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Announcements

• Read Chapters 4 and 7

• Homework 4 is Thursday October 19

• Exam 1 average 86.9

• A classic paper on stability simulations is B. Stott, “Power System 

Dynamic Response Calculations,” Proc. IEEE, February 1979, pp. 219-241

– The purpose of IEEE Proceedings is to provide state-of-the-art coverage of current 

hot topics in the broad areas covered by IEEE; the goal is to help people who are not 

specialists in a field keep up with important developments

– Its impact factor is 20.6 (impact factor tells how often articles are cited in a year); the 

value for IEEE Trans. on Power Systems is 7.3; (highest values are with medical 

journals, going above 100; the value for Nature is 65)

– You can see the recent issue of IEEE Proceedings at proceedingsoftheieee.ieee.org/
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Model HYGOV

• This simple model, combined with a governor, is implemented in 

HYGOV
About 6% of 

WECC governors 

use this model; 

average TW is

two seconds

The gate position (GV) to 

gate power (PGV)

is sometimes represented 

with a nonlinear curve
Hloss is assumed small and not included
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Linearized Model Derivation

• The previously mentioned 

linearized model can now be 

derived as
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Four Bus Case with HYGOV

• The below graph plots the gate position and the power output for the 

bus 2 signal generator decreasing the speed then increasing it

Note that just like in the 

linearized model, opening

the gate initially decreases 

the power output
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PID Controllers

• Governors and exciters often use proportional-integral-derivative (PID) 

controllers

– Developed in 1890’s for automatic ship steering by observing the behavior of 

experienced helmsman

• PIDs combine

– Proportional gain, which produces an output value that is proportional to the 

current error

– Integral gain, which produces an output value that varies with the integral of the 

error, eventually driving the error to zero

– Derivative gain, which acts to predict the system behavior.  This can enhance 

system stability, but it can be quite susceptible to noise
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PID Controller Characteristics 

• Four key characteristics 

of control response are 

1) rise time, 2) overshoot,

3) settling time and 

4) steady-state errors

Image source: Figure F.1, IEEE Std 1207-2011
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PID Example: Car Cruise Control

• Say we wish to implement cruise control on a car by controlling the 

throttle position

– Assume force is proportional to throttle position

– Error is difference between actual speed and desired speed

• With just proportional control we would never achieve the desired 

speed because with zero error the throttle position would be at zero 

• The integral term will make sure we stay at the desired point

• With derivative control we can improve control, but as noted it can be 

sensitive to noise
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HYG3

• The HYG3 models has a PID or a double derivative 

Looks more complicated

than it is since depending

on cflag only one of

the upper paths is used

About 15% of current WECC 

governors at HYG3 
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Tuning PID Controllers

• Tuning PID controllers can be difficult, and there is no single best 

method

– Conceptually simple since there are just three parameters, but there can be 

conflicting objectives (rise time, overshoot, setting time, error)

• One common approach is the Ziegler-Nichols method

– First set KI and KD to zero, and increase KP until the response to a unit step 

starts to oscillate (marginally stable); define this value as Ku and the 

oscillation period at Tu

– For a P controller set Kp = 0.5Ku

– For a PI set KP = 0.45 Ku and KI = 1.2* Kp/Tu

– For a PID set KP=0.6 Ku, KI=2* Kp/Tu, KD=KpTu/8
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Tuning PID Controller Example

• Use the four bus case  with infinite bus replaced by load, and gen 4 has a 

HYG3 governor with cflag > 0; tune KP, KI and KD for full load to 

respond to a 10% drop in load (K2, KI, K1 in the model; assume Tf=0.1)

slack

Bus 1 Bus 2

Bus 3

  0.87 Deg  6.77 Deg

Bus 4

 11.59 Deg

  4.81 Deg

 1.078 pu 1.080 pu 1.084 pu

1.0971 pu

  90 MW

  10 MW

Case name: B4_PIDTuning
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Tuning PID Controller Example

• Based on testing, Ku is about 9.5 and Tu is 6.4 seconds 

• Using Ziegler-Nichols a good P value 4.75, is good PI values are KP = 4.3 

and KI = 0.8, while good PID values are KP = 5.7, KI = 1.78, KD=4.56

Further details on 

tuning are covered in 

IEEE Std. 1207-2011 
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Tuning PID Controller Example

• Figure shows the Ziegler-Nichols for a P, PI and PID controls.  

