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Announcements

• Read Chapters 4 and 7

• Homework 4 is due today

• Homework 5 is due on Tuesday Oct 31

• IEEE Spectrum did have a nice biographical article on Charlie Concordia 

in 1999 (when he won the IEEE Medal of Honor at age 91)

– He joined GE in 1926; his best contribution (he noted) was, “to increase the 

understanding of the dynamics of power systems”
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Energy and Power Group Seminar on Oct 20



A Power System Dynamics Giant: Charlie Concordia

• IEEE Spectrum did have a nice 

biographical article on Charlie 

Concordia in 1999 (when he won the 

IEEE Medal of Honor at age 91)

– He joined GE in 1926; his best contribution (he 

noted) was, “to increase the understanding of 

the dynamics of power systems”

– Image at right is from the IEEE Spectrum

article; he passed away in 2003 at age 95

– Thomas Edison, who founded a company 

that became part of GE at its founding, 

died in 1931



Classical Swing Equation

• Often in an introductory coverage of transient stability 

with the classical model the assumption is w  ws so 

the swing equation for the classical model is given as

• We'll use this simplification for our initial example 
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As an example of this initial approach see Anderson and Fouad, Power System Control and Stability, 2nd Edition,  Chapter 

2 (with a newer version third edition of this book now available adding Vijay Vittal and Jim McCalley as authors).  
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Numerical Solution

• There are two main approaches for solving

– Partitioned-explicit: Solve the differential and algebraic equations separately 

(alternating between the two) using an explicit integration approach 

– Simultaneous-implicit: Solve the differential and algebraic equations together using 

an implicit integration approach

( , , )

( , )  

=

=

x f x y u

0 g x y
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Outline of the Solution Process

• The next group of slides will provide basic coverage of the solution 

process, partitioned explicit, then the simultaneous-implicit approach

• We'll start out with a classical model supplying an infinite bus, which can 

be solved by embedded the algebraic constraint into the differential 

equations

We'll start out just solving ( )

and then will extend to solving the full problem of 

( , , )
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Classical Swing Equation with Power Balance

• With a classical generator at bus i supplying an infinite bus with voltage 

magnitude Vinf,  we can write the problem without algebraic constraints as
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Explicit Integration Methods

• As covered during the first week of class, there are a wide variety of 

explicit integration methods

– We considered Forward Euler, Runge-Kutta, Adams-Bashforth

• Here we will just consider Euler's, which is easy to explain but not too 

useful, and a second order Runge-Kutta, which is commonly used
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Forward Euler

• Recall the Forward Euler approach is approximate

• Error with Euler's varies with the square of the time step

d
( ( ))  as 

dt t

Then
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t t t t t
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x x
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x x f x
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Infinite Bus GENCLS Example using the Forward 
Euler's Method

• Use the four bus system from before, except now gen 4 is 

modeled with a classical model with Xd'=0.3, H=3 and D=0; also 

we'll reduce to two buses with equivalent line reactance, moving 

the gen from bus 4 to 1

Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and 1= 23.95°
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Infinite Bus GENCLS Example

• The associated differential equations for the bus 1 generator are

• The value of PM1 = 1 is determined from the initial conditions, and 

would stay constant in this simple example without a governor

• The value 1= 23.95° is readily verified as an equilibrium point 

(which is 0.418 radians) 

,

, .
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Infinite Bus GENCLS Example

• Assume a solid three phase fault is applied at the generator terminal, 

reducing PE1 to zero during the fault, and then the fault is self-cleared at 

time Tclear
, resulting in the post-fault system being identical to the pre-

fault system 

– During the fault-on time the equations reduce to 

( )
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1
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d
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That is, with a solid fault on the 

terminal of the generator, during

the fault PE1 = 0
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Euler's Solution

• The initial value of x is

• Assuming a time step t = 0.02 seconds, and a Tclear of 

0.1 seconds, then using Euler’s

• Iteration continues until t = Tclear 

,
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Note Euler's assumes

 stays constant during 

the first time step

13



Euler's Solution

• At t = Tclear the fault is self-cleared, with the equations changing to 

• The integration continues using the new equations
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Euler's Solution Results (t=0.02)

