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Abstract—Solar activity can cause geomagnetic disturbances
(GMDs) that give rise to geomagnetically induced currents
(GICs) which may compromise the reliability of the electric
grid. In order to build more reliable models representing GMD
interactions with the power grid, the power system’s detailed
electrical model must be considered along with fluctuations in
the earth’s magnetic and induced surface electric fields. This
study investigates the impact of incorporating spatially varying
magnetic fields into surface electric field models on GMD risk
metrics. A spatially independent magnetic field model and a
spatially varying model are compared through simulations. To
perform this analysis, the earth’s magnetic field disturbances
are transformed into surface electric fields using respective
one-dimensional earth conductivity models. Then, the modeling
impact of these electric fields is studied using a 2,000-bus grid
for Texas and a 25,000-bus grid for the northeast and mid-
Atlantic regions of the United States. Simulation results reveal
that the inclusion of spatially varying magnetic fields results in
considerable differences in GMD risk metrics, highlighting the
importance of accounting for spatial variability when assessing
GMD risks in the power system.

Index Terms—Geomagnetic disturbance (GMD), magnetome-
ter, geomagnetic field, electric field, geomagnetically induced
currents (GICs).

I. INTRODUCTION

T his paper aims to elevate understanding of the spatiotem-
poral properties of geomagnetic disturbances (GMDs)

and their impact on the power system through modeling and
simulations of spatiotemporally varying electric fields (E⃗) on
large-scale electric grids. Results from power flow analysis
are then analyzed to determine risks from GMDs. The work
presented in this paper builds on our previous research [1]
which conducted statistical analysis to compare magnetic field
(B⃗) data collected from magnetometers installed throughout
the United States (US) during a strong (G3) GMD event in
early November 2021.
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A. Impact of GMDs on Power Systems
Solar activities such as coronal mass ejections (CMEs)

initiate GMDs by ejecting charged particles into space. After
traveling to the earth, these particles interact with the earth’s
conductive ionosphere and can cause a disruption in the earth’s
magnetic field. When the earth’s magnetic field changes, an
electric field is induced at the surface of the earth which
produces geomagnetically induced currents (GICs) in power
transmission systems. Adverse impacts to the power grid’s
reliability manifest when GICs are high enough to cause
degradation of power system equipment such as high-voltage
(HV) transformers or cause misoperation of protective relays
[2]. Severe impacts of GMDs on the security and operation of
the power system, as well as on civilizations that depend on it,
were demonstrated by the GMD event of 1989 which resulted
in the collapse of the Hydro Quebec power grid, and more
recently, the 2003 GMD event which resulted in a cascading
blackout of the Swedish grid [3], [4].

Most GMD-related issues arise from GICs flowing through
HV transformer windings, causing half-cycle saturation in
transformers which results in excessive heating, generation of
current harmonics and increased reactive power consumption
in transformers [5]. Furthermore, an uncontrolled increase in
reactive power load from the transformers can lead to system
voltage instability and even power grid collapse if VAR-
producing devices such as generators, static var compensators
(SVCs), and capacitor banks are unable to produce enough
reactive power to meet demand at all system buses, such as
what had occurred to the Swedish grid in 2003 [6], [7]. Various
strategies have been proposed in the literature to monitor [8],
[9], control [10], [11], and mitigate [12], [13] the effects of
GICs on the power grid.

B. Efforts to Enhance GMD Modeling
Given the threat GMDs pose to power system security

and operation, the power system community in the U.S. has
made significant efforts to enhance understanding and improve
models of GMDs on the grid. Much of the focus is placed on
the integration of physics-based techniques, development of
global and regional conductivity models, and data assimilation
techniques to improve the precision of geoelectric field models
and aid in the mitigation of GMD hazards in the power grid
[14]–[16]. For example, several studies have examined and
compared differences in electric field estimations when using
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1-D and 3-D earth conductivity models [15], [17]–[20]. In this
study, the 1-D conductivity model is employed. Considering
the primary goal of this work is to understand the importance
of incorporating spatially varying geomagnetic fields to esti-
mate induced electric fields, it is deemed acceptable to utilize
the 1-D conductivity model in this context.

Another related prior work [19] used sparse magnetometer
measurements to model transformer neutral currents and com-
pared their model to measurements collected by the Ameri-
can Transmission Company (ATC) in Wisconsin. Their study
demonstrated an important trend: As the distance between the
magnetometer and the neutral current measurement location
increased, the correlation between modeled and measured
currents decreased. These observations reveal important limi-
tations of using a spatially independent magnetic field model
for GMD modeling and analysis. Models that oversimplify
magnetic field variations across space may lead to inaccuracies
in geoelectric field estimations across geomagnetic latitude
and for regions with magnetic anomalies, such as those with
underground metallic objects or near-space current systems
that may impact the geomagnetic field [21]. Inaccurate electric
field estimations can impact site assessments for applications
such as geophysical surveys, navigation, and GMD analysis.