Note, this is for stand-alone, not interconnected operation
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Example KI and KP Values 

• Figure shows example KI and KP values from an actual system case

About 60% of the models

also had a derivative term with 

an average value of 2.8, and 

an average TD of 0.04 sec
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Non-windup Limits

• An important open question is whether the governor PI controllers 

should be modeled with non-windup limits

– Currently models show no limit, but transient stability verification seems to 

indicate limits are being enforced

• This could be an issue if frequency goes low, causing governor PI to 

"windup" and then goes high (such as in an islanding situation)

– How fast governor backs down depends on whether the limit winds up 
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PI Non-windup Limits

• There is not a unique way to handle PI non-windup limits; the 

below shows two approaches from IEEE Std 421.5

Another common 

approach is to cap the 

output and put a non-

windup limit on the 

integrator
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PI Limit Problems with Actual Hydro Models

• A previous research project comparing transient stability packages 

found there were significant differences between hydro model 

implementations with respect to how PI limits were modeled

– One package modeled limits but did not document them, another did not 

model them; limits were recommended

at WECC MVWG in May 2014
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PIDGOV Model Results

• Below graph compares the Pmech response for a two bus system for 

a frequency change, between three transient stability packages

Packages A and B both 

say they have no 

governor limits, but  B 

seems to; PowerWorld 

can do either approach
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GGOV1

• GGOV1 is a relatively newer governor model, introduced in early 2000's 

by WECC for modeling thermal plants

– Existing models greatly under-estimated the frequency drop

– GGOV1 is now the most common WECC governor, used with about 40% of the 

units

• A useful reference is L. Pereira, J. Undrill, D. Kosterev, D. Davies, and 

S. Patterson, "A New Thermal Governor Modeling Approach in the 

WECC," IEEE Transactions on Power Systems, May 2003, pp. 819-829
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GGOV1: Selected Figures from 2003 Paper

Fig. 1. Frequency recordings of the SW and 

NW trips on May 18, 2001. Also shown are 

simulations with existing modeling (base case).

Governor model verification—950-MW 

Diablo generation trip on June 3, 2002.

Diablo Canyon is California’s last nuclear plant; Unit 1 had been scheduled to shutdown in 2024 and Unit 

2 in 2025. However, in March 2023 the NRC provided an exemption to PGE to operate both units past 

these dates (reference is California Senate Bill No. 846, which was signed on 9/2/2022) 19



GGOV1 Block Diagram

GGOV1 and the related

GGOV3 are

the most common 

governors in WECC, with 

more than 40% in 2019 
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Power System Stability Assessment

• As given in [1] the formal definition of power system stability is

– “Power system stability is the ability of an electric power system, for a given 

initial operating condition, to regain a state of operating equilibrium after 

being subjected to a physical disturbance, with most system variables 

bounded so that practically the entire system remains intact”

• The previously developed models will help in power system stability 

assessment

• Different techniques are used including time-domain simulations, 

eigenvalue analysis and power flow

1] IEEE/PES Power System Dynamic Performance Committee,  “Stability definitions and characterization of dynamic behavior in 

systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020 21



Power System Stability Terms

• The below image (from Figure 4 of [1]), and also shown lecture 2, 

helps define the terms

1] IEEE/PES Power System Dynamic Performance Committee,  “Stability definitions and characterization of dynamic behavior in 

systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020

The two main time scales are the electromagnetic (left two branches) and the electromechanical 

(right three branches). The focus in 667 is mostly on the electromechanical time scale with 

ECEN 616 focusing on the electromagnetic.     
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Transient Stability Multimachine Simulations