• The below table gives the results using t = 0.02 for the 

beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 23.9462 60.2

0.04 25.3862 60.4

0.06 28.2662 60.6

0.08 32.5862 60.8

0.1 38.3462 61

0.1 38.3462 61

0.12 45.5462 60.8943

0.14 51.9851 60.7425

0.16 57.3314 60.5543

0.18 61.3226 60.3395

0.2 63.7672 60.1072

0.22 64.5391 59.8652

0.24 63.5686 59.6203

0.26 60.8348 59.3791

0.28 56.3641 59.1488

This is saved as PowerWorld case 

B2_CLS_Infinite. The integration

method is set to Euler's on the 

Transient Stability, Options, Power 

System Model page
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Generator 1 Delta: Euler's

• The below graph shows the generator angle for varying 

values of t; numerical instability is clearly seen
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Second Order Runge-Kutta

• Runge-Kutta methods improve on Euler's method by 

evaluating f(x) at selected points over the time step

• One approach is a second order method (RK2) in which

• That is, k1 is what we get from Euler's; k2 improves on 

this by reevaluating at the estimated end of the time step

• Error varies with the cubic of the time step
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This is also known as Heun's 

method or as the Improved Euler's 

or Modified Euler's Method 
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Second Order Runge-Kutta (RK2)

• Again assuming a time step t = 0.02 seconds, and a Tclear of 0.1 

seconds, then using Heun's approach
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RK2 Solution Results (t=0.02)

• The below table gives the results using t = 0.02 for the beginning 

time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 24.6662 60.2

0.04 26.8262 60.4

0.06 30.4262 60.6

0.08 35.4662 60.8

0.1 41.9462 61

0.1 41.9462 61

0.12 48.6805 60.849

0.14 54.1807 60.6626

0.16 58.233 60.4517

0.18 60.6974 60.2258

0.2 61.4961 59.9927

0.22 60.605 59.7598

0.24 58.0502 59.5343

0.26 53.9116 59.3241

0.28 48.3318 59.139

This is saved as PowerWorld case 

B2_CLS_Infinite. The integration

method should be changed to 

Second Order Runge-Kutta  on 

the Transient Stability, Options, 

Power System Model page
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Generator 1 Delta: RK2

• The below graph shows the generator angle for varying values of t; 

much better than Euler's but still the beginning of numerical 

instability with larger values of t
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Adding Network Equations

• Previous slides with the network equations embedded in the 

differential equations were a special case

• In general with the explicit approach we'll be alternating between 

solving the differential equations and solving the algebraic equations

• Voltages and currents in the network reference frame can be expressed 

using either polar or rectangular coordinates

• In rectangular with the book's notation we have

,i Di Qi i Di QiV V jV I I jI= + = +
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Adding Network Equations

• Network equations will be written as Y V- I(x,V) = 0

– Here Y is as from the power flow, except augmented to include the impact of 

the generator's internal impedance

– Constant impedance loads are also embedded in Y; non-constant impedance 

loads are included in I(x,V)

• If I is independent of V then this can be solved directly: V = Y
-1

I(x)

• In general an iterative solution is required, which we'll cover 

shortly, but initially we'll go with just the direct solution
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Two Bus Example, Except with No Infinite Bus

• To introduce the inclusion of the network equations, the previous 

example is extended by replacing the infinite bus at bus 2 with a 

classical model with Xd2'=0.2, H2=6.0 

GENCLS

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

PowerWorld Case is B2_CLS_2Gen 
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Bus Admittance Matrix

• The network admittance matrix is

• This is augmented to represent the Norton admittances associated 

with the generator models (Xd1'=0.3, Xd2'=0.2)

. .

. .
N

j4 545 j4 545

j4 545 j4 545

− 
=  

− 
Y

. ..

. .

.

