```
Solution 1
```

BOOK S.2

One-axis dynamic circuit - fig. 5.3.

Get Id and Iq in terms of circuit parameters + o, Eq', Ve, Oc

Applying circuit theory,

$$V_A - V_B = \left(\int_{a+j} I_A \right) e^{j\left(\rho - \eta_2\right)} \times \left(R_S + j \times d \right) + \left(R_E + j \times e_F \right)$$

Re Know;

We know;

$$V_A = [(x_q - x_d)I_q + jE_q]e^{j(\sigma - i\eta_2)}$$

and
$$V_e = V_s e^{j \theta V_s}$$

dividuig by ei(n-172) on both sides;

$$(x_q - x_d')T_q + jE_{q'} = (T_d + jT_q)Z + V_s Cj(\theta_{v_s} - \delta + \eta_2)$$

$$RHS$$

solving LHS,

$$(x_q - x_d')I_q + E_q' = I_q x_q - I_q x_d' + jE_{q'} - \square$$

solving RHS,

$$\frac{\left(I_{d}+jI_{q}\right)\left(\left(R_{c}+R_{e}\right)+j\left(X_{eq}+X_{d}'\right)\right)+V_{c}\left(gin\left(\delta-\theta_{V_{c}}\right)+j\cos\left(\delta-\theta_{V_{c}}\right)\right)}{\left(I_{d}+jI_{q}\right)\left(R_{c}+R_{e}\right)+j\left(X_{eq}+X_{d}'\right)\left(I_{d}+jI_{q}\right)+V_{c}\left(\sin\left(\delta-\theta_{V_{c}}\right)\right)}{+jV_{c}\left(\cos\left(\delta-\theta_{V_{c}}\right)\right)} - 2$$

on solving further you can equate the neal and imaginary coupicients for equation I and 2;

$$0 = (R_s + R_e) I_d - (X_q + X_{ep}) I_q + V_s (sin (P - \theta vs))$$

$$E_q' = (R_s + R_e) I_q + (X_d' + X_{ep}) I_d + V_s cos(P - \theta us)$$

since we want to find Id and Iq, we bring those terms to one side;

$$-V_{s} \sin(\theta - \theta v_{s}) = (R_{s} + R_{e}) \underline{I}_{d} - (X_{q} + X_{ep}) \underline{I}_{q}$$

$$\underline{F}_{q}' - V_{s} \cos(\theta - \theta v_{s}) = (R_{s} + R_{e}) \underline{I}_{q} - (X_{d}' + X_{ep}) \underline{I}_{d}$$

Above equations can be written in matrix format;

$$\begin{bmatrix} (R_s + R_e) & -(X_q + X_{ep}) \\ (X_d + X_{ep}) & (R_s + R_e) \end{bmatrix} \begin{bmatrix} I_d \\ I_q \end{bmatrix} = \begin{bmatrix} -V_s \sin(\sigma - \theta_{vs}) \\ E_q' - V_s \cos(\sigma - \theta_{vs}) \end{bmatrix}$$

solving for Id & Iq;

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} = A^{-1} \begin{bmatrix} -V_s \sin (R - \theta_{us}) \\ E_{g'} - V_s \cos (R - \theta_{us}) \end{bmatrix}$$

$$I_{q} = \frac{\left(X_{d}' + X_{ep}\right) V_{s} \sin \left(\theta - \theta_{vs}\right) + \left(R_{s} + R_{e}\right) \left[E_{q}' - V_{s} \cos \left(\theta - \theta_{vs}\right)\right]}{\left(R_{s} + R_{e}\right)^{2} + \left(X_{q} + X_{ep}\right) \left(X_{d}' + X_{ep}\right)}$$

and

$$I_{d} = \underbrace{\left(X_{q} + X_{ep}\right)\left[E_{q}' - V_{s}\cos\left(\sigma - \theta v_{s}\right)\right] - \left(R_{s} + R_{e}\right)V_{s}\sin\left(\sigma - \theta v_{s}\right)}_{\left(R_{s} + R_{e}\right)^{2} + \left(X_{d}' + X_{ep}\right)\left(X_{ep} + X_{q}\right)}$$

