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Abstract

In this paper we investigate the simulation of real and
reactive power spot markets. While spot pricing of real
power remains a viable option for the creation of a power
system market, the future of a reactive power spot market
remains cloudy. The large capital investment portion
needed in pricing reactive power as well as the highly
volatile nature of reactive power spot prices makes the
creation of such a market difficult. In spite of this, a
portion of the pricing scheme that is used for reactive
power will likely be based on the spot pricing approach as
this provides the most accurate signal for near real-time
system operation. This paper will build on a simple
modification to the standard optimal power flow (OPF) in
order to simulate the spot markets for real and reactive
power. To achieve this, price-dependent load models are
introduced for both real and reactive power.
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1. Introduction

Throughout much of the history of electric power,
electricity providers have treated consumer load as a
variable that they have no direct control or indirect control
over. The ability for the consumer to exercise price-based
control has also been limited due to the flat and time-of-
use rate structure presently used.

Over the past ten to fifteen years, however, there has
been a lot of discusson regarding the possible
implementation of a spot market for eectricity. This
would give consumers price signals alowing them to
adjust and modify their loads in order to get the most
utility out of their consumption of electricity. Much of the
theory for this market is described in [1].

While many agree that the implementation of a spot
market for rea power could be an effective way to
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increase the economic efficiency of the electric power
market, the viability of a spot market for reactive power
remains cloudy. In [2], the creation of a full spot market

for reactive power is put forth. While this does help create

an efficient market for allocating the operational costs of

the reactive power supply, it does not overcome two large
issues in the reactive power market: the capital cost of
reactive power equipment (such as capacitor banks and
LTC's) are large compared to operational costs and
reactive power spot prices are extremely volatile. For
example, in both [3] and [4], reactive power spot prices are
shown to vary by orders of magnitude when voltage limits
are encountered in the power system.

In order to overcome these issues, both [4] and [5]
propose the development of pricing schemes which take
into account the capital investment required to install
reactive power equipment along with alternatives which
try to overcome some of the price volatility in reactive
power spot prices.

Although there is still some debate regarding the
viability of reactive power spot prices, a portion of any
pricing scheme will likely be based on the spot pricing
approach. This paper addresses the application of the
optimal power flow (OPF) to the simulation of a spot
market in an electric power system. It builds on the theory
introduced in [6] and further developed in [7]. The OPF in
this paper uses the Newton’s method algorithm for its
solution technique [8].

2. Notation

General conventions on notation for this paper

« All vector and matrix variables are in bold.

» All vectors are column vectors.

e Subscriptg andqg signify a relation to real and
reactive power respectively.

Variable Definitions
X = state variables and other controls (e.g. tap ratios)

s= [SL s;]T = the supply vector

d=[d7 dI]"= the demand vector
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5= h g ]T = augmented supply vector including
zeros where no suppliers exists
d= [a; cAIT]T = augmented demand vector including
zeros where no loads exist
C.(s,,s,) = Suppliers’ Cost

all suppliers

B(d)= B(d,, dg) = ZB(dp,d) Consumers’ Benefit

&l constimers

C(9=Clsp s =

(o) ~8+40 g oGS equalty

E h(x) E B h)?) d, H constraints

hp(x,sp,dp):ﬁp(x)—sp+dp:real power flow
equations. See Appendix for more detail.

hq(x,sq,dq):ﬁq(x)—éq+aq:reactivepowerflow
equations. See Appendix for more detail.

IZBmln _S D
s-s,. O

g(x,sd)=0d AT inequality constraints
d-d_ 0

Hax) B

f(d,p,) = additional equation for consumer demand.

h(x,s,d) =

L, L, L = Lagrange functions
= [k; Al M]T = Lagrange multiplier vector

M=hl ] =R Al 7] =Lagrange
multiplier vector for power flow equations and
other equality constraints.