To address the uncertainty on which non-uniform electric
field values to use for GIC modeling, North American Elec-
tric Reliability Corporation (NERC) published a benchmark
scenario that defines the geoelectric field values employed to
calculate GICs [22]. NERC also recommends using scaling
factors to account for field changes across geomagnetic lati-
tude and ground conductivity. This study builds on the NERC
TPL-007 standard and enhances the current literature by:

• Developing a comprehensive B⃗-to-E⃗-to-GIC methodol-
ogy that takes advantage of magnetic field data collected
from spatially distributed magnetometers and correspond-
ing ground conductivity for large-scale power systems.

• Investigating the influence of magnetic field spatial vari-
ation on GIC by comparing simulation results using an
induced electric field model derived from measurements
of spatially distributed magnetometers against a model
that was derived from a single reference magnetometer
(as in the NERC TPL-007).

• Examining whether NERC’s geomagnetic latitude scaling
factors properly model spatial variation in the electric
field across the grid.

• Demonstrating our results on large-scale synthetic electric
grid models including a 2000-bus Texas model and a
25,000-bus northeastern and mid-Atlantic US model.

This study seeks to develop more realistic models for
GMD studies by examining the impact of spatial variation
in magnetic fields when modeling surface electric fields. A
series of steps are considered in this study to perform our
investigation:

1) Transformation of time-series magnetometer measure-
ments from six magnetometer stations in Texas and
six in the Northeastern (NE) United States into electric
fields using corresponding ground conductivity data for

separate physiographic regions, as defined in a NERC
guideline [2] and Electric Power Research Institute
(EPRI) report [23].

2) Statistical analysis of the induced electric fields is per-
formed to glean insights into the relationship between
spatio-variations of magnetic field measurements and
spatio-variations of the calculated electric fields.

3) Electric fields are used for GIC calculations for two
large-scale synthetic grids. The fields are mapped to
areas in the grid that correspond to their conductivity
zones and closest magnetometer stations.

4) GMD risk assessment: metrics including induced electric
field on substations, transformer effective per-phase cur-
rents, neutral currents, and the system’s reactive power
losses are computed using PowerWorld, a power flow
simulation software [24].

5) The GIC simulation results are compared to evaluate
the impact of spatially varying and spatially uniform
magnetic field fluctuations on the power grid. This is
achieved by transforming and then modeling electric
fields derived from both spatially varying magnetometer
measurements and a reference magnetometer waveform.

The rest of the paper is structured as follows. Details on the
transformation of the earth’s magnetic field into the surface
electric field are provided in Section II. Statistical analysis of
the time-series electric fields captured and derived from a G3
GMD event is presented in Section III. Scenarios and case
studies simulated on the large-scale power grids are shown in
Section IV. Results from these studies are discussed in Section
V. Finally, Section VI concludes this paper.

II. THE INTEGRATED GMD MODELING METHOD:FROM
B-TO-GIC

This section outlines the comprehensive methodology em-
ployed in modeling and computing GICs from time-series
magnetic field data. A high-level flowchart illustrating the
steps involved in GMD modeling and analysis used in this
paper can be found in Fig. 1.

A. Magnetic Data Collection

The first step in analyzing geomagnetic disturbances in-
volves determining the resultant fluctuations in the earth’s
magnetic field using data collected by magnetometers. These
instruments are installed at ground level to collect field fluctu-
ations over a period of time, typically with a sampling period
ranging from seconds to minutes. Magnetic field data utilized
in this study was obtained from two major magnetometer
networks: six stations from the Texas A&M University Mag-
netometer Network (TAMUMN) [25] and six stations from
the Distributed Arrays of Small Instruments (DASI) [26]–[28].
These magnetometers capture field fluctuations in TX and the
NE regions, respectively. A map of the magnetometers, along
with borders drawn to separate different conductivity zones, is
displayed in Fig. 2. Magnetic field measurements from these
magnetometer networks were then used to derive the earth’s
surface electric fields.
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Fig. 1. High-level flowchart of GMD assessments.

Fig. 2. Locations of magnetometers within the DASI and TAMU magne-
tometer networks are shown, respectively, in red and green pointers. Borders
separating different physiographic regions of the continental United States are
also drawn, with all zones containing the 1-D earth conductivity models that
were used for this study marked with yellow dots and labeled.

B. Applying Magnetic and Electric Fields onto the Grid

This section provides a concise overview of the process
for mapping magnetic fields onto distinct conductivity regions
and applying electric fields to the grid. For a more detailed
description, the reader may refer to Section IV. A two-step
mapping process was applied in the estimation of geoelectric
fields across the grid.

1) Mapping magnetic fields to conductivity regions: The
time-series magnetic fields from each magnetometer sta-
tion were mapped to the conductivity region that housed
the corresponding station. To observe the consequences
of neglecting spatially varying magnetic field data in
the electric field model, an electric field model was
also derived using spatially uniform magnetic fields.
This involved mapping the magnetic field collected from

TABLE I
MAPPINGS BETWEEN CONDUCTIVITY REGIONS AND MAGNETOMETER

STATIONS FOR TX

TX-Regions BR1 IP4 IP1 CP2

Mag. Stations Odessa
Odessa

Amarillo
Stephenville

Stephenville
Rellis

Beaumont
Beeville

TABLE II
MAPPINGS BETWEEN CONDUCTIVITY REGIONS AND MAGNETOMETER

STATIONS FOR NE

NE-Regions Mag. Stations NE-Regions Mag. Stations
NE1 Augusta AP1 Virginia
NE1 Haystack PT1 Virginia
SL1 Atlas CP1 Virginia
AK1 Atlas CP2 Virginia
AP2 New Britain IP3 Bluesky

one reference magnetometer to all conductivity regions
within their respective power grid. Here, it is important
to clarify that ’mapping’ in this context refers to ap-
plying the magnetic field data to the surface impedance
model of the region. This process is discussed in detail
in Section II-C. The earth resistivity (or conductivity)
model for each region was sourced from EPRI and can
be downloaded from the EPRI website [29].

