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Announcements
K
* Read Chapters 4 and 7
 Homework 4 is due today
« Homework 5 is due on Tuesday Oct 31

* |EEE Spectrum did have a nice biographical article on Charlie Concordia
In 1999 (when he won the IEEE Medal of Honor at age 91)

—- He joined GE 1n 1926; his best contribution (he noted) was, “to increase the
understanding of the dynamics of power systems™




Energy and Power Group Seminar on Oct 20

A] ¥

ENERGY & POWER SEMINAR

A Day in the Life of a Power
Engineer

Abstract

This presentation will go over what an electric
cooperative is and the role of a Systems
Engineer at Rayburn Electric Cooperative. Some
responsibilities of the Rayburn engineering team
include metering, SCADA, protective relaying,
event analysis, and transmission planning.

Katherine Garcia Friday, October 20
Systems Engineer 11:30 am - 12:20 pm
Rayburn Electric Cooperative 244 ZACH
Biography

Katherine received her Bachelor of Science in Electrical Engineering
from Texas A&M University in December 2019. She has worked as a
Systems Engineer at Rayburn Electric Cooperative for 3 years. Her main
focusis on transmission planning and coordinating the interconnection
of new solar and battery storage facilities to Rayburn’s system.



IEEE Spectrum did have a nice
biographical article on Charlie
Concordia in 1999 (when he won the
|[EEE Medal of Honor at age 91)

— He joined GE in 1926; his best contribution (he
noted) was, “to increase the understanding of
the dynamics of power systems”

— Image at right is from the IEEE Spectrum
article; he passed away in 2003 at age 95

—- Thomas Edison, who founded a company
that became part of GE at its founding,

died in 1931

Fellow status: the IEEE, American Society
of Mechanical Engineers, American Association.
for the Advancement of Science

Honorary degrees: Ph.D,1993, lowa State
University; D.Sc.,1971,Union College

Academy status: National Academy
of Engineering, 1978 (U.S.)

Awards: Coffin Award (General Electric, 1942),
for.contributions to the analysis of wind tunnel
electric drives; Lamme Medal (1961, AIEE) for:
achievement in the development of electrical
machinery; Steinmetz Award (GE, 1973)
for technical achievement; Philip Sporn
Award (Conférence International des
Grandes Réseaux Electrigues [CIGRE],

1989) for career. contributions to the
advancement of the concept of system
integration in the theory, design, and
operation of large high-voltage electric

" power systems; Centennial Medal
(IEEE, 1984) for. contributions to the
electric power discipline; Power-Life
Award (IEEE Power Engineering
Society, 1992) for contributions
to the harmonious development
of man and:his environment;

Medal of Honor (IEEE, 1999).

A Power System Dynamics Giant: Charlie Concordia

bility, speed governing and tie-line power
and frequency control, design of power
systems for maximum service reliability,
computing machines, centrifugal compres-
sors, and wind tunnel fan drives.

Less known but at least as important was
Concordia’s advancement of the applica-
tion of digital computers to power engi-
neering and other engineering disciplines.
He was among the dozen or so founders of
the Association for Computing Machinery
in 1947, and the first chairman of the
American Institute of Electrical Engineers’
Computer Committee, a forerunner of the
IEEE Computer Society. (AIEE was one of
the IEEES two founding organizations.)

Last Fcbruary, Concordia attended the
1999 IEEE Power Engineering Society
Winter Meeting in New York City. Spectrum
interviewed him there, and also talked to
his friends and colleagues.

Early days

Concordia’s pride in his professional
accomplishments reaches back to when
he joined CE, at age 18. That same year,
1926, he joined the Schenectady Section
of the AIEE and, he told Spectrum., ‘1 still
keep a pin as a token of my belonging to
that section. | could not join the AIEE
[proper] then as...no one under age 21
could join. This is the only pin...of this
kind—it's most precious to me."

His originality and self-confidence
had shown up early. As a boy of 12, he
invented a salad in response to an adver-
tisement and won US $25 for the recipe,
though he never actually made the salad,
wrote Philip L. Alger, a GE motor expert
and Concordia contemporary, in his
book, The Human Side of Enginecring
(Mohawk Development Services Inc.,
Schenectady, N.Y., 1972).

The first of his many technical inven-
tions applied to railways—a detector of
cracks in rails, which he developed in GE's
Ceneral Engineering Laboratory. Being
based on magnetic field measurements,
his technique did away with the need to
clean the rail beforchand—a prerequisite
of the prevailing technique, which em-
ployed a Kelvin bridge for measuring the
rail's relatively low electrical resistance.
Further, GE was paying royalties for the
other technique at the time and was eager
to stop those payments.

