformers, and capacitors.

According to [11] negative reactance branches have become
common in modern power system models, with up to 5%
of branches exhibiting negative reactance values. The main
sources of negative reactance branches include series capaci-
tors, fictitious ”star” buses in three-winding transformers, and
equivalent (EQ) lines [11]. These negative reactances in the
power systems influence imaginary part B of the admittance
matrix Y . Even if it is present in small quantities and with
low magnitudes, it can still have a significant influence on
the power system characteristics. See an example Section IV,
Subsection A.

In [10], it is demonstrated that systems with negative
reactance can exhibit positive eigenvalues in the normal PF
solution. Building upon these findings, the first step of the
algorithm involves checking the B-matrix for diagonal domi-
nance and examining the sign of diagonal elements. This step
is essential in identifying potential alternative PF solutions.

B. Jacobian

Usually Newton-Raphson method is employed to solve PF,
enabling the determination of voltage magnitude and angle
corrections through the use of the Jacobian matrix:

J =

 ∂P
∂θ

∂Q
∂θ

∂P
∂V

∂Q
∂V

 (3)

The Jacobian matrix plays a significant role in determining
the PF solution in a system. Its characteristics, such as eigen-
values, minimum singular value, and sensitivities, provide
valuable insights into the power system’s condition. Indeed,
the presence of negative branches in a power system can
influence the characteristics of the Jacobian matrix. To accu-
rately rely on the Jacobian matrix characteristics for solution
analysis, it is essential to first understand the characteristics
of the B matrix.

1) Eigenvalues: Usually, from the stability theory, we know
that alternative PF solutions were typically identified based
on the presence of positive eigenvalues in the PF Jacobian
matrix. However, due to the potential presence of negative

branches in power system cases, relying on the sign of the
real part of the eigenvalues [10] is no longer a reliable method
to differentiate AS cases. Therefore, in our algorithm, we
exclude this step for buses where the B matrix exhibits changes
corresponding to the sign of the diagonal element and broken
diagonal dominance. By doing so, we account for the influence
of negative branches and improve the accuracy of identifying
AS in these cases.

2) Singular Values: In our algorithm, we also incorporate
the minimal singular value of the PF Jacobian matrix as a key
characteristic. This minimal singular value serves as a voltage
security index [13], providing insights into the proximity of
a specific operating point to the voltage collapse point in a
power system.

By integrating the voltage security index into our identifica-
tion algorithm, we can distinguish low- or high-voltage results
based on their proximity to a voltage collapse point. This helps
us determine if the low voltages observed are due to critical
conditions in the power system or if they indicate the presence
of AS results.

3) Voltage Sensitivities: Alternative PF solutions might be
detected based on power system sensitivity analysis. Sensi-
tivities represent linearized relationships that are frequently
employed to quantify the impact of a small change in one
variable on the rest of the power system [14]. In our algorithm,
we considering sensitivities of voltages to reactive power
injections in particular bus. According to [15] sensitivities for
the high and low voltage solutions opposite in sign and to
identify AS we can rely on negative dV/dQ sign.

∆s(θ,V ) = [−J ]
−1 · f(θ,V ) (4)

J−1 =

 ∂θ
∂P

∂θ
∂Q

∂V
∂P

∂V
∂Q

 (5)

C. Available reactive power capacity

Another important characteristic to consider in our analysis
is the availability of reactive power capacity sources that may
be closely associated with possible AS buses. When reactive
power sources with available capacity are present, the behavior
of bus sensitivities can change. As a result, the voltages, even
for the AS part of the Q-V curve, will increase as the load
decreases. This behavior aligns with the desired solution part
of the Q-V curve. For a detailed example illustrating this
behavior, please refer to Section IV, Subsection B of the paper.