2) Applying electric field estimates to conductivity regions
within the grid: Subsequently, separate time-series elec-
tric field estimates corresponding to each station and
region were generated. These electric field estimates
were then applied to specific conductivity regions within
the power grid defined by their GPS coordinates. The
auxiliary file containing USGS GPS coordinates for
earth conductivity regions was obtained from the Pow-
erWorld website [30].

For special scenarios in which regions did not have a
dedicated magnetometer station, regions were mapped to the
nearest station. For instance, the region BR-1 in Texas, which
did not have a magnetometer station, was mapped to the near-
est station, Odessa. For cases where multiple magnetometer
stations shared a single conductivity region, a subdivision
strategy was employed. The conductivity region was divided
into sub-regions, with each sub-region corresponding to a
specific magnetometer station. Each station is then mapped to
the sub-region in which the magnetometer station is situated.
For example, stations Amarillo, Odessa, and Stephenville all
fell within region IP-4 in Texas. To address this, we divided
GPS coordinates defining IP-4 into three sub-regions. The
area north of 33.00 degrees latitude was mapped to Amarillo
while the remaining area east of -99.99 degrees longitude was
mapped to Stephenville.

C. Calculating the Electric Fields

In the context of power systems modeling, frequency
domain techniques are utilized to approximate the induced
surface electric field. This approach involves decomposing
the time-series magnetic field measurements, B(t), into its
frequency equivalent using the Fast Fourier Transform (FFT).
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Given the earth’s surface impedance, Z(ω), magnetic field,
B(ω), and the induced electric field, E(ω), can be derived.

To approximate Z(ω), the 1-D layered earth conductivity
model published by EPRI [23] is adopted to account for the
variation of conductivity within the earth’s layers. Although
the 1-D model neglects lateral variations in conductivity, it
provides a reasonable approximation in most applications. In
Tables I and II, the conductivity regions for the grids of TX
and NE are displayed with their corresponding magnetometer
stations. Some of the stations are represented by multiple
conductivity zones. With the depth and conductivity known
for each region containing the magnetometer stations, the
corresponding impedance observed at the surface of each
layer can be obtained. Each layer, n, is characterized by its
propagation constant, kn, which can be calculated using (1),
where µ0 is the magnetic permeability of free space and σn

is the conductivity of layer n in S/m [2].

kn =
√

jωµ
0
σn (1)

Given kn, the surface impedance observed at the bottom
layer can be obtained by (2).

Zn =
jωµ0

kn
(2)

To calculate the surface impedance of the layers above,
its reflection coefficient, rn, must be considered. rn can be
obtained with (3).

rn =
1− kn

Zn+1

jωµ
0

1 + kn
Zn+1

jωµ
0

(3)

Using rn, the impedance seen at the surface of that layer
can be obtained by (4), where dn is the thickness of layer n.

Zn = jωµ
0

1− rne
−2kndn

kn(1 + rne−2kndn)
(4)

The steps described by (3) and (4) must be iterated for
each layer until the uppermost layer is reached to obtain
the final impedance seen at the surface of the earth. Since
the propagation constants and respective impedances vary
with respect to frequency, the surface impedance calculations
described by (1) to (4) must be repeated for each value of ω
in order to obtain the final spectral surface impedance, Z(ω).
Given (Zω), (5) and (6) can then be used to calculate E(ω),

EX(ω) = Z(ω)
BY (ω)

µ0
(5)

EY (ω) = −Z(ω)
BX(ω)

µ0
(6)

where EX(ω) and EY (ω) are the northward and the eastward
electric field, respectively. BX(ω) represents the northward
magnetic field, and BY (ω) corresponds to the eastward mag-
netic field. The electric field in the time-domain can then be
obtained by computing the inverse Fourier transform of E(ω)
as indicated by (7).