• Next, we'll be putting the models we've covered so far together

• Later we'll add in new model types such as stabilizers,  loads and 

wind turbines

• By way of history, prior to digital computers, network analyzers were 

used for system stability studies as far back as the 1930's (perhaps 

earlier)

– For example see, J.D. Holm, "Stability Study of A-C Power Transmission 

Systems," AIEE Transactions, vol. 61, 1942, pp. 893-905

• Digital approaches started appearing in the late 1950's
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A Little History

• A nice early reference is
– Dyrkacz, Young, Maginniss, “A Digital Transient Stability Program Including the Effects of 

Regular, Exciter and Governor Response,” Proc. AIEE, Part 3, February 1961, pp. 1245-1254

This 1961 demonstrates results on a 96 bus system, shown below;

note that the simulation is quite short, less than one second

24



Power System Multimachine Simulations

• The general structure is as a set of differential-algebraic equations

– Differential equations describe the behavior of the machines (and the loads and 

other dynamic devices)

– Algebraic equations representing the network constraints

In EMTP applications the transmission 

line delays decouple the machines; 

here they are assumed to be coupled 

together by the algebraic network 

equations
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General Form

• The general form of the problem is solving

( , , )

( , )

where  is the vector of the state variables (such

as the generator 's),  is the vector of the algebraic

variables (primarily the bus complex voltages), and 

 is the vector of contr



=

=

x f x y u

0 g x y

x

y

u ols (such as the exciter voltage

setpoints)
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Stability Simulations General Solution

• General solution approach is

– Solve power flow to determine initial conditions

– Back solve to get initial states, starting with machine models, then exciters, 

governors, stabilizers, loads, etc

– Set t = tstart, time step = t, abort = false

– While (t <= tend) and (not abort) Do Begin

• Apply any contingency event

• Solve differential and algebraic equations

• If desired store time step results and check other conditions (that might cause the simulation to 

abort)

• t = t + t

– End while
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Algebraic Constraints

• The g vector of algebraic constraints is similar to the power flow 

equations, but usually rather than formulating the problem like in the 

power flow as real and reactive power balance equations, it is 

formulated in the current balance form

( , )     or  ( , )

where  is the n  n bus admittance matrix

 ( ),  is the complex vector of 

the bus voltages, and is the complex

vector of the bus current injections

j

= − =



= +

Ι x V YV YV Ι x V 0

Y

Y G B V

I 

Simplest cases  can have

I independent of x and V,

allowing a direct solution;

otherwise we need to iterate 
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Why Not Use the Power Flow Equations?

• The power flow equations were ultimately derived from

I(𝐱, 𝐕) = Y V 

• However, the power form was used in the power flow primarily because

– For the generators the real power output is known and either the voltage setpoint 

(i.e., if a PV bus) or the reactive power output

– In the quasi-steady state power flow time frame the loads can often be well 

approximated as constant power

– The constant frequency assumption requires a slack bus

• These assumptions do not hold for transient stability
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Algebraic Equations for Classical Model

• To introduce the coupling between the machine models and the 

network constraints, consider a system modeled with just classical 

generators and impedance loads

Image Source: Fig 11.15, Glover, Sarma, Overbye, Power System Analysis and Design, 5th Edition, Cengage Learning, 2011 

In this example because we 

are using the classical 

model all values are on the 

network reference frame

We'll extend the figure slightly to include stator resistances, Rs,i 
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Algebraic Equations for Classical Model

• Replace the internal voltages and their impedances by their 

Norton Equivalent

• Current injections at the non-generator buses are zero since the 

constant impedance loads are included in Y

– We'll modify this later when we talk about dynamic loads

• The algebraic constraints are then I – Y V = 0

, , , ,

,i i
i i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +

Review Norton and 

Thevenin equivalents if 

you are rusty on them
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Swing Equation

• The first two differential equations for any synchronous machine 

correspond to the swing equation

( )

, ,with 

i
i s i

i i i i
Mi Ei i i

s s

Ei de i qi qe i di

d

dt

2H d 2H d
T T D

dt dt

T i i


  