An unwavering focus

Untiring in his search for solutions, he
maintains an unwavering focus on the
prob]em at hand, whatever the cost. Frank
Maginniss, his friend and colleague of
about 60 years' standing at GE, described
him as “a very dedicated worker," who fre-
quently spent Saturdays, Sundays, and
evenings at his office desk, working out
complicated engineering problems. "If, as



Classical Swing Equation

« Often In an introductory coverage of transient stability
with the classical model the assumption Is ® = ®, SO

the swing equation for the classical model is given as
ds,

— = -0, =Aw.

dt
2H. dAw
a)l at I :PMi_PEi_Di(Aa)i)

S

with Py, = (E/£5,)(E{£6,-V,)Y,
« We'll use this simplification for our initial example

As an example of this initial approach see Anderson and Fouad, Power System Control and Stability, 2" Edition, Chapter
2 (with a newer version third edition of this book now available adding Vijay Vittal and Jim McCalley as authors).
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Numerical Solution

A] ¥

« There are two main approaches for solving
x=f(X,y,u)
0=g(x,y)

— Partitioned-explicit: Solve the differential and algebraic equations separately
(alternating between the two) using an explicit integration approach

— Simultaneous-implicit: Solve the differential and algebraic equations together using
an implicit integration approach



Outline of the Solution Process

A
* The next group of slides will provide basic coverage of the solution
process, partitioned explicit, then the simultaneous-implicit approach

« We'll start out with a classical model supplying an infinite bus, which can
be solved by embedded the algebraic constraint into the differential
equations

We'll start out just solving X = f(x)

and then will extend to solving the full problem of
x=f(X,y,u)

0=g(x,y)



Classical Swing Equation with Power Balance

A]Mm
« With a classical generator at bus 1 supplying an infinite bus with voltage
magnitude V,;, we can write the problem without algebraic constraints as

do.
— =0 -0, =Aow, = Ao, @

dt i.pu“s
dAw.
w1 P, _E Vi sind, — D, (A, ,, )
it 2H )
: E'V.
with P, = ——"sin g, Note we are using the

th per unit speed approach



Explicit Integration Methods

« As covered during the first week of class, there are a wide variety of
explicit integration methods

—- We considered Forward Euler, Runge-Kutta, Adams-Bashforth

« Here we will just consider Euler's, which is easy to explain but not too
useful, and a second order Runge-Kutta, which is commonly used

A] ¥



Forward Euler

Recall the Forward Euler approach is approximate

X = F(x(t) = d’t‘a i—f

Then
X(t+At) ~ Xx(t)+ Atf(x(t))

Error with Euler's varies with the square of the time step

A] ¥



Infinite Bus GENCLS Example using the Forward
Euler's Method
A]m

« Use the four bus system from before, except now gen 4 is
modeled with a classical model with X,'=0.3, H=3 and D=0; also
we'll reduce to two buses with equivalent line reactance, moving

the gen from bus 4 to 1

Bus 2
Bus 1
GENCLS bu Infinite Bus
X=0.22 .
SR>3 > > > > > > DG
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

In this example X, = (0.22 + 0.3), with the internal voltage

E', = 1.281423.95° giving E',=1.281 and &,= 23.95°
10



Infinite Bus GENCLS Example

A]m
« The associated differential equations for the bus 1 generator are
do
d—tl = AC()L pua)s
dA
O 1 (1_ 1'281sin51j
dt 2%x3 0.52

* The value of P,,, = 1 is determined from the initial conditions, and
would stay constant in this simple example without a governor

* The value 6,= 23.95°1s readily verified as an equilibrium point
(which is 0.418 radians)

11



Infinite Bus GENCLS Example
K
« Assume a solid three phase fault is applied at the generator terminal,
reducing Pg, to zero during the fault, and then the fault is self-cleared at
time T resulting in the post-fault system being identical to the pre-

fault system
— During the fault-on time the equations reduce to

% =A@, ,,0 That is, with a solid fault on the
terminal of the generator, during
dA@, p, _ 1 (1_0) the fault Pg; =0
dt 2x3

12



Euler's Solution

A] ¥

The Initial value of x IS
6,0) | [0.418
X(O)_{Aa)l’pu(O)}_{ 0 }

Assuming a time step At = 0.02 seconds, and a T¢clear of
0.1 seconds, then using Euler’s

0.418 0 0.418 Note Euler's assumes
X(0.02) = +0.02 . o stays constant during
0 0.1667 0.00333 the first time step

Iteration continues until t = Tclear

13



Euler's Solution
K
« Att=Tclear the fault is self-cleared, with the equations changing to
do
dt

dA
W, :£(1—1'281sin5j
dt 6 0.52

=Aw,, 0,

* The Integration continues using the new equations

14



Euler's Solution Results (At=0.02)

The below table gives the results using At = 0.02 for the

beginning time steps

Time

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
23.9462
25.3862
28.2662
32.5862
38.3462
38.3462
45.5462
51.9851
57.3314
61.3226
63.7672
64.5391
63.5686
60.8348
56.3641