E(t) = F−1{E(ω)} (7)

D. Modeling GICs in the Power Grid

The surface electric fields can interact with the power grid
to induce a quasi-dc voltage Vdc across each transmission
line. This voltage is computed by integrating E along the
incremental length of the transmission line as described below:

Vdc =

∮
E · dl (8)

Calculating the GICs which are quasi-dc in nature can be
done as follows [31], [32]:

I = GV (9)

where, matrix G represents the system’s conductivity values
in conjunction with grounding resistance at the substation.
This matrix resembles the bus admittance matrix of a power
flow analysis. Voltage vector V represents the bus voltage
and substation voltage. The vector I are injection currents
present at every node in the system, both at the bus and at
the substation. A GIC flowing between nodes n and m is
calculated by the following equation:

Inm = gnm(Vn − Vm) (10)

where gnm is the conductance of the transformer or the
connecting line in the dc model. For delta-wye transform-
ers, the effective quasi-dc current GIC per phase refers to
the current flowing through the high-side winding. It is a
combination of the currents flowing through the high and low
sides of autotransformers and wye-wye transformers and can
be calculated as follows [31]:

Itef = |ItH +
ItL
αt

| (11)

where, ItH and ItL denote the per phase effective GIC passing
through the high-side and low-side of the transformer coil,
respectively, and αt is the transformer turns ratio parameter.
This reactive power loss is a vital link between dc and ac
power systems. In the event of a GMD, reactive power loss
for transformers in MVAR varies based on the transformer
core model, GICs, and voltage and can be linearized as [33]:

QLoss = k.Vpu.Ief (12)

where, Qloss is the transformer GIC-related reactive power
loss in Mvar, Vpu is the per unit voltage and k has units
of Mvar/amps. This approach is effective when individual
values of k are accessible for each transformer. However, in
extensive system studies where default k values are commonly
employed, an alternative method is to modify (12) slightly to
use an assumed nominal voltage in the definition of k. In
this case, the constant value should be adjusted proportionally
to the transformer’s specific maximum nominal kV level.
Consequently, the reactive power loss equation is transformed
to: [33]:

QLoss = Vpu k

(
VNom kV

VNom kV ,Assumed

)
Ief (13)

where, VNom kV is the nominal kV of the highest winding
for the transformer and VNom kV ,Assumed is the assumed
nominal voltage. If k is specified for a particular transformer,
then the assumed value is just equal to the nominal and (13)
is identical to (12).
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(a) Correlation of the induced E(t) reflected on TX footprint.

(b) Correlation of the induced E(t) reflected on NE footprint.

Fig. 3. Correlation of the induced E(t) estimations on the peak-storm day
(Nov. 4, 2021) for TX and NE.

III. STATISTICAL ANALYSIS OF THE INDUCED ELECTRIC
FIELDS ACROSS THE STATIONS

This section analyzes the correlation of the estimated
induced surface electric fields derived from magnetometer
measurements (BX , BY ) on the peak-storm day, November
4, 2021. Before beginning the analysis, pre-processing of the
magnetic data was performed in order to identify potential
outliers. This was accomplished by using the Local Outlier
Factor [34], an unsupervised outlier detection technique that
evaluates the local density deviation of a point within a given
neighborhood. A forward-fill approach was utilized to replace
the outliers detected for each station, day, and variable in
order to preserve the dimensions of the data and to ensure
that comparison for each station at every time point can be
made.

Correlation analysis is performed to assess the similar-
ity between time-series electric fields derived from different
magnetometer measurements. The strength of the relationship
between two data sets is indicated by the magnitude of
Pearson’s correlation coefficient, which ranges from -1 to 1,
where a higher coefficient is indicative of a stronger correlation
between data sets. Equation (14) is used to compute the
Pearson’s correlation coefficients, where cov(A,B) represents
the covariance of signals A and B, and σA and σB are the
standard deviations of A and B, respectively.

CorrA,B =
cov(A,B)

σA σB
(14)

In this example, A and B represent the magnitude of the elec-
tric fields measured at different locations, where the amplitude
of the electric field which is driven by X- and Y- components
of magnetic field and can be calculated as follows:

|E| =
√
(EX)2 + (EY )2 (15)

Figure 3 displays the heat map of the correlations between
surface geoelectric field magnitudes on the peak-storm day
within TX and NE stations. These electric fields were derived
from the measured geomagnetic fields and their corresponding
ground conductivity. The color bar shows the intensity of
the correlations. The heat maps reveal that among all the
TX stations, Beaumont and Stephenville exhibit the lowest
and highest average correlations in electric field magnitude,
respectively, while Atlas and Augusta exhibit the highest and
lowest correlations in the NE grid. Notably, Odessa, which
exhibited the lowest average magnetic field correlation among
TX stations on the peak-storm day [1], does not have the
lowest average electric field correlation. From [1], magnetic
field correlations within TX were observed to be higher
than those within NE. Additionally, the analysis revealed that
magnetic field variations did not follow a specific pattern and
were generally spatially spread out.

The correlations for the electric fields highlight that patterns
for these fields cannot directly be drawn from respective mag-
netic fields, as induced electric fields are also dependent on
the surface impedance of the earth (or, ground conductivity).
Therefore, it is essential to account for both the spatially
varying magnetic field fluctuations as well as the surface
impedance of the respective area in GMD studies. In the
following sections, the differences in GMD simulation results
from using surface electric field models that were generated
from spatially varying and spatially uniform magnetic fields
as input are discussed.

IV. ELECTRIC FIELD E(t) MODELING: SCENARIOS AND
CASE STUDIES

To assess the modeling effects of GICs in Texas, a synthetic
2,000-bus system was employed to represent the Texas electric
grid. Similarly, a synthetic 25,000-bus system was used to
represent the northeastern grid. The latter was used to assess
the impact of GICs attributed to magnetic field fluctuations
measured from the NE region. In the sections following,
different combinations of scenarios and case studies will be
referenced with their corresponding shortened forms (e.g. TX-
C1 refers to studies on the TX grid using electric fields derived
from spatially varying magnetic fields, and NE refers to studies
on the NE grid), as presented in Table III.