:

;\‘ = [;\‘;smm ;\‘;smax ;\‘;d min ;\‘;d max ;\‘g] = Lagrange
multiplier vector for inequality constraints

A= [;\'gsp
vector including only entries for power flow

equations which include a supply of real or
reactive power.

igsq]T = reduced L agrange multiplier

A=l Al ]T = reduced Lagrange multiplier

hd hdp hdq
vector including only entries for power flow
equations which include a demand of real or
reactive power

A = [ﬂp kaq]T = Lagrange multiplier vector for
additional constraints

p= [ID Py ] ‘[psp pg, Pdp pdq] = price vector
for variable suppliers and variable consumers.
(includes real and reactive prices)

0B(*)
od

D(*) = isthefunctional inverse of ——=. At optimal

solution thisis the consumer demand function.

S(¢) = isthe functional inverse of % At optimal
S

solution thisisthe supplier supply function.

3. Price-Dependent Load Theory

The theory needed for this paper was introduced in [6]
and further solidified and developed in [7]. These results
show that the addition of price-dependent loads to the
standard OPF algorithm that minimizes supplier costs will
result in an OPF that maximizes the socia welfare of a
system. While the full theory is not repeated here, a
synopsis of the resultsis provided for background.

The standard OPF algorithm solves the non-linear
program in equation (3.1).

max -C(s)
§,X

%(x) s+dD
E h(x) E
Smin =S U (3.1
s.t. %_Smax o
i
rd

h(x,s,d) =

After creating a Lagrange function and deriving the
Kuhn-Tucker conditions for this program, the necessary
condition of an optimal solution are found to be equation
(3.2).

, 1oh(xsd) o - og(xsd) _
" ox ¢ ox
0C(s) =~ _
_?_;\'ﬁs _;\‘gsmin +h gsmax =0
h(x,s,d) =0 (3.2
A 0(x,5,d) =0
A, 20

Reference [7] investigates the solution of the similar
non-linear program with the objective maximizing the
social welfare as shown in equation (3.3).

max B(d)-Cs)

x,s,d
hex,s,d) = |Jrh(x) s+dg 0
E h() §
Smip =S U (3.3
s.t. E]S_Smax S
gx,s,d) =t ;, —dU<0
%_dmaxg
Hax H
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Necessary conditions for the solution of this problem
are found to be those of equation (3.4).

Q\ T oh(x,s, D(_kﬁd +;‘gd min _;‘gdmax)) H
h

ox 0
~ 0
0 N T ag(X!SID(_;“ﬁd +)‘gdmin _;‘gdmax)) 0
B+ ¢ ox
0C(s) =
- 9s _;Vﬁs _;‘gsmin +;‘gsmax =0

h(x,s, D(_kﬁd +;‘gd min _;‘gd max)) =0 (3.4)
k;g(X,S, D(_kﬁd +;‘gd min _;‘gdmax)) =0
by 20

What is important to notice about equation (3.4) is, it is
the same equation as equation (3.2) with equation (3.5)
substituted in for the demand vector d.

d = D(_Zﬁd +;\‘gdmin _;\‘gdmax) (35)
Where the function D(e) is the functiona inverse of
% and is caled the consumer demand function.

Reference [7] demonstrates the implementation of a
consumer demand function for real power, as a function of
the real power spot price, into the OPF agorithm.

Thus, in order to take an existing OPF agorithm that
minimizes the cost of generation, one only needs to add
equation (3.5) to the necessary conditions.

4. Creation of a Demand Function for
Reactive Power

As mentioned in the previous section the price-
dependent load model is based on the existence of a
consumer benefit function, B(d), where d includes both the

real and reactive power demand: d = [dL d;]T. In [7]

the consumer demand function for real power was
assumed to be alinear function of the real power spot price
asinFigure 1.

0B(d,)
Dp(pp) = inverse of ad
| S

p

dpbase 7]

Consumer Price = Pp
[$]

Figure 1 Real Power Demand Function

ppbase

Equation (4.1) shows the matrix-vector representation
of thisfor an entire power system.

Dp(pp):(dpbase +M priceppbase)_M pricepp (4'1)

These demand functions correspond to a quadratic

consumer benefit function that is only a function of the
real power spot price as shown in equation (4.2).
T -1 1 Tpag -1

B,(d,)=d"(M" d +ppm)—§dp|v| d, (42)

price  Pbase price P

In this development, the consumer demand is assumed
to follow a constant power factor, i.e. the demand for
reactive power is always be equal to some constant times
the real power. Essentialy this corresponds to a benefit
function for reactive power which is some constant when
operating at constant power factor and equal to negative
infinity when not operating at constant power factor.