Gen 1 Rotor Angle, Degrees Gen 1 Speed (Hz)

60

60.2
60.4
60.6
60.8

61

61
60.8943
60.7425
60.5543
60.3395
60.1072
59.8652
59.6203
59.3791
59.1488

This is saved as PowerWorld case

B2 CLS_Infinite. The integration
method Is set to Euler's on the
Transient Stability, Options, Power
System Model page

A] ¥
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Generator 1 Delta: Euler's

* The below graph shows the generator angle for varying
values of At; numerical instability Is clearly seen
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Second Order Runge-Kutta

Runge-Kutta methods improve on Euler's method by
evaluating f(x) at selected points over the time step

One approach is a second order method (RK2) in which
X(t+ At)= x(t)+%( K+ K, )
This is also known as Heun's

method or as the Improved Euler's
k, = At f(x(t)) or Modified Euler's Method

k, = At f(x(t)+k,)
That is, k, Is what we get from Euler's; k, improves on
this by reevaluating at the estimated end of the time step

Error varies with the cubic of the time step

where

A] ¥
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Second Order Runge-Kutta (RK2)
A

« Again assuming a time step At = 0.02 seconds, and a T¢lea" of 0.1
seconds, then using Heun's approach

0(0) 0.418
x(0) = pru (O)} ={ 5 }

-0 0 0.418
k, =0.02 = , X(0)+k; =
10.1667 | |0.00333 0.00333

(1257 | [0.0251
10.1667 | |0.00333

0.418 0.431
x(0.020) = { 0 |7 %(k1 +k,)= {O 00333}

k, =0.02

18



RK?2 Solution Results (At=0.02)

* The below table gives the results using At = 0.02 for the beginning
time steps

Gen 1 Rotor Angle, Degrees Gen 1 Speed (Hz)

Time

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
24.6662
26.8262
30.4262
35.4662
41.9462
41.9462
48.6805
54.1807

58.233
60.6974
61.4961

60.605
58.0502
53.9116
48.3318

60

60.2
60.4
60.6
60.8

61

61
60.849
60.6626
60.4517
60.2258
59.9927
59.7598
59.5343
59.3241
59.139

This is saved as PowerWorld case
B2 CLS Infinite. The integration
method should be changed to
Second Order Runge-Kutta on
the Transient Stability, Options,
Power System Model page

A] ¥
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Generator 1 Delta: RK2

The below graph shows the generator angle for varying values of At;
much better than Euler's but still the beginning of numerical

Instability with larger values of At

ator 1 Angle {Degrees)

Gener

80

=)
o

Y
o

N
o

o

N
o

T=0.02

—T=0.1

e T=0.01 \
T=0.05 f\

y.
7

0

R Y/
o o o g/ o as \\\

Simulation Time (Seconds)

A] ¥

20



Adding Network Equations

* Previous slides with the network equations embedded in the
differential equations were a special case

* In general with the explicit approach we'll be alternating between
solving the differential equations and solving the algebraic equations

* Voltages and currents in the network reference frame can be expressed
using either polar or rectangular coordinates

* Inrectangular with the book's notation we have

Vi =V, + jVQi’ =15+ jIQi

A] ¥
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Adding Network Equations

* Network equations will be writtenas Y V- I(x,V) =0

— Here Y Is as from the power flow, except augmented to include the impact of
the generator's internal impedance

— Constant impedance loads are also embedded in Y; non-constant impedance
loads are included in 1(x,V)

* |If I Is independent of V then this can be solved directly: V = Y'll(x)

* In general an iterative solution is required, which we'll cover
shortly, but initially we'll go with just the direct solution

A] ¥

22



Two Bus Example, Except with No Infinite Bus
A]m
« To introduce the inclusion of the network equations, the previous

example is extended by replacing the infinite bus at bus 2 with a
classical model with X,,'=0.2, H,=6.0

Bus 1
GENCLS BUS GENCLS
. X=0,22 .
) -
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

PowerWorld Case is B2 CLS 2Gen

23



Bus Admittance Matrix

e The network admittance matrix Is
[-j4545 j4.545
| j4.545 —j4.545

N

« This is augmented to represent the Norton admittances associated
with the generator models (Xy,'=0.3, X,,'=0.2)

10
Vov . j0.3 {—j7.879 j4.545}
" 0o L j4.545 —j9.545

) 10.2_

In PowerWorld you can see this matrix by selecting Transient Stability,
States/Manual Control, Transient Stability Ybus

A] ¥



Current Vector

* For the classical model the Norton currents are given by

: _Ti—>
I_Ni: Eié-&i Y= 1- Fj [
Rei + 1Xq, R+ Xgi 10 S ¥
r [

« The initial values of the currents come from the power flow solution

 As the states change (d; for the classical model), the Norton current
Injections also change