D. General Algorithm

Based on the metrics discussed earlier, we propose a gen-
eralized algorithm for identifying possible alternative power
flow solutions. The algorithm begins by checking the voltage
magnitudes to determine if any violations occur outside the
acceptable range of 0.9-1.1 pu. After checking the voltage
magnitudes, the algorithm proceeds with two possible sce-
narios based on whether the system has negative reactance
or not. This is determined by examining the imaginary part



B of the admittance matrix Y . If the system does not have
negative branches, the algorithm utilizes eigenvalues and the
minimum singular value to evaluate the system’s proximity
to a voltage collapse. This helps distinguish between low
voltages caused by overloaded conditions and AS. If the
characteristics mentioned above do not indicate a heavily
loaded system condition, the algorithm proceeds to check the
voltage sensitivities dV/dQ. As part of the algorithm, buses
with negative sensitivities are identified as possible AS. If the
sensitivity dV/dQ is positive, the algorithm proceeds to check
the availability of reactive power sources in proximity to that
bus.
Algorithm 1: The pseudo-code for identifying AS

1: if V oltageMagnitude ≤ 0.9 and ≥ 1.1 then
2: Check B −matrix:
3: if Bii ≤ 0 and B has Diagonal Dominance then
4: if λmin ≈ 0 then

System Unstable
5: else if sign(Re(eig)) ≥ and ∂V/∂Q ≤ 0 then

Possible AS
6: else if ∂V/∂Q ≥ 0 then
7: Check Available Q-capacity:
8: if Close to Available Q-capacity then

Possible AS
9: end if

10: end if
11: else if Bii ≥ 0 and lost Diagonal Dominance then
12: if λmin ≈ 0 then

System Unstable
13: else

Possible AS
14: end if
15: end if
16: end if=0

III. CASE STUDIES

To justify the algorithm steps, we consider small-scale
grids such as the 5-bus and 19-bus grids. These grids allow
for thorough validation and verification of the algorithm’s
effectiveness in detecting alternative PF solutions. Addition-
ally, we provide an example of implementing the algorithm
on a larger-scale system with a 24k-bus grid. By applying
the algorithm to a large-scale realistic power system, we
demonstrate its scalability to more complex systems. To be
able to calculate Jacobian’s eigenvalues, singular values, and
sensitivity characteristics we consider it as a sparse matrix
for more efficient calculations. The combination of small-
scale grids and large-scale grids ensures that the algorithm
is rigorously tested and can be applied to a range of power
system scenarios.

A. Five-Bus Grid

Figure 1 shows more details of this five-bus grid. To assess
the impact of negative reactance on the five-bus system, we
analyze the presence of negative branches in several cases
shown in Table I.

Fig. 1. Five-bus grid [16]

TABLE I
REACTANCE FOR 5 BUS GRID

Branch Case 1 Case 2 Case 3 Case 4
Reactance, Ohms

1-2 0.24 0.24 0.24 0.24
2-3 0.03 0.03 -0.03 -0.03
3-4 0.24 -0.24 -0.24 -0.24
1-5 0.06 0.06 0.06 -0.06
5-4 0.12 0.12 0.12 0.12
5-3 0.18 0.18 0.18 0.18
5-2 0.18 0.18 0.18 0.18

B. EPRI 19-Bus Grid

Figure 2 and Table II show important characteristics of
this 19-bus EPRI grid [17]. Two scenarios including Case 1
without negative branches and Case 2 with one negative branch
are studied. For these two cases, we analyze the Q-V curve
[18] obtained by incrementally increasing the load.

Fig. 2. EPRI 19-bus grid

TABLE II
19-BUS GRID STATISTICS

Parameter Numerical Value
Number of buses 19

Number of generators 7
Number of loads 6

Number of switched shunts 2
Number of substations 8

Number of transmission lines 15



C. Midwest 24k-Bus Synthetic Grid

The larger case study is Midwest 24k-bus synthetic grid over
the US Midwest [19]. The transmission network is built based
on the actual transmission voltage levels in this area, including
500 kV, 345 kV, 230 kV, 161 kV, 138 kV, 115 kV, and 69 kV.
Fig. 3 shows the one-line diagram on the transmission grid for
Midwest 24k-bus synthetic grid where 500 kV lines and 345
kV are in green, 230 blue, 161, 138, 115, and 69 kV black.
Table III provides a summary of the case.