In order to incorporate the simulation of a reactive
power market through price-dependent reactive loads, it is
first necessary to determine a benefit function that befits
the benefits gained by reactive power consumption. This
reactive benefit function should not follow the same mold
as the real power benefit equation because reactive power
really serves more as a service which enables the
consumption of real power. Using this point of view,
consider the benefit of the reactive power as the avoidance
of moving the reactive power from some desired level for
a given power consumption. Define a desired reactive
power demand as a function of the real power demand:
d e = f(d,) . This desired reactive demand will be the

demand which the load will naturally require at the given
load level. Also assume that the magnitude of the function
increases with d,. Now consider a concave function, k(x),
which has a maximum value of zero a zero such as in
Figure 2.
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K(X)

Figure 2 Concave k(x)

Then using d.., = f(d,) dong with the function

k(x), construct the reactive power benefit function for an
individual load is asin equation (4.3).
B,(d,,d,)=B_k(d, - f(d,)) (4.3)
Due to the properties specified for k(x), this benefit has
a maximum value of zero which is achieved when the
reactive power demand is equa to the desired reactive
demand, f(d,). The benefit decreases on both sides of this
value because the consumer must provide their own
reactive power support using power electronics,
capacitive/inductor support, etc. One can envision a
system load with a filtering device such as that seen in
Figure 3.

A System Load Bus

|
” Load Seen by System
h =ty + | dg

Filtering Device:
(Power Electronics,
Capacitor Switching)

Actual Load
) =d, + j f(dp)

v

Figure 3 The Load M oddl with Reactive Control

The model here assumes that the cost of operating this
filtering device is equal to zero when it is performing no
filtering, i.e. when d, = f(d,) and increases, according to
k(x), as it moves away from that point.

Incorporating equation (4.3) into the total consumer
benefit results in a function of both the real and reactive
demand.

Bd,.d)= Y (B,(d,)+B,(d,.d,)) (44

al conslimers

The consumer demand function can then be calculated
from equation (4.4) by determining the functional inverse
of the derivative of this consumer benefit function.

5. Example Demand Function for
Reactive Power

As an example consider using the quadratic real power
benefit function for each consumer of the form

B,(d,)=ad, —bd}. Thisisthe same benefit as that seen
in equation (4.2). For the reactive power benefit function,
use d. =f(d)=yd ad Kk(x)=-x*. This
corresponds to a constant power factor load where

J1-pf?
y :—fp and the cost of compensating for reactive
p
power by the consumer increases quadratically as it moves
away from d =f(d)). Thus the consumer benefit

function is equation (5.1).

B(d,,d,) = ad, —bd? - B,[d, —»d |
=ad, +(-b-B,y?)d? - B d? + 2B, d,

Qo —q

(5.1)

It should be noted that equation (5.1) is simply the
summation of two concave functions and is therefore itself
concave.

Now it is of interest to determine the consumer demand
functions that result by calculating the functional inverse
of the derivative of the consumer demand function. The
derivative with respect to the real power demand is shown
in equation (5.2).

2B(d, ,d
%: [a-20d ]+ [28,1(—d, +d,)] (52)
—_—
" Bpldp)  OBqpdg)

In looking at the derivative of the consumer benefit
function with respect to real power demand, it is normally
expected that this derivative always be positive because
some marginal benefit is expected from increased
consumption. However, because of the model that is being
proposed this will not always be true.

N 0B,(d,) . : .
One possibility isthat —>——"~ isnegative. Thisisan
3
artifact of using the model design the range intended. The
benefit model for real power should be concave and
increasing. The quadratic function is concave, but will
begin decreasing once the maximum point is reaching. It
is therefore important that the real power load for a

consumer be limited so that the function a-2bdis

aways positive.  Otherwise the consumer gets more
benefit by decreasing power consumption regardless of
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any other costs. This would not make sense as the
consumer could always resell the power and thereby get
some use.

N 9B,(d,.d,) .
The other possibility is that Y be negative

P
and begin to dominate the first term.  This is not

unrealistic. 1t would merely mean that further increases in
real power would result in large costs for reactive power
consumption and therefore reduce the consumer benefit.
Now consider taking the derivative with respect to
reactive power demand.
0B(d,,d,)
ad,
Equation (5.3) shows that in order to increase benefit, the
reactive power demand is aways pushed toward the
desired level »d, .
In order to determine the consumer demand function,
equate equations (5.2) and (5.3) to the price of rea and
reactive power respectively.