The synthetic electric transmission model developed by
Texas A&M University (TAMU) includes intricate models for
generators, loads, transmission lines, and other components of
the power system. [35], [36] elaborate on the methodology
employed to construct these models, highlighting their ability
to reliably represent the structural and functional attributes of
actual power grids. Once derived, we incorporate the induced
surface electric field data sets into these synthetic grids in
a three-dimensional format in which the electric field model
comprises the latitude and longitude location points as well as
temporal data. The following describes the TX and NE grids
used in this study, as well as outlines how the case studies
were developed.
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A. Texas 2,000-bus Synthetic Grid (TX)

This system comprises 2,345 transmission lines, 861 trans-
formers, and 544 generators, which provide a total capacity
of 68,727 MW and serve 1,350 load points, amounting to a
total demand of 67,109 MW. GMD time-series studies utilizing
this grid use an electric field sampling period of 1 s. The bus
voltage levels include 24 kV, 115 kV, 161 kV, 230 kV, and
500 kV.

B. Northeastern 25,000-Bus Synthetic Grid (NE)

This system comprises 24,700 transmission lines, 6,030
transformers, and 4,834 generators, which provide a total ca-
pacity of 239,694 MW and serve 9,441 load points, amounting
to a total demand of 234,527 MW. GMD time-series studies
utilizing this grid use an electric field sampling period of 60
s. The bus voltages are comprised of 24 kV, 69 kV, 100 kV,
115 kV, 138 kV, 161 kV, 230 kV, 345 kV, 500 kV, and 765
kV.

Note that the sampling frequency rate is not a critical factor
in this study as the focus has primarily been on steady-state
GMD analyses. The variation in sampling rates was from the
use of two different magnetometer networks: the Texas A&M
University Magnetometer Network (applied to the TX grid),
which samples every 1 second, and DASI (applied to the NE
grid), which samples every minute.

C. Electric Field Model assuming spatially varying B⃗ (C1)

In case 1, all four conductivity zones contained within the
TX and nine in NE are mapped to one or more magnetic
field measurements to estimate the induced electric field
being modeled. Each conductivity zone as defined by [2]
and [23] is bounded by an array of latitude and longitude
coordinates within the synthetic grids. In situations where
multiple magnetometers share a conductivity zone, such as
the IP-4 zone in TX, the location coordinates are sub-divided
into areas where each magnetometer is assigned to the area
containing its coordinates. The mappings between conductivity
zones and magnetometer stations are shown in Tables I for TX
and II for NE, respectively. This approach to modeling electric
fields considers not only spatial variations caused by different
surface impedances as geological structures vary across the
earth but also spatial variations exhibited by the magnetic
fields due to latitude and longitude effects.

D. Electric Field Model assuming spatially uniform B⃗ (C2)

In case 2, the effects of magnetic field fluctuations measured
by one station per electric grid (the ”reference” station) are
applied to all conductivity zones within the grid being studied.
Although the electric fields estimated by this approach vary
across geographical locations due to the effects of ground
impedance, this approach of modeling electric fields excludes
variations attributed to spatially varying magnetic fields as
with the case for the NERC benchmark estimations.

The magnetometer station associated with the lowest av-
erage correlation in the electric field as per Fig. 3 was
selected as the reference case for each grid. Hence, Augusta

TABLE III
SCENARIOS AND CASE STUDIES BASED ON ELECTRIC FIELD MODELING

AND GRID TOPOLOGY

Scenario 1 (TX) Scenario 2 (NE)
Case 1 (C1) TX grid assuming spatially varying B⃗ NE grid assuming spatially varying B⃗

Case 2 (C2) TX grid assuming spatially uniform B⃗ NE grid assuming spatially uniform B⃗

and Beaumont magnetometer measurements were selected as
the reference for the NE and TX grids, respectively. These
stations exhibited the least similarity in induced electric fields
when compared to the rest. Using this approach, differences
in GICs and other GMD risk metrics between C1 and C2
were accentuated. If a station were chosen randomly without
considering the similarity of its electric field to others, the
overall conclusions would remain valid, but the observed
impact of magnetic field spatial variation on GMD risk metrics
would have been less pronounced.

V. ELECTRIC FIELD E(t) MODELING: IMPACT
ASSESSMENT ON LARGE-SCALE GRIDS

In this section, the modeling results for GMD risk metrics,
including estimated substation’s electric field, transformer ef-
fective currents, neutral currents, and reactive power losses
are presented using two large-scale synthetic but statistically
realistic grids.