Fig. 3. Transmission lines in the Midwest 24k-bus synthetic grid

TABLE III
MIDWEST 24K-BUS CASE STATISTICS

Parameter Numerical Value
Number of buses 23,643

Number of generators 6,274
Number of loads 11,731

Number of switched shunts 1,218
Number of substations 14,069

Number of transmission lines 23,787
Total design load (MW) 202,000

Total design generation (MW) 321,680

IV. RESULTS

In this section, we present the results of the study by
describing each step of the proposed algorithm in detail. By
providing comprehensive explanations and a variety of grid
sizes, we aim to showcase the applicability and robustness of
our approach in identifying alternative PF solutions.

We begin by outlining the specific steps of the algorithm,
highlighting the rationale behind each step and its role in
identifying AS. We provide a clear description of the algo-
rithm’s workflow, ensuring a thorough understanding of its
functioning.

A. Five-Bus Grid

After checking the voltage violation in the algorithm’s line
1 and in case it was out of range, so we look at B matrix
diagonal elements sign and diagonal dominance (lines 2-3 and
11).

In Case 1 all branches have a positive reactance, matrix B
diagonal elements are negative with the diagonal dominance.
The real parts of its eigenvalues are negative which means that
system in a normal condition.

B =


−18.75 3.75 0 0 15.00
3.75 −38.75 30.00 0 5.00
0 30.00 −38.75 3.75 5.00
0 0 3.75 −11.25 7.50

15.00 5.00 5.00 7.50 −32.50


For the same case, we consider different solutions evaluated

with homotopy method [20]. The first solution is the high-
voltage solution, with voltage results close to nominal and
small angles, all eigenvalues have negative real parts. Second
solution belongs to the Type-1 solution, which has one positive
real part of the eigenvalue. And the third solution with two
real-part eigenvalues (Table IV).

We can see that for case without negative branches we
can identify alternative solutions according to the real-part
eigenvalue sign.

TABLE IV
VOLTAGE RESULTS AND EIGENVALUES FOR FIVE-BUS SYSTEM CASE 1

Bus Solution 1 Solution 2 Solution 3
Voltage

1 1.060∠0.00 1.060∠0.00 1.060∠0.00
2 0.980∠-4.53 0.034∠-69.0 0.196∠-30.70
3 0.977∠-4.85 0.184∠-37.81 0.036∠-85.96
4 0.966∠-5.69 0.686∠-23.87 0.081∠-79.42
5 1.000∠-2.06 1.000∠-16.91 1.000 ∠-22.52
n Eigenvalues
1 -66.69 + 13.19i -21.55 + 0.00i -14.42 + 0.00i
2 -66.69 + 13.19i 5.55 + 0.00i 3.69 + 0.00i
3 -36.37 + 0.00i -8.10 + 0.00i 2.23 + 0.00i
4 -0.97 + 0.00i -6.26 + 0.00i -4.12 + 3.36i
5 -17.24 + 0.00i -2.41 + 0.86i -4.12 - 3.36i
6 -7.60 + 0.00i -2.41 - 0.86i -4.12 + 0.00i
7 -8.89 + 0.00i -3.26 + 0.00i -1.00 + 0.00i

In case 2, one negative branch changes the diagonal domi-
nance for row 4, all eigenvalues (Table V) have negative real
part.

B =


−18.75 3.75 0 0 15.00
3.75 −38.75 30.00 0 5.00
0 30.00 −31.25 −3.75 5.00
0 0 −3.75 −3.75 7.50

15.00 5.00 5.00 7.50 −32.50


Case 3 has two negative branches and we can see not only

changes in diagonal dominance, bus changes in the sign of
diagonal elements for the second and third rows, real part of
two eigenvalues became positive.