= 2B, (~d, +d,) (5.3)

0B(d_,d a0 3-2b-2B_ y° 2B, Od, 0 Op,0
—LLQ:%WD = %@D "0(54)
od 0o Zquy _Zqu q ]

Then solve for real and reactive demand in terms of these
prices, i.e. determine the functional inverse.

0 L (p +pp)+ 2 0
O T on q O
oe)=0p 2 . be L 069
g (p,, )* 550 28 P'E

1
NOTE dq:}dp_gqo pq

Asin [7], it is helpful to rewrite this additional equation in
a more meaningful way. Equation (5.5) can be re-written
asfollows:

. Dm ym, O
+m p O
D(s)=p ™= ' ° s b »=(5.6)
() gjqbase+},mpppbaseg %mp %/m +_d %q%
O
with the following definitions:
1 (o I B
m =— = B = ®©
T VT w7

pbase gbase

and onedemand pointof d, =d . andd, =d,,..
atpricesp, = p,.. and p, =0given.
Note that as B,, — o, this consumer demand function

will behave very similar the consumer demand function of
equation (4.1) with d, = )d - p, = W, . There
Zqu B « 00

qo

will be some small difference because the rea power
consumption will now also be based on both the reactive
power price and the real power spot price as in equation
(5.7).
dp = (dpbase + mp ppbase)_ mp(pp + }'pq)
dq = }dp
However, this difference will be small as long as the

reactive power priceisrelatively small, asit normally is.
Now, at each demand bus specify avalue of My, Posase:

B, , Opases aNd Oypase and substitute

D fdp + /]gdpmln - Agdpmax - [d pbase + mp ppbase E
- ﬁd + /‘gdq min - Agdq max %jqbase + Vnp ppbase |:|
om ymp . (5.8)

p

D hdp +/‘gdpmm _Agdpmaxg
qbase
a‘n m t— B hdq + /‘gdq min Agdqmax E

qo

(5.7)

into the opt| mal power flow necessary conditions shown in
equation (3.4). This will result in the social welfare
maximum for the economic load model that has been
described.

6. Implementation of Real and
Reactive Price-Dependent L oads
into the OPF

This section will only study how the consumer demand
function of equation (5.6) effects the calculations of the
Newton’'s method algorithm. Equation (3.4) will be
repeated here to further study how the choice consumer
demand function will effect the solution of these equations.

Q\ T oh(x,s, D(_kﬁd +;‘gd min _;‘gdmax)) H
h ox 0

~ 0
0 N T ag(X!SID(_;“ﬁd +)‘gdmin _;‘gdmax)) 0

B+ g ox
0C(s) =
_?_kﬁs _;‘gsmin +;‘gsmax =0
h(x,s, D(_kﬁd +;‘gd min _;‘gd max)) =0 (6.1)
k;g(X,S, D(_kﬁd +;‘gd min _;‘gdmax)) =0
by 20

It is first noted that after taking derivatives of h and g
with respect to X, no dependence on s or d is found (as
long as s and d are not functions of x, which we have
assumed). Therefore, the choice of the consumer demand
function has no effect on the first equation. The only
influence comes in the third and fourth equations. The
consumer demand function has only changed the demand
function from a constant to one dependent on the Lagrange
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multipliers Xﬁd, A and A This will not impede

the OPF agorithm as it will only require a simple function
evaluation.

gd min gd max *

In using Newton's method to solve these nonlinear
equations, derivatives of the equations must be determined

a block diagonal matrix Wi th 2X2 entriesof
orrespondi ng to

PQprlce = arn qbase ariables) gd max
* 28, [peaediod

in order to calculate a Hessian matrix. In order to evaluate The key pomt to recognize is that the effect of the
how the consumer demand function will effect these addit_ion_al .prilce~dependent equations on the Han
equations take the derivatives of the third and fourth matrix is limited to small 2X2 block diagonal entries.