N

1
0

j7 879 j4 545j0 3

1 j4 545 j9 545
0

j0 2

 
  − 
 = + =  

−   
 
 

Y Y

In PowerWorld you can see this matrix by selecting Transient Stability, 

States/Manual Control, Transient Stability Ybus
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Current Vector

• For the classical model the Norton currents are given by

• The initial values of the currents come from the power flow solution

• As the states change (i for the classical model), the Norton current 

injections also change

, , , ,

,i i
Ni i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +
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B2_CLS_Gen Initial Values

• The internal voltage for generator 1 is as before

• We likewise solve for the generator 2 internal voltage

• The Norton current injections are then

1

1 0.3286

1.0 ( 0.22 0.3) 1.1709 0.52 1.281 23.95

I j

E j j I j

= −

= + + = + =  

2 1.0 ( 0.2) 0.9343 0.2 0.9554 12.08E j I j= − = − =  −

. .
. .

.

. .
.

.

N 1

N 2

1 1709 j0 52
I 1 733 j3 903

j0 3

0 9343 j0 2
I 1 j4 6714

j0 2

+
= = −

−
= = − −

Keep in mind the Norton current injections 

are not the current out of the generator

0.4179 radians

0.2108 radians

26



B2_CLS_Gen Initial Values

• To check the values, solve for the voltages, with the values matching 

the power flow values 

. . . .

. . .

. .

.

1
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j4 545 j9 545 1 j4 671

1 072 j0 22

1 0

−
− −   

=    
− − −   

+ 
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 

V
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Swing Equations

• With the network constraints modeled, the swing equations are modified 

to represent the electrical power in terms of the generator's state and 

current values

• Then swing equation is then

PEi Di Di Qi QiE I E I= +

( ) ( )( )

.

,

,

i
i pu s

i pu

Mi Di Di Qi Qi i i pu

i

d

dt

d 1
P E I E I D

dt 2H


w w

w
w

= 


= − + − 

IDi+jlQi is the current being injected 

into the network by the generator 
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Two Bus, Two Generator Differential Equations

• The differential equations for the two generators are

( )( )

( )( )

.

,

.

,

1
1 pu s

1 pu

M 1 D1 D1 Q1 Q1

1

2
2 pu s

2 pu
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d
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P E I E I

dt 2H

d
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dt 2H


w w

w


w w

w

= 


= − +

= 


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In this example

PM1 = 1 and PM2 = -1
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PowerWorld GENCLS Initial States
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Solution at t=0.02

• Usually a time step begins by solving the differential equations.  

However, in the case of an event, such as the solid fault at the terminal 

of bus 1, the network equations need to be first solved

• Solid faults can be simulated by adding a large shunt at the fault 

location

– Amount is somewhat arbitrary, it just needs to be large enough to drive the 

faulted bus voltage to zero

• With Euler's the solution after the first time step is found by first 

solving the differential equations, then resolving the network equations
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Solution at t=0.02

• Using Yfault = -j1000, the fault-on conditions become

( )

( )

. . . .

. . .

. .

. .

Solving for the currents into the network

. .
. .

.

. . . .

1

1

1

2

j1007 879 j4 545 1 733 j3 903
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0 006 j0 001
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I 1 733 j3 900

j0 3
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I

−
− −   

=    
− − −   
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=  
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− − −
=

V
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. .

.
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0 473 j2 240

j0 2
= − −
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Solution at t=0.02

• Then the differential equations are evaluated, using the new voltages 

and currents

– These impact the calculation of PEi with PE1=0, PE2=0

• If solving with Euler's this is the final state value; using these state 

values the network equations are resolved, with the solution the same 

here since the 's didn't vary

( )

( )

1

1

2

1

0

(0.02) 0.418 0.4181
1 0

(0.02) 0.0 0.003336
0.02

(0.02) 0.211 0.2110

(0.02) 0 0.001671
1 0

12



w



w

 
      
 −     

       = + =
      − −
      

 −      − −
  
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PowerWorld GENCLS at t=0.02
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Solution Values Using Euler's

• The below table gives the results using t = 0.02 for the 

beginning time steps
Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz)Gen 2 Rotor Angle Gen2 Speed (Hz)