 


 

 

= − = 


= = − − 

= −
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Swing Equation Speed Effects

• There is often confusion about these equations because of whether 

speed effects are included

– Recognizing that often   s  (which is one per unit), some stability books 

have neglected speed effects

• For a rotating machine with a radial torque, 

power = torque times speed

• For a subtransient model

( )

( )( )

( ) ,s d q q d

E d q q

E E d q d q d d q q

E V R jX I E jE j

T I I and

P T E jE I jI E I E I

  

 



     = + + + = − +

 = −

   = = + − = +
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Classical Swing Equation

• Often in an introductory coverage of transient stability 

with the classical model the assumption is   s so 

the swing equation for the classical model is given as

• We'll use this simplification for our initial example 

( )

( )( )with P

i
i s i

i i
Mi Ei i i

s

Ei i i i i i i

d

dt

2H d
P P D

dt

E E V Y


  






 

= − = 


= − − 

 =   −

As an example of this initial approach see Anderson and Fouad, Power System Control and Stability, 2nd Edition,  Chapter 

2 (with a newer version third edition of this book now available adding Vijay Vittal and Jim McCalley as authors).  
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Numerical Solution

• There are two main approaches for solving

– Partitioned-explicit: Solve the differential and algebraic equations separately 

(alternating between the two) using an explicit integration approach 

– Simultaneous-implicit: Solve the differential and algebraic equations together using 

an implicit integration approach

( , , )

( , )  

=

=

x f x y u

0 g x y
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Outline of the Solution Process

• The next group of slides will provide basic coverage of the solution 

process, partitioned explicit, then the simultaneous-implicit approach

• We'll start out with a classical model supplying an infinite bus, which can 

be solved by embedded the algebraic constraint into the differential 

equations

We'll start out just solving ( )

and then will extend to solving the full problem of 

( , , )

( , )

=

=

=

x f x

x f x y u

0 g x y
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Classical Swing Equation with Power Balance

• With a classical generator at bus i supplying an infinite bus with voltage 

magnitude Vinf,  we can write the problem without algebraic constraints as

( )

.

, inf
,

inf

sin

with P sin

i
i s i i pu s

i pu i
Mi i i i pu

i th

i
Ei i

th

d

dt

d E V1
P D

dt 2H X

E V

X


    


 



= − =  = 

  
= − −  

 


= Note we are using the 

per unit speed approach
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Explicit Integration Methods

• As covered on the first day of class, there are a wide variety of explicit 

integration methods

– We considered Forward Euler, Runge-Kutta, Adams-Bashforth

• Here we will just consider Euler's, which is easy to explain but not too 

useful, and a second order Runge-Kutta, which is commonly used
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Forward Euler

• Recall the Forward Euler approach is approximate

• Error with Euler's varies with the square of the time step

d
( ( ))  as 

dt t

Then

( ) ( ) ( ( ))

t

t t t t t


= =



+   + 

x x
x f x

x x f x
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Infinite Bus GENCLS Example using the Forward 
Euler's Method

• Use the four bus system from before, except now gen 4 is 

modeled with a classical model with Xd'=0.3, H=3 and D=0; also 

we'll reduce to two buses with equivalent line reactance, moving 

the gen from bus 4 to 1

Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and 1= 23.95°
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Infinite Bus GENCLS Example

• The associated differential equations for the bus 1 generator are

• The value of PM1 = 1 is determined from the initial conditions, and 

would stay constant in this simple example without a governor

• The value 1= 23.95° is readily verified as an equilibrium point 

(which is 0.418 radians) 

,

, .
sin

.