equations with respect mhd v Mgy @A A
Gh(x) S+d)0
o] 0
oh(x,s,D) _ [ h(x) HaoD _ - ~
~ _[I PQ][_M PQpnoe]
6k od o,
oth0) -5+
oh(x,sD) _ 0 h(x) [ oD _ - v
- - +[I PQ][_M PQpnoe]
a;\‘ gd min ad a;\‘ gd min
5t —3+a)0
o]
oh(xsD) _ 0 h(x) §aD _ -~ . —
a - - _[I PQ][_M PQprice]
;\‘gdmax ad 6;\‘gdmax
IZBmin -S D
o9(x,sD) _ofy  -dOdD _ ~ .. -
_ min = | _M
a;\‘ﬁd %‘J dmaxgﬁ +[ PQ][ PQpnoe]
How H
- b
99(x,s,D) _
= = H ] IM ]
a;\‘gd min " Fn
og(x,sD) _ ~ .
T = +[ I PQ][_M PQpnoe]

gd max

where the variables are defined as
P matrix with diagonal entriesof 1corresponding

" ™ to consumer demand variablesd

~ _matrix with diagonal entriesof 1corresponding
"~ to consumer demandsd which areat alimit
a block diagonal matrix with 2X2 entriesof

R 0 om, }'m,, O
vice — orresponding to
Moo gm, ariablesd
0 ZB
ablock diagonal matrix with 2X2 entries of
v Em" m o orresponding to
PQpnce Sd'n %/ m qbase ariabl 63de min
P P relatedtod
0 28, tH

From equation (7) of reference [8], the Hessian matrix for
the coupled OPF formulation is shown to have the
structure in equation (6.2).

Oy | Tl:l
=g (62)
231 08

The block diagonal entries which are added to the
Hessian by the price dependent loads will be in the zero
matrix in the lower right partition. Because some entries
are added on the off-diagonals in this zero matrix, it is
possible that some degradation of sparsity may occur,
however it will be minor. Figure 4 shows this addition of
2X2 blocks along the diagonal to the lower right partition
of the Hessian matrix for the |IEEE 118-bus sample system.
[7] shows the Hessian matrix for the same 118-bus system
that maximizes social welfare including real power price
dependence only as well as the Hessian matrix for
minimizing generator costs only.

Hesmpn Mefris for '-lmaml?rlg S WieFarm rln:.-rilrr_, Hepciive S Enigm

6 50 100 150 200 253 %00 350 400 450 500
e = 5757

Figure4 Hessian Matrix for |IEEE 118-Bus System
after Adding Real and Reactive Price
Dependence
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7. Sample Case

The OPF modifications as discussed in the previous
section were implemented into a standard OPF that
minimizes fuel costs [9]. As a case for comparison
purposes, Figure 5 shows a small six-bus system that was
optimized to maximize social welfare using only real
power price dependence asin reference [7].

250 MV
148 MV 20 MR
@ 15.19 $/ MMH 140 MW
141 WY 0.00 $/ MRH “2g8 MR
. 16.02 $/ MAH
3 0.00 $/ MRH
1.00 PUA 15. 93 $/ MH ®
Y 70.00 $/ MRH
¥y 250 MV
164 vw @ 62 MR
63 MR
s 5 00 5 1750 g,
0.96 PU S ' 125 MV
o > 12 MR
& 17.15 $/ MM
0.00 $/ MVRH
Al transnission |ines have
128 MV 160 M e Boept ance 0. 05
26 WR 94 MR anglinit of 100 WA

Figure5 Maximizing Social Welfare Using Only Real
Power Price Dependence

In Figure 5, the real power loads followed the
following price dependent model while the reactive power
load maintained constant power factor regardless of
marginal cost.

mprice

d,(p,) :d,m%+ 5 (o = pp)E:dm(nm(zo— p,)
pbase

With dyese €qual to the base demand for the bus. In this
example dppase = 100 MW for each load. This price model
means the loads will consume their dyas if the spot price
is p, = 20 $MWH. If the spot price falls below 20
$/MWH the loads will begin to consume more power,
while if the spot price increases the loads will respond by
consuming less. This sensitivity to priceis encapsulated in

price

the term that determines the dope of demand
pbase
function given in Figure 1. In Figure 5, the spot prices are
all below 20 $/MWH causing the loads to all converge to
more than their dppase.
By modeling the loads with reactive power price
dependence, it is expected that the reactive power loads at

buses 5 and 6 may be reduced, as their price is positive.
The variable B, was chosen to be 0.5 and the OPF results
are shown in Figure 6.