0 23.9462 60 -12.0829 60

0.02 23.9462 60.2 -12.0829 59.9

0.04 25.3862 60.4 -12.8029 59.8

0.06 28.2662 60.6 -14.2429 59.7

0.08 32.5862 60.8 -16.4029 59.6

0.1 38.3462 61 -19.2829 59.5

0.1 38.3462 61 -19.2829 59.5

0.12 45.5462 60.9128 -22.8829 59.5436

0.14 52.1185 60.7966 -26.169 59.6017

0.16 57.8541 60.6637 -29.0368 59.6682

0.18 62.6325 60.5241 -31.426 59.7379

0.2 66.4064 60.385 -33.3129 59.8075

0.22 69.1782 60.2498 -34.6988 59.8751

0.24 70.9771 60.1197 -35.5982 59.9401

0.26 71.8392 59.9938 -36.0292 60.0031

0.28 71.7949 59.8702 -36.0071 60.0649
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Solution at t=0.02 with RK2

• With RK2 the first part of the time step is the same as Euler's, that is 

solving the network equations with

• Then calculate k2 and get a final value for x(t+t)

• Finally solve the network equations using the final value for x(t+t)

( ) ( ) ( ) ( )1

1(t t) t  t  T ( t )+  = + = + x x k x f x

( )( )

( ) ( ) ( )

2 1

1 2
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2

t t

t t t

= 

+  + +

+

=

k f x k

x x k k
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Solution at t=0.02 with RK2

• From the first half of the time step

• Then

( )
(1)

0.418

0.00333
0.02

0.211

0.00167

x

 
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 
− 
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   + = =
   −−
   

−   − −

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
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k f x k

37



Solution at t=0.02 with RK2

• The new values for the Norton currents are

. .
. .

.

. .
. .

.

N 1

N 2

1 281 24 69
I 1 851 j3 880

j0 3

0 9554 12 43
I 1 028 j4 665
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 
= = −

 − 
= = − −
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. .
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−
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=    
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=  
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Solution Values Using RK2

• The below table gives the results using t = 0.02 for the beginning 

time steps Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz)Gen 2 Rotor Angle Gen2 Speed (Hz)

0 23.9462 60 -12.0829 60

0.02 24.6662 60.2 -12.4429 59.9

0.04 26.8262 60.4 -13.5229 59.8

0.06 30.4262 60.6 -15.3175 59.7008

0.08 35.4662 60.8 -17.8321 59.6008

0.1 41.9462 61 -21.0667 59.5008

0.1 41.9462 61 -21.0667 59.5008

0.12 48.7754 60.8852 -24.4759 59.5581

0.14 54.697 60.7538 -27.4312 59.6239

0.16 59.6315 60.6153 -29.8931 59.6931

0.18 63.558 60.4763 -31.8509 59.7626

0.2 66.4888 60.3399 -33.3109 59.8308

0.22 68.4501 60.2071 -34.286 59.8972

0.24 69.4669 60.077 -34.789 59.9623

0.26 69.5548 59.9481 -34.8275 60.0267

0.28 68.7151 59.8183 -34.4022 60.0916
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Angle Reference

• The initial angles are given by the angles from the power flow, which 

are based on the slack bus's angle

• As presented the transient stability angles are with respect to a 

synchronous reference frame

– Sometimes this is fine, such as for either shorter studies, or ones in which there is 

little speed variation

– Oftentimes this is not best since the when the frequencies are not nominal, the 

angles shift from the reference frame

• Other reference frames can be used, such as with respect to a particular 

generator's value, which mimics the power flow approach; the selected 

reference has no impact on the solution
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Subtransient Models

• The Norton current injection approach is what is commonly used with 

subtransient models in industry

• If subtransient saliency is neglected (as is the case with GENROU and 

GENSAL in which X"d=X"q) then the current injection is 

– Subtransient saliency can be handled with this approach, but it is more involved 

(see Arrillaga, Computer Analysis of Power Systems, section 6.6.3)

( )q dd q

Nd Nq

s s

jE jE
I jI

R jX R jX

  w − + +
+ = =

 + +
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Subtransient Models

• Note, the values here are on the dq reference frame

• We can now extend the approach introduced for the classical 

machine model to subtransient models

• Initialization is as before, which gives the 's and other state values

• Each time step is as before, except we use the 's for each generator 

to transfer values between the network reference frame and each 

machine's dq reference frame

– The currents provide the coupling
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Two Bus Example with Two GENROU Models