1
1 pu s

1 pu

1

d

dt

d 1 1 281
1

dt 2 3 0 52


 




= 

  
= − 

  
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Infinite Bus GENCLS Example

• Assume a solid three phase fault is applied at the generator terminal, 

reducing PE1 to zero during the fault, and then the fault is self-cleared at 

time Tclear
, resulting in the post-fault system being identical to the pre-

fault system 

– During the fault-on time the equations reduce to 

( )

,

,

1
1 pu s

1 pu

d

dt

d 1
1 0

dt 2 3


 



= 


= −



That is, with a solid fault on the 

terminal of the generator, during

the fault PE1 = 0
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Euler's Solution

• The initial value of x is

• Assuming a time step t = 0.02 seconds, and a Tclear of 

0.1 seconds, then using Euler’s

• Iteration continues until t = Tclear 

,

( ) .
( )

( )

1

1 pu

0 0 418
0

0 0





   
= =      

x

. .
( . ) .

. .

0 418 0 0 418
0 02 0 02

0 0 1667 0 00333

     
= + =     

     
x

Note Euler's assumes

 stays constant during 

the first time step
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Euler's Solution

• At t = Tclear the fault is self-cleared, with the equations changing to 

• The integration continues using the new equations

.
sin

.

pu s

pu

d

dt

d 1 1 281
1

dt 6 0 52


 




= 

  
= − 

 
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Euler's Solution Results (t=0.02)

• The below table gives the results using t = 0.02 for the 

beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 23.9462 60.2

0.04 25.3862 60.4

0.06 28.2662 60.6

0.08 32.5862 60.8

0.1 38.3462 61

0.1 38.3462 61

0.12 45.5462 60.8943

0.14 51.9851 60.7425

0.16 57.3314 60.5543

0.18 61.3226 60.3395

0.2 63.7672 60.1072

0.22 64.5391 59.8652

0.24 63.5686 59.6203

0.26 60.8348 59.3791

0.28 56.3641 59.1488

This is saved as PowerWorld case 

B2_CLS_Infinite. The integration

method is set to Euler's on the 

Transient Stability, Options, Power 

System Model page
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Generator 1 Delta: Euler's

• The below graph shows the generator angle for varying 

values of t; numerical instability is clearly seen
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Second Order Runge-Kutta

• Runge-Kutta methods improve on Euler's method by 

evaluating f(x) at selected points over the time step

• One approach is a second order method (RK2) in which

• That is, k1 is what we get from Euler's; k2 improves on 

this by reevaluating at the estimated end of the time step

• Error varies with the cubic of the time step

( ) ( ) ( )

( )( )
( )( )

1 2

1

2 1

1
                

2

where   

    

       

t t t

t t

t t +

+  = + +

= 

= 

x x k k

k f x

k f x k

This is also known as Heun's 

method or as the Improved Euler's 

or Modified Euler's Method 
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Second Order Runge-Kutta (RK2)

• Again assuming a time step t = 0.02 seconds, and a Tclear of 0.1 

seconds, then using Heun's approach

( )

( ) .
( )
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.
. , ( )

. . .

. .
.

. .

. .
( . )

.

pu

1 1

2

1 2
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0
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0 02 0

0 1667 0 00333 0 00333

1 257 0 0251
0 02

0 1667 0 00333

0 418 0 4311
0 020

0 0 003332





   
= =      

     
= = + =     

     

   
= =   

   

   
= + + =   

   

x

k x k

k

x k k
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RK2 Solution Results (t=0.02)

• The below table gives the results using t = 0.02 for the beginning 

time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 24.6662 60.2

0.04 26.8262 60.4

0.06 30.4262 60.6

0.08 35.4662 60.8

0.1 41.9462 61

0.1 41.9462 61

0.12 48.6805 60.849

0.14 54.1807 60.6626

0.16 58.233 60.4517

0.18 60.6974 60.2258

0.2 61.4961 59.9927

0.22 60.605 59.7598

0.24 58.0502 59.5343

0.26 53.9116 59.3241

0.28 48.3318 59.139

This is saved as PowerWorld case 

B2_CLS_Infinite. The integration

method should be changed to 

Second Order Runge-Kutta  on 

the Transient Stability, Options, 

Power System Model page
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Generator 1 Delta: RK2

• The below graph shows the generator angle for varying values of t; 

much better than Euler's but still the beginning of numerical 

instability with larger values of t
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Adding Network Equations