Solution 2

Syn. generator with two axis model
$$\begin{cases}
V_d + jV_q \\
V_d + jV_q
\end{cases} e^{\int (\partial - \Pi_2)} = 1/0 \text{ pu} \\
\left(I_d + jI_q\right) e^{\int (\partial - \Pi_2)} = 0.5/30 \text{ pu}
\end{cases}$$

$$\begin{cases}
X_d = 1.4 \\
X_q = 1.1
\end{cases}$$

$$X_d' = 0.2 \text{ pu} = X_q'$$

$$X_{d} = 1.4$$

$$X_{a} = 1.1$$

At steady state

applying KVL;

$$\bar{E} = (V_{a} + j V_{q}) e^{j(\delta - \Pi_{2})} + (I_{a} + j I_{q}) e^{j(\delta - \Pi_{2})} [R_{s} + j \times_{q}]$$

$$= i L_{0} + o \cdot s L_{30} [j \cdot 1]$$

$$= 0.725 + j0.476 \longrightarrow 0.867 \ 233.3^{\circ}$$

$$\therefore \ 6 = 33.3^{\circ}$$

Use of to get Id, Iq, Vd, Vq;

$$Td+jIq = \frac{0.5|30'}{0.5(353-90)} = \frac{0.5|20'-33.5^{*}+90'}{0.5(353-90)} = \frac{0.5|20'-33.5^{*}+90'}{0.5(353-90)} = \frac{0.5|20'-33.5^{*}+90'}{0.5(353-90)} = \frac{0.5|20'-33.5^{*}+90'}{0.5(353-90)} = \frac{0.5|20'-30.5^{*}+90'}{0.5(353-90)} = \frac{0.5|20'-30.5^{*}+90'}{0.5(3$$

E'ej(6+6") = j Xd(0.5/30") + (16)

 $= 0.954 / 5.209^{\circ} pu$ $\therefore \delta + \delta'^{\circ} = 5.204^{\circ} / E''^{\circ}$

δ'° = -28.096° (· · δ = 33.3°)

Noom steady state.

Also from the slides,

$$\frac{2H}{\omega_s} \frac{d\omega}{dt} = T_m - T_e - T_{F\omega}$$

$$\frac{2H}{\omega_s} \frac{d\omega}{dt} = T_m - E_d I_q - E_q' I_q - (X_q' - X_d') I_d I_q - T_{d\omega}^0$$

$$T_m = E_d' I_q + E_q' I_q + (X_g' - X_d') I_q I_d$$

$$= (0.449)(0.0287) + (0.8407)(0.499) + 0$$

$$T_m = 0.4323 pu$$

$$I_{Som}$$

sautim 3

Two-axis model

current into inquire bus is 160° pu.

Find S, Vd, Vq, Ia, Iq, Eq, Ed

From slides, we know

Gen ofp is I pu real power @ 0.95 pf lagging.

System from slide;

equivalent impedance = j0.22

$$V_s = V_q = V_2 + I(z)$$

= $1(0 + (10))j6.22$
= $1 + j0.22pu$

$$E[\delta = V_s + (R_s + j \times_{p}) I$$

$$= (1 + j \cdot 0 \cdot 22) + j^2(16)$$

$$= 2 \cdot 435 [65 \cdot 75 \circ pu]$$

$$\int_{-6}^{-6} 65 \cdot 75 \circ pu$$

Using transform when matrix;
$$\begin{bmatrix} Vd \\ Vq \end{bmatrix} = \begin{bmatrix} \sin \delta & -\cos \delta \\ \cos \delta & \sin \delta \end{bmatrix} \begin{bmatrix} V_{\delta} \\ V_{i} \end{bmatrix}$$

$$= \begin{bmatrix} 0.821 \\ 0.611 \end{bmatrix} P^{1}$$

similarly using the transformation matrix,

$$E_d' = V_d - R_E J_d - X_q' J_q$$

= $V_d - X_q' J_q = 0.616 pu$

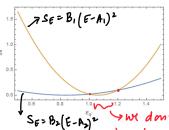
$$0.2 = \frac{\left(1-A\right)^2}{\left(1.2-A\right)^2}$$

... $A_1 = 1.0618$ OR $A_2 = 0.8381$ $B_1 = 5.236$ $B_2 = 0.713$ with A = 8.838, the min of S(E) does not lie between S(1) and S(1.2).

B = 0.763

Efa = Eg'(1+ S(Eg)) + (Xa-X4) Ia

Efa = 5.112 pu



you can also find
minimum by differentiating the saturation
function.

we don't want
min. value of E to occur have!

Soution 5

The original parameters for the generator model (GENROU_Sat) connected to Bus 4 are as indicated in the

	below table.																
	н	D	Ra	Xd	Xq	Xdp	Xqp	Xdpp	ΧI	Td0p	Tq0p	Tdopp	Tq0pp	S1	S12	Rcomp	Xcomp
ſ	3	0	0	2.1	2	0.3	0.5	0.28	0.13	7	0.75	0.073	0.07	0.05	0.2	0	0

The damping ratio and critical clearing time for the above starting parameters are as below:

Damping Ratio	0.28
Critical Clearing time	1.17

This is considered as case 0.

The parameters are changed one by one and labelled as separate cases. Observation for each case is listed.