250 MW

148 MW, -40 MR
10 WR 2
2@ 15.19 $/ MMH 140 MW
0, [V 1.00 PUASYZ '0.00 $/ WRH ~ g MR
16. 02 $/ MW
1.00 PUA 0.00 $/ WRH
F 250 MV
164 v @ 20
26 MR Y
15§ 16.97 3/MH 1008 g%
0.98 PU 0.09 $/ WRH b :
> 125 MW
v 3 MR
17.13 $/ MMH
0.00 $/ WRH
Al transnission |lines have
129 MWV 159 MWV i npedance 0.04 + j0.08 and total
6 MR 51 MR na P o oo

Figure 6 Reactive Power Price Dependence, E =05

As mentioned previously, as g becomes large, the

system should converge to a solution near the solution
which ignored reactive power price dependence. This

same six-bus solution with B, = 100 is shown in Figure 7.

15.18 $/ MMH 140 MW
0.00 $/ WRH “28 WR

141 MV
16.00 $/ MM
1 00 publ 0.00 $/ MVRH
¥y 250 MV
163 Mv @ &
62 MR § 4
5 & 16.97 3/ W 17. 49 $/ MM
0.33 $/ MWRH 0.14 $/ WRH
0.96 PU ¥ > 125 MV
2 12 MR
17. 14 $/ MM
0.00 $/ MVRH
7 Al transnission |ines have
129 MWV v 159 MWV |;‘medance 0.04 : jo. Dg ggd total
26 MR 93 MR L Timor 100 WA

Figure 7 Reactive Power Price Dependence, g =100

Comparing Figure 5 and Figure 7, one sees that there is
very little difference in the solutions. Some difference
does exigt, but this is small as it is due to the real power
demand dependence on the reactive power price. Since the
real power price is much larger than the reactive price,
very little change in real power is seen.

As a power system approaches a voltage limit,
however, the reactive power margina costs increase
rapidly. At these points, the influence of reactive power
price dependence will make a large difference in the OPF
solutions. Figure 8 shows a sample three-bus power
system taken from [3] simulated using the real power price
dependent model  d (p,)=d,. [+10@35-p,) and

reactive power demand maintaining constant power factor.
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800 MV
76MMR
Bus 3
1.04 PU
379 MV

29 MR

35.58 $/ MMH
5.54 $/ WRH
0.960 PU

19 MV
3244MR

503 MW
101 WR

Figure8 Three-Bus System with Real Power Price
Dependence Only

Bus 2 in Figure 8 is at the voltage limit specified of
0.96 pu and as a result the reactive power marginal cost at
this bus is a very large 554 $/MVRH. Applying the
reactive power price dependence model in this situation
will not only decrease the reactive power demand, but may
also enable the bus to increase its real power demand as
the voltage limit is removed. The result of simulating this

system with B_qo: 1.0 is shown in Figure 9. The results

shown in Figure 9 verify that the real power demand is
able to increase as expected.

800 MV
35WMWR
Bus 3
1.04 PU
391 MW

29.54 $/ MMH
0.00 $/ M\VRH

-363 MV
56 MR

34.59 $/ MMH
0.83 $/ MWRH
0.973 PU

495 MW
49 MR

2028MV
2508 MR

Figure 9 Reactive Power Price Dependence, E =1.0

8. Conclusion

The results shown in this paper illustrate that the
implementation of price dependent load models into the
optimal power flow is an effective way to simulate both a
real and reactive power spot markets. As market rules are
created, these load models may be a valuable tool for
modeling potential behavior. These simulations could aid
in creating rules that encourage the market participants to
find the social welfare maximum. On the other side of the

coin, the simulations may be helpful to the market
participants in modeling the behavior of other players in
the market.

These methods could also be used to actualy
implement the market mechanisms. Participants could be
required to submit consumer demand functions and
supplier supply functions. These functions could then be
fed into an OPF solution engine and determine the

“optimal” point assuming that the participants were
bidding their true marginal behavior.
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