• Previous slides with the network equations embedded in the 

differential equations were a special case

• In general with the explicit approach we'll be alternating between 

solving the differential equations and solving the algebraic equations

• Voltages and currents in the network reference frame can be expressed 

using either polar or rectangular coordinates

• In rectangular with the book's notation we have

,i Di Qi i Di QiV V jV I I jI= + = +
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Adding Network Equations

• Network equations will be written as Y V- I(x,V) = 0

– Here Y is as from the power flow, except augmented to include the impact of 

the generator's internal impedance

– Constant impedance loads are also embedded in Y; non-constant impedance 

loads are included in I(x,V)

• If I is independent of V then this can be solved directly: V = Y
-1

I(x)

• In general an iterative solution is required, which we'll cover 

shortly, but initially we'll go with just the direct solution
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Two Bus Example, Except with No Infinite Bus

• To introduce the inclusion of the network equations, the previous 

example is extended by replacing the infinite bus at bus 2 with a 

classical model with Xd2'=0.2, H2=6.0 

GENCLS

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

PowerWorld Case is B2_CLS_2Gen 
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Bus Admittance Matrix

• The network admittance matrix is

• This is augmented to represent the Norton admittances associated 

with the generator models (Xd1'=0.3, Xd2'=0.2)

. .

. .
N

j4 545 j4 545

j4 545 j4 545

− 
=  

− 
Y

. ..

. .

.

N

1
0

j7 879 j4 545j0 3

1 j4 545 j9 545
0

j0 2

 
  − 
 = + =  

−   
 
 

Y Y

In PowerWorld you can see this matrix by selecting Transient Stability, 

States/Manual Control, Transient Stability Ybus
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Current Vector

• For the classical model the Norton currents are given by

• The initial values of the currents come from the power flow solution

• As the states change (i for the classical model), the Norton current 

injections also change

, , , ,

,i i
Ni i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +
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B2_CLS_Gen Initial Values

• The internal voltage for generator 1 is as before

• We likewise solve for the generator 2 internal voltage

• The Norton current injections are then

1

1 0.3286

1.0 ( 0.22 0.3) 1.1709 0.52 1.281 23.95

I j

E j j I j

= −

= + + = + =  

2 1.0 ( 0.2) 0.9343 0.2 0.9554 12.08E j I j= − = − =  −

. .
. .

.

. .
.

.

N 1

N 2

1 1709 j0 52
I 1 733 j3 903

j0 3

0 9343 j0 2
I 1 j4 6714

j0 2

+
= = −

−
= = − −

Keep in mind the Norton current injections 

are not the current out of the generator

0.4179 radians

0.2108 radians
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B2_CLS_Gen Initial Values

• To check the values, solve for the voltages, with the values matching 

the power flow values 

. . . .

. . .

. .

.

1
j7 879 j4 545 1 733 j3 903

j4 545 j9 545 1 j4 671

1 072 j0 22

1 0

−
− −   

=    
− − −   

+ 
=  

 

V
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Swing Equations

• With the network constraints modeled, the swing equations are modified 

to represent the electrical power in terms of the generator's state and 

current values

• Then swing equation is then

PEi Di Di Qi QiE I E I= +

( ) ( )( )

.

,

,

i
i pu s

i pu

Mi Di Di Qi Qi i i pu

i

d

dt

d 1
P E I E I D

dt 2H


 




= 


= − + − 

IDi+jlQi is the current being injected 

into the network by the generator 
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Two Bus, Two Generator Differential Equations

• The differential equations for the two generators are

( )( )

( )( )

.

,

.

,

1
1 pu s

1 pu

M 1 D1 D1 Q1 Q1

1

2
2 pu s

2 pu

M 2 D2 D2 Q2 Q2

2

d

dt

d 1
P E I E I

dt 2H

d

dt

d 1
P E I E I

dt 2H


 




 



= 


= − +

= 


= − +

In this example

PM1 = 1 and PM2 = -1
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PowerWorld GENCLS Initial States
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