A. Electric Field Variations Across Substations

The strength of the earth’s induced surface electric field
is influenced by various factors, such as fluctuations in the
geomagnetic field and earth’s ground resistivity. Higher ground
conductivity corresponds to a lower ground resistivity (or,
impedance) due to the inverse relationship between these two
properties. As described by equations (5) to (9), areas of
high earth resistivity usually result in stronger electric fields
and thus higher GICs. Typically, low substation grounding
resistance combined with high earth resistivity results in higher
GICs flowing through transmission lines [37]. In addition, the
direction of electric fields along transmission lines is shaped by
grid configuration, geographical conductivity variations, and
line orientation. In addition, the response of nearby substations
to GMDs can vary due to differences in grounding systems
and soil resistivity, which is influenced by the grid layout.
When transmission lines are closely situated, share the same
ground conductivity and subject to the same GMD, they
experience similar electric fields. Nonetheless, variations in
how lines are connected to the grid can result in different GIC
characteristics. In some cases, GICs with opposing polarities
may be observed in parallel lines. Substations connected to
various grid sections or containing parallel lines may expe-
rience opposing electric field directions, leading to differing
paths for induced currents.

The distribution of electric fields is visualized on the
TX and NE grids. Fig. 4a contours the distribution of the
electric field for TX-C1 at the time when the peak of 0.1
V/km is reached. The figure illustrates both the strength, as
indicated by different color contours, and the direction of
the field, indicated by the orientation of the arrows on the
map. The sequential color maps described in [38] are used
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(a) TX-C1 case: Contours of E⃗ across TX substations at time of
peak electric field, calculated using spatially varying B⃗.

(b) TX-C2 case: Contours of E⃗ across TX substations at time of
peak electric field as measured from the TX-C1 case, calculated
using the B⃗ measured at Beaumont.

(c) NE-C1 case: Contours of E⃗ across NE substations at time of
peak electric field, calculated using spatially varying B⃗.

(d) NE-C2 case: Contours of E⃗ across NE substations at time of
peak electric field as measured from the NE-C1 case, calculated
using the B⃗ measured at Augusta.

Fig. 4. Contours of the approximated E⃗ across substations of the TX and NE synthetic grids at time of peak electric field as measured from the C1 case.
Directions of the electric field are indicated by arrows. Specific regions are marked with A, A’, B, B’, C, and C’ for comparison purposes, and are discussed
in Section V-A.

for the purpose of better visualizing variations in electric field
strength. One can observe that the field peaks at the eastern
border of the grid, which is where Beaumont is situated,
while the rest of the grid exhibits relatively lower electric
fields. This is explained by larger magnetic field fluctuations
as measured by the Beaumont magnetometer. Fig. 4b contours
the electric field distribution for TX-C2, at the same time-point
as C1, for which the magnetic field fluctuations measured in
Beaumont are applied on the entire grid. Despite sharing the
same range of electric field strength across regions in TX, TX-
C2 has peak electric fields that extend along the southeastern
region of TX or the CP-2 region where the relative surface
impedance is high. Applying scaling factors to electric fields
derived from spatially uniform magnetic fields is prescribed by
NERC standard TPL-007 to account for geomagnetic latitude

effects. The results shown below illustrate that this scaling
does not properly model the magnetic field fluctuations caused
by varying geography. First, consider equivalent regions A
of TX-C2 and A’ of TX-C1, as marked in Fig. 4b and Fig.
4a, respectively. These equivalent regions are at roughly the
same geomagnetic latitude as Beaumont. Applying a scaling
factor of ’1’ (because latitude did not change) to the electric
field at A of TX-C2 to account for latitude effects should
produce an electric field magnitude at region A’ of TX-C1 to
be equivalent to that of region A. However, when the effects
of spatial variation in the magnetic field are incorporated as
shown in Fig. 4a, the magnitude of the electric field at region
A’ is 25 times less than that of region A. In addition, areas
that are higher in latitude than Beaumont, such as region B’ in
the TX-C1 case do not experience a larger strength of electric
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(a) Transformer neutral GICs for TX-C1. (b) Transformer neutral GICs for NE-C1.

Fig. 5. Transformer neutral GICs for the TX and NE scenarios with the incorporation of the spatial variation of magnetic fields.

field when compared to the same areas, such as area B, in the
TX-C2 case. In this situation, the field strength of area B’ is
25-times less than that of area B.

The NE grid has also been examined accordingly. Fig.
4c shows a snapshot of the electric field distribution across
substations in NE for C1 at the time when the maximum
electric field occurs. The field peaks at 0.17 V/km in Augusta
and varies across substations and regions. Similar to observa-
tions between TX-C1 and TX-C2, the spatial variations of the
electric field are considerably different between NE-C1 and
NE-C2. Fig. 4d, shows the distribution of electric fields in the
NE grid at the same time-point used for C1, assuming spatially
uniform magnetic fields as measured from the Augusta station
(C2). Notice that the electric field peaks higher than that of
NE-C1, at 0.2 V/km with all field orientations in one direction.
Despite the range of field strengths being similar between
C1 and C2, it is observed that peak intensities of the field
occur at different regions between C1 and C2. In C1 when
the spatial variation of the magnetic field is considered (Fig.
4c), the field is most intense at NE-1 (Augusta measurements)
and AP-2 (New Britain measurements), which are regions of
relatively high latitudes. In contrast, when spatial variation is
excluded from the model, the electric field intensity peaks at
PT-1, which is a region of relatively high surface impedance
as shown in Fig. 4d.