Case 1.2 and 3:

The parameter **H** (shaft inertia constant) is changed keeping the remaining parameters same as case 0. Observation:

	Н	Damping Ratio	Critical Clearing time	
ı	4	0.25	1.19	1
	5	0.16	1.21	1
	2	0.29	1.14]

Case 2,3 and 4:

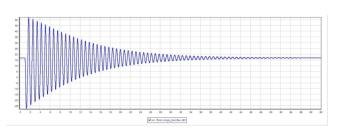
The parameter D is changed keeping the remaining parameters same as case 0. I'm not sure if D can be negative. But the system gives a result with increased damping and reduced clearing time.

D		Damping Ratio	Critical Clearing time
	-1	0.31	1.16
	1	0.23	1.17
	2	0.22	1.17

Case 5 and 6:

The parameter Ra (Armature Resistance) is changed keeping the remaining parameters same as case 0. The damping ratio varies significantly and the clearing time also reduces. A graph is added for this case to indicate the amount of oscillations before finally settling.

Ra		Damping Ratio	Critical Clearing time	
:	1	0.82		1.04
	2	0.47		1.01



Case 7,8 and 9:

The parameter Xd (Reactance of D-axis) is changed keeping the remaining parameters same as case 0.

Xd	Damping Ratio	Critical Clearing time
3.1	0.27	1.16
5.1	0.25	1.15
6.1	0.27	1.15

Case 10,11 and 12:

The parameter Xq (Reactance of Q-axis) is changed keeping the remaining parameters same as case 0. Observation: The damping ratio generally decreases except for Xq=5 and the clearing time decreases.

Xq	Damping Ratio	Critical Clearing time
3	0.27	1.16
5	0.31	1.16
6	0.26	1.15

Case 13 and 14:

The parameter Xd' (Transient Reactance of D-axis) is changed keeping the remaining parameters same as case 0. The damping ratio and clearing time, both decrease significantly.

Xd'	Damping Ratio	Critical Clearing time	
0.6	0.10	1.14	ļ
1.3	0.04	1.10)

Case 15 and 16:

The parameter Xq' (Transient Reactance of D-axis) is changed keeping the remaining parameters same as case 0. Observation: The damping ratio does not increase as significantly as it does when Xd' is changed.

Χq′	Damping Ratio	Critical Clearing time	
1	0.26		1.17
1.5	0.28		1.17

Case 17 and 18:

The parameter Xd', Xq', Xd'' (Transient and Subtransient Reactance of D-axis, transient reactance of Q-axis) is changed keeping the remaining parameters same as case 0. The damping ratio increases and the critical clearing time decreases significantly.

Solution 6

Book 4.1

(4.20)
$$0 = -(K_E + S_E(E_{fd})) E_{fd} + V_R$$

(4.22) $S_E(E_{fd}) = A_X e^{B_X} E_{fd}$

find E_{fdmax} , A_X & B_X .

Using 4.20;

 $0 = -(1 + 0.9) E_{fd} + 8 \Rightarrow E_{fdmax} = 4.211 \text{ pm}$

Using 4.22;

 $0.9 = A_X e^{B_X} E_{fdmax}$
 $0.5 = A_X e^{0.95 \times E_{fdmax}}$

solving above equal simultaneously:

 $A_X = 0.0857$
 $B_X = 0.5584$

Solution 7

$$\frac{1}{(4.18)} \frac{\partial E_{td}}{\partial t} = -\left(K_{E_{t} eff} + S_{E}(E_{fd})\right) E_{fd} + V_{R}$$

$$(4.22) S_{E}(E_{fd}) = A_{R} e^{B_{X}} E_{fd}.$$

At steady state, eq 4.18 becomes;

$$0 = -(K_{Exay} + A_{x}e^{BxE_{pd}})E_{pd} + V_{R}$$

$$K_{Exay} = -0.132$$

find In fint;

$$V_E \cdot F_{Ex} = E_{FD} - 0$$

$$V_E \cdot F_{Ex} = E_{FD} - 0$$

$$V_E \cdot I_{FEx} = I_{FD} - 0$$

$$I_N = \frac{k_c I_{FD}}{V_E}$$

$$I_N = \frac{k_c I_{FD}}{V_E}$$

Using abone equations;

$$SE_{1} = 0.03$$

$$SE_{2} = 8(E - A)^{2}$$

$$0.03 = 8(33 - A)^{3}$$

$$0.03 = 8(44 - A)^{2}$$

$$Se_{1} = 8(44 - A)^{2}$$

$$Se_{2} = 8(44 - A)^{2}$$

$$Se_{3} = 8(44 - A)^{2}$$

$$Se_{4} = 8(44 - A)^{2}$$

$$Se_{4} = 8(44 - A)^{2}$$

$$Se_{4} = 8(44 - A)^{2}$$

$$Se_{5} = 8(44 - A)^{2}$$

$$Se_{6} =$$

 $E_1 = 3.3$

E2=4.4

Vry = 1.0953 pu.