• Use the same system as before, except with we'll model both 

generators using GENROUs

– For simplicity we'll make both generators identical except set H1=3, H2=6; 

other values are Xd=2.1, Xq=0.5, X'd=0.2, X'q=0.5, X"q=X"d=0.18, Xl=0.15, 

T'do = 7.0, T'qo=0.75, T"do=0.035, T"qo=0.05; no saturation

– With no saturation the value of the 's are determined (as per the earlier 

lectures) by solving

– Hence for generator 1   

( )s qE V R jX I = + +

( )( )1 1 1.0946 11.59 0.5 1.052 18.2 1.431 30.2E j =   +  −  =  
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GENROU Block Diagram

E'q

E'd 44



Two Bus Example with Two GENROU Models

• Using the early approach the initial state vector is 

.

.

.

.

.

( )
.

.

.

.

1

1

q1

1d 1

2q1

d 1

2

2

q2

1d 2

2q2

d 2

0 5273

0 0

E 1 1948

1 1554

0 2446

E 0
0

0 5392

0

E 0 9044

0 8928

0 3594

E 0



w







w





   
   
   

   
   
   
   
   

   
= =   −

   
   

   
   
   
   

−   
      

x

Note that this is a salient pole machine with 

X'q=Xq; hence E'd will always be zero 

The initial currents in the dq reference frame are 

Id1=0.7872, Iq1=0.6988, Id2=0.2314, Iq2=-1.0269

Initial values of "q1= -0.2236,

and "d1 = 1.179
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PowerWorld GENROU Initial States
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Solving with Euler's

• We'll again solve with Euler's, except with t set now to 0.01 seconds 

(because now we have a subtransient model with faster dynamics)

– We'll also clear the fault at t=0.05 seconds

• For the more accurate subtransient models the swing equation is 

written in terms of the torques

( )

, ,with 

i
i s i

i i i i
Mi Ei i i

s s

Ei d i qi q i di

d

dt

2H d 2H d
T T D

dt dt

T i i


w w w

w w
w

w w

 

= − = 


= = − − 

 = −

Other equations are solved 

based upon the block diagram
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Norton Equivalent Current Injections

• The initial Norton equivalent current injections on the dq base for 

each machine are 

( ) ( )1 1 1

1 1

1

1 1

2 2

2 2

0.2236 1.179 (1.0)

0.18

6.55 1.242

2.222 6.286

4.999 1.826

1 5.227

q d

Nd Nq

ND NQ

Nd Nq

ND NQ

j j
I jI

jX j

j

I jI j

I jI j

I jI j

  w − + − +
+ = =



= +

+ = −

+ = +

+ = − −

Recall the dq values are on the 

machine’s reference frame and

the DQ values are on the system 

reference frame
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Moving between DQ and dq

• Recall

• And

sin cos

cos sin

di Di

qi Qi

I I

I I

 

 

   − 
=    

    

sin cos

cos sin

Di di

Qi qi

I I

I I

 

 

    
=    

−    

The currents provide the key 

coupling between the 

two reference frames
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Bus Admittance Matrix

• The bus admittance matrix is as from before for the classical models, 

except the diagonal elements are augmented using

, ,

i

s i d i

1
Y

R jX
=

+

. ..

. .

.

N

1
0

j10 101 j4 545j0 18

1 j4 545 j10 101
0

j0 18

 
  − 
 = + =  

−   
 
 

Y Y
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Algebraic Solution Verification

• To check the values solve (in the network reference frame)

. . . .

. . .

. .

.

1
j10 101 j4 545 2 222 j6 286

j4 545 j10 101 1 j5 227

1 072 j0 22

1 0

−
− −   

=    
− − −   

+ 
=  

 

V
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Results

• The below graph shows the results for four seconds of simulation, using 

Euler's with t=0.01 seconds

Rotor Angle_Gen Bus 1 #1gfedcb Rotor Angle_Gen Bus 2 #1gfedcb

43.532.521.510.50
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Results for Longer Time

• Simulating out 10 seconds indicates an unstable solution, both using 

Euler's and RK2 with t=0.005, so it is really unstable!

Rotor Angle_Gen Bus 1 #1gfedcb Rotor Angle_Gen Bus 2 #1gfedcb

109876543210
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