As with the TX scenario, it can be inferred that simply
applying a scaling factor to the electric field of the NE-C2
case is not sufficient to produce a surface electric field model
that adequately captures all local regional variations in the
magnetic field. For example, consider the region C of NE-C2
and C’ of NE-C1, as marked in Fig. 4d and Fig. 4c: These two
regions are the equivalent region across different cases, and is
situated at a similar latitude to Augusta. Applying a scaling
factor (factor of ’1’ because the latitudinal distance between
Augusta and regions C and C’ are approximately zero) to the
electric field at region C of NE-C2 to account for latitude
effects should yield an electric field magnitude at region C’
of NE-C1 to be equivalent to that at region C. However, when
regional variations (which also accounts for variations due to
latitude) of the magnetic field are incorporated into the induced
electric field model as shown in Fig. 4c, region C’ exhibits an
electric field 7-times that of area C.

These case studies highlight that when the spatial variations

of magnetic fields are ignored in electric field models, con-
siderable discrepancies in how electric fields are distributed
across the grid can be observed, even when latitude effects
have been considered. These discrepancies result in inaccurate
modeling of GICs in transformers within the grid and affect
the reliability of GMD studies. While these discrepancies may
sometimes be small for a mild GMD, but will most likely
become much more significant for a more severe GMD.

B. Transformer GICs

Here, the influence of incorporating spatial variations of
magnetic fields into electric field models is analyzed with
respect to transformer neutral currents, In(t). This is accom-
plished by comparing the magnitude of the neutral currents
experienced by all transformers at a time at which the maxi-
mum current occurs in C2 for both the TX and NE scenarios.
As described by Fig. 6a, the currents for TX are very similar
between C1 and C2, with a peak current of 7.2 A and 7.7 A
for C1 and C2, at the time of peak current. This was expected
because of the high correlation among the TX magnetometers.
The time-series for the neutral currents in TX-C1 is displayed
in Fig. 5a.

For cases where two distinct transformers exhibit perfect
correlation, the explanation is that these transformers experi-
enced the same magnetic field, were located within the same
conductivity zone, and thus experienced the same electric field.
However, since these transformers have different equivalent
impedances (e.g. transformer impedance, line impedance, and
substation grounding), which dictates the amount of GIC flow,
the amount of GICs through these transformers is different.
Although the actual value of their neutral GICs is unequal,
they follow the same pattern of change across time.

Figure 6b compares the magnitude of the neutral GICs
between C1 and C2 at the time of peak current in C2 within
the NE grid. As shown on the figure, there are considerable
differences between C1 and C2 with regard to the neutral
currents per transformer, with peaks of 9.1 A and 24.4 A,
respectively. At this time, the maximum current experienced
in NE-C2 is 2.7 times as high as the maximum current
observed in NE-C1 when a spatially varying magnetic field
is incorporated into the model. The plot also reveals that the
neutral currents of identical transformers across C1 and C2
are not as correlated compared to the TX scenario. This is
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(a) Magnitude of transformer neutral GICs for TX at time of peak
GIC as measured from the TX-C2 case. At the time of peak GIC,
currents between TX-C1 and TX-C2 are very similar, with a peak
current of 7.2 A for the C1 case, and 7.7 A for the C2 case.

(b) Magnitude of transformer neutral GICs for NE at time of peak
GIC as measured from the NE-C2 case. At time of peak GIC, the
maximum current experienced in NE-C2 is 2.7 times as high as the
maximum current experienced in NE-C1, with a peak current of 9.1
A for the C1 case, and 24.4 A for the C2 case.

Fig. 6. Estimated magnitude of the transformer neutral GICs for the TX and NE scenarios. For both the TX and NE scenarios, all transformers are arranged
in decreasing order of In(t). Currents shown for the C1 and C2 cases are shown with red dots and blue ’x’, respectively.

(a) Percent deviation between transformer effective current in TX-C2
with respect to TX-C1, with an average and maximum deviation of
32% and 377%, respectively.

(b) Percent deviation between transformer effective current in NE-C2
with respect to NE-C1, with an average and maximum deviation of
45% and 263%, respectively.

Fig. 7. Percent deviation between transformer effective current for the TX and NE scenarios. The running average with a window size of 5 minutes is used
to aid in visualization.

(a) Percent deviation between GIC induced MVAR loss in TX-C2
with respect to TX-C1, with an average and a maximum deviation
of 35% and 185%, respectively.

(b) Percent deviation between GIC induced MVAR loss in NE-C2
with respect to NE-C1, with an average and a maximum deviation
of 153% and 909%, respectively.

Fig. 8. Percent deviation between GIC induced MVAR loss for the TX and NE scenarios. To better visualize the percent deviation, a running average with
a window size of 5 minutes is used for each scenario.

consistent with the relatively low correlation observed between
the NE magnetometer measurements. Temporal characteristics
of the neutral currents for NE-C1 are shown in Fig. 5b.