B =


−18.75 3.75 0 0 15.00
3.75 21.25 −30.00 0 5.00
0 −30.00 28.75 −3.75 5.00
0 0 −3.75 −3.75 7.50

15.00 5.00 5.00 7.50 −32.50





Case 4 has three negative branches and all diagonal elements
lost their dominance and three of them change the sign. In this
case, we got three eigenvalues with positive real parts.

B =


11.25 3.75 0 0 −15.00
3.75 21.25 −30.00 0 5.00
0 −30.00 28.75 −3.75 5.00
0 0 −3.75 −3.75 7.50

−15.00 5.00 5.00 7.50 −2.50



TABLE V
VOLTAGES RESULT AND EIGENVALUES FOR FIVE-BUS SYSTEM CASE 2-4

Bus Case 2 Case 3 Case 4
Voltage

1 1.06∠0.00 1.06∠0.00 1.06∠0.00
2 0.99∠-4.80 1.00∠-4.93 0.98∠-1.23
3 0.99∠-5.20 0.99∠-4.67 0.98∠-1.23
4 0.93∠-5.20 0.92∠ -5.45 0.95∠ -0.23
5 1.00∠-2.08 1.00∠-2.08 1.00∠2.88
n Eigenvalues
1 -64.8 + 22.6i 55.1 + 22.8i 54.2 + 22.4i
2 -64.8 - 22.6i 55.1 - 22.8i 54.2 - 22.4i
3 -36.1 + 0.0i -36.1 + 0.0i 6.0 + 0.0i
4 -1.3 + 4.1i -1.8 + 3.8i -1.9 + 4.0i
5 -1.3 - 4.1i -1.8 + 3.8i -1.9 - 4.0i
6 -3.8 + 0.0i -3.9 + 0.0i -11.8 + 0.0i
7 -6.9 + 0.0i -6.8 + 0.0i -9.4 + 0.0i

We can summarize these results with the conclusion that
one of the first steps of identifying algorithm should be a B
matrix checking to see if there are enough changes in the
matrix structure to change Jacobian and eigenvalues.

B. EPRI 19-Bus Grid

Typically, in power grids, when the system is approaching
voltage collapse, it is easier for PF to converge to an AS due
to the proximity of neighboring high-voltage solution and AS.

In lines 4 and 12 in the algorithm, we are looking at the
minimal singular value to understand how far we are from the
voltage collapse point. This Jacobian characteristic can help us
to understand if low-voltages in PF solutions appear because
of stressed system conditions or if this is an AS.

In case 1, there are no negative branches and we consider
different scenarios including a normal solution far from col-
lapse (point 1), an AS far from collapse (point 2), a normal
solution close to collapse (point 3), and an AS close to collapse
(point 4). These points are shown in Figure 4.

As shown in Table VI, we are using several parameters
such as minimal singular value to recognize if the system
is heavily loaded and we can differentiate between different
types of solutions. After that, in line 5 of our algorithm,
we look at the eigenvalues and dV/dQ sign if the B matrix
diagonal dominance is not broken and the diagonal elements
are negative.

For this case, we can summarize that combining low volt-
age, high minimal singular value, and sensitivity analysis can
serve as reliable indicators for identifying AS.

Fig. 4. 19-bus system without negative branches - bus 3

TABLE VI
SINGULAR VALUES, EIGENVALUES AND SENSITIVITY

Par./Sc. 1 2 3 4
λmin 0.449 1.000 0.0174 0.0177

sign(Re(Eig))
all

negative 1 positive all
negative 1 positive

diag(dV/dQ) all
positive 7 negative all

positive
25

negative

Case 2 of this 19-bus grid has one negative branch and
highlights that relying solely on the sign of dV/dQ (Table VII)
is not always a dependable criterion for identifying whether a
system is on the AS curve. Point 1 on the AS curve in Figure
5 with Q = 278.3Mvar.