Transformer effective currents were also analyzed due to
their importance in estimating reactive power losses and trans-
former heating. The percent deviation of the effective currents
over time for C1 and C2 in the TX and NE scenarios are
shown in Figs. 7a and 7b, respectively. The running average
with a window size of 5 minutes was calculated and used to
aid in visualization for each scenario. The maximum deviation
for C2 with respect to C1 was 377% and 263% for TX and
NE, respectively, with an average deviation of 32% and 45%.
While using the absolute value of the deviations can simply

the analyses, considering the direction of deviations (positive
or negative) provides insight into whether one model type
consistently overestimates system impact. The discrepancies
presented in these results underscore the importance of incor-
porating spatial variations in the magnetic field with respect
to accurately modeling transformer GICs because neglecting
such variations in the model result in less accurate estimations,
with some of the results varying significantly.

C. GIC-Induced Reactive Power Loss

Contours of the per-area reactive power losses for each
case were created and are shown in Figs. 9a and 9b for TX-
C1 and TX-C2, respectively. These maps display the losses
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(a) GIC-induced MVAR losses in TX at time of peak electric field,
assuming spatially varying B⃗.

(b) GIC-induced MVAR losses in TX at time of peak electric field
as measured from the TX-C1 case. This model was approximated
using the B⃗ measured at Beaumont.

(c) GIC-induced MVAR losses in NE at time of peak electric field,
assuming spatially varying B⃗.

(d) GIC-induced MVAR losses in NE at time of peak electric field
as measured from the NE-C1 case. This model was approximated
using the B⃗ measured at Augusta.

Fig. 9. Contour of GIC-induced MVAR losses in the TX and NE footprints. Directions of the electric field are indicated by arrows.

experienced at the time at which C1 experiences its peak
electric field. It is worth noting that the peak reactive power
loss for TX-C2 was 2.5 times that of TX-C1 at that time.
Moreover, the CP-2 (south) region exhibits a reactive power
loss of 71 times that of TX-C1, with losses of 8.53 MVAR
and 0.12 MVAR for C2 and C1, respectively. This is explained
by the fact that Beaumont experienced much higher magnetic
field fluctuations relative to those measured by the Beeville
magnetometer. A plot of the percent deviation in reactive
power losses of C2 with respect to C1 across time is displayed
in Fig. 8a, with a maximum deviation of 185% and an average
of 35%.

The same analysis for reactive power loss was performed
on the NE grid. Contours for reactive power loss at the time at
which C1 experiences its peak electric field, are displayed in
Figs. 9c and 9d for NE-C1 and NE-C2, respectively. At that
time point, the peak reactive power loss observed in C2 was
1.4 times that of C1, with losses of 120 MVAR and 88 MVAR

for C2 and C1, respectively. Fig. 8b presents the time-varying
percent deviation in reactive power losses of C2 with respect
to C1, with a maximum deviation of 909% and an average of
153%.

Due to distinct geomagnetic and earth conductivity charac-
teristics between the TX and NE grids, this analysis compared
stations within each grid rather than directly comparing the
two grids. Nevertheless, there are notable disparities in the
impact of magnetic field modeling on GMD metrics when
comparing between these two grids. The Mvar loss shown in
Fig. 9 represents just one moment during the peak electric
field. The event in its entirety results in a greater reactive
power loss, and whether it is significant depends on factors
such as the system’s topology, voltage levels, existing reactive
power compensations, and operational needs. For larger GMD
events, the expected Mvar loss would be higher. Nevertheless,
the findings described here further emphasize the importance
of accounting for regional variations in the magnetic field,
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as neglecting these effects results in moderate to significant
inaccuracies in the calculated reactive power loss in the power
system. The case studies shown in this section demonstrate
more severe reactive power losses when effects from these
regional differences are neglected.

VI. CONCLUSIONS AND DISCUSSION

This paper places a particular focus on the influence of
spatial variation in magnetic fields on GMD risk metrics by
comparing simulation results from two different types of elec-
tric field models: one that was transformed from magnetic field
fluctuations captured by spatially distributed magnetometers,
and the other that only considered field fluctuations from one
reference magnetometer.

Simulation results revealed significant discrepancies for
GMD risk metrics when models neglect the effects of magnetic
field spatial variation, even when latitude effects have been
considered. In particular, models neglecting spatial variations
yielded impacts that were more severe, as observed through
electric field distributions, transformer GICs, and reactive
power losses on both TX and NE grids. In the context of
power system planning and operation, such differences in the
modeled impact could result in taking lines out of service to
protect system components even when doing nothing is the
best choice. Given that the data used in this analysis was
collected during a relatively mild GMD event, it is likely that
discrepancies observed in simulations would be much greater
for a stronger GMD event.

These findings underscore the importance of incorporating
spatial variations into GIC analysis and GMD risk assessment.
This analysis helps us better identify vulnerable regions in the
power grid during GMD storms and provides valuable insights
for implementing strategies to ensure critical infrastructure
remains resilient during such events.

Future work would be to improve the geomagnetic latitude
scaling factor in the NERC TPL-007 standard so that it may
capture more of the effects resulting from regional variations
in the magnetic field. While this methodology is valuable in
simplifying GMD assessments, the findings from this paper
indicate this method does not fully capture all variations in
electric field intensity resulting from regional differences in
magnetic fields.
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