Fig. 5. 19-bus system with one negative branch - bus 3

TABLE VII
SINGULAR VALUES, EIGENVALUES AND BUS SENSITIVITY

State Singular Value sign(Re(Eig)) dV/dQ
λmin 0.035 5 pos. 0.0117



C. Midwest 24k-Bus Synthetic Grid

Fig. 6. Voltage contour of Midwest 24k-bus synthetic grid

For the large-scale case we consider Midwest 24k-bus syn-
thetic grid. This grid consists of several negative reactances.

With our algorithm, we are starting with the first step - line
1, 80 buses have a voltage level lower than 0.9 and some of
them have significantly low voltage. Figure 6 shows a voltage
contour of this case based on the strategy explained in [21].

For example, the voltage of Bus 12165 is 0.09579 pu.
The next step is to check the B matrix as line 2 of the

algorithm.
B12165,12165 = −22.3581 Diagonal element is negative, but

diagonal dominance is broken:
|B12165,12165| −

∑n
12165̸=j |B12165,j | = −0.0070 ≤ 0 that

is why we are going to the line 12 of the algorithm and
checking the minimal singular value which is λmin = 0.0002.
Therefore, the system is close to voltage collapse but still in
a stable condition. So for this bus, our algorithm identifies it
as a possible AS.

V. CONCLUSIONS AND FUTURE WORK

This paper provided a generalized algorithm to identify
possible AS in PF analysis for various cases. This algorithm
considers different power system conditions such as changes
in the imaginary part of the admittance matrix, due to nega-
tive branches, and after that looks at Jacobean’s eigenvalues,
minimal singular values, and sensitivities. For this algorithm,
we justified every step with examples and showed implemen-
tations on a large grid.

Future work will focus on expanding the algorithm by
incorporating additional characteristics related to both voltage
magnitudes and voltage angles. Additionally, efforts will be
made to investigate methods for transitioning from AS to the
desired normal PF solution.
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Operation, and Control. Wiley, 2013. [Online]. Available:
https://books.google.com/books?id=JDVmAgAAQBAJ

[13] A. Tiranuchit and R. Thomas, “A posturing strategy against voltage
instabilities in electric power systems,” IEEE Transactions on Power
Systems, vol. 3, no. 1, pp. 87–93, 1988.

[14] K. M. Rogers, R. Klump, H. Khurana, A. A. Aquino-Lugo, and T. J.
Overbye, “An authenticated control framework for distributed voltage
support on the smart grid,” IEEE Transactions on Smart Grid, vol. 1,
no. 1, pp. 40–47, 2010.

[15] S. Iwamoto and Y. Tamura, “A load flow calculation method for ill-
conditioned power systems,” IEEE transactions on power apparatus and
systems, no. 4, pp. 1736–1743, 1981.

[16] D. K. Molzahn, “Application of semidefinite optimization techniques to
problems in electric power systems,” Ph.D. dissertation, The University
of Wisconsin-Madison, 2013.

[17] R. Horton, D. Boteler, T. J. Overbye, R. Pirjola, and R. C. Dugan, “A
test case for the calculation of geomagnetically induced currents,” IEEE
Transactions on Power Delivery, vol. 27, no. 4, pp. 2368–2373, 2012.

[18] T. Overbye, I. Dobson, and C. DeMarco, “Q-v curve interpretations
of energy measures for voltage security,” IEEE Transactions on Power
Systems, vol. 9, no. 1, pp. 331–340, 1994.

[19] F. Safdarian, A. B. Birchfield, K. S. Shetye, and T. J. Overbye,
“Additional insights in creating large-scale, high quality synthetic grids:
A case study,” in 2021 IEEE Kansas Power and Energy Conference
(KPEC). IEEE, 2021, pp. 1–6.

[20] F. Salam, L. Ni, S. Guo, and X. Sun, “Parallel processing for the load
flow of power systems: the approach and applications,” in Proceedings
of the 28th IEEE Conference on Decision and Control,, 1989, pp. 2173–
2178 vol.3.

[21] J. D. Weber and T. J. Overbye, “Voltage contours for power system
visualization,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp.
404–409, 2000.