A] ¥
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B2 CLS Gen Initial Values

A
* The internal voltage for generator 1 is as before
I =1-j0.3286
E, =1.0+(j0.22+ j0.3)l =1.1709+ j0.52 =1.281,23.95° 0.4179 radians
« We likewise solve for the generator 2 internal voltage
E,=1.0-(j0.2)I =0.9343— j0.2=0.9554/-12.08 0.2108 radians
« The Norton current injections are then
- 11709+ j0.52 .
Iy = j0.3 =1.733-13.903 Keep in mind the Norton current injections
: are not the current out of the generator
T, = 28002 46714
J0.2

26



B2 CLS Gen Initial Values
A]Mm

* To check the values, solve for the voltages, with the values matching
the power flow values

_j7.879 j4.545

| j4545 —j9.545 |

(1.072+ j0.22°
1.0

"1.733— j3.903]
~1- j4.671 |

V =

27



Swing Equations
A]m
« With the network constraints modeled, the swing equations are modified

to represent the electrical power in terms of the generator's state and

current values
Ipit)lo; IS the current being injected
PEi = EDi | i T EQi IQi Into the network by the generator

« Then swing equation is then

dt I.pu~—""s
dAw, ,, 1
dt s 2H. (Pl\/li _(EDiIDi + EQiIQi)_ b, (Aw"p“))

28



Two Bus, Two Generator Differential Equations

A]Mm
« The differential equations for the two generators are
% =Aw, . ®
dt i In this example
dAw, ,, 1 Puvi=1andP,,, =-1
- pu_ _ m (PMl _(Emlm + EQllQl))
do
d—tz = Aa)z.pua)s
dAw, 1
- pu_ _ o, (sz _(Eozloz + EQ2|Q2))

29



PowerWorld GENCLS Initial States

R
Case Information

A] ¥

Transient Stability Analysis - Case: B2_CL5_2)

Drraw Onelines Tools Options Add Cns Window
(%) Abort —_ - —
Edit Mode | = 0 Primal LP ﬁ Rl N E\“’ﬂ &9 % % | I @
|5 Log Refine Model ? ~
Run Mode ) SCOPF,, ©OPF Case  QOPF Options P oV ATC.. Transient Stability GIC... Scheduled Topology
% Seript Info = and Results... Stability... Case Info - Actions... Processing
Mode Log Ciptimal Power Flow (OPF) PV and OW Curves [PVOWV) ATC Transient Stability (T5) GIC Schedule Topology Proces:
Simulation Status |Iniﬁalized
Fun Transient Stability Pause Abart Festore Reference  For Contingency: | Find || My Transient Contingency v
Select Step States/Manual Contral
- Simulation
-Options Reset to Start Time Transfer Present State to Power Flow Save Case in P!
-Result Storage } . - ’
Ploks Run Until Specified Time 0.000000| =5 Rwun Until Time Restore Reference Power Flow Model
-Results from RAM : e o -
Do Spedified Number of Timestep(s) < Mumber of Timesteps to Do Save Time Snapshot
- Transient Limit Monitors
W -Sj:atesﬂ"«‘lanual Contral All States  State Limit Violations Generators Buses  Transient Stability YBus GIC GMatrix  Two Bus Equivalents Detailed Performance Results
i All States — . B~ | . A, SR i
- - State Limit Violations 3 ) B ofk e 5% @4 4 Records~ Set~ Columns - [Be~ ¥ BH- U fo- B | options -
- Generators Model Class | ModelType | Object Name |  AtLimit |Statelgnored | StateMame | vale | Dervative | Dettaxki
Buses 11Gen Synch, Mal TXKGEMNCLS 1 (Bus 1) #1 MO Angle 04179 0.0000000 0.0000000
Transient Stability YBus 2[Gen Synch. Ma TXGENCLS 1 (Bus 1) #1 NO Speed w 0.0000 0.0000000 0.0000000
GIC GMatrix 3| Gen Synch. Ma TEGEMCLS 2 (Bus 2] #1 MO Angle 02109 0,0000000 0,0000000
- Two Bus Equivalents 4| Gen Synch. Ma TXGEMNCLS 2 (Bus 2) #1 NO Speed w 0.0000 0.0000000 0.0000000
‘... Detailed Performance Rest
_ -Validation
i BMTR Finenualies
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Solution at t=0.02
K
« Usually a time step begins by solving the differential equations.

However, in the case of an event, such as the solid fault at the terminal

of bus 1, the network equations need to be first solved

« Solid faults can be simulated by adding a large shunt at the fault

location
—- Amount is somewhat arbitrary, it just needs to be large enough to drive the
faulted bus voltage to zero
« With Euler's the solution after the first time step is found by first
solving the differential equations, then resolving the network equations

31



Solution at t=0.02

A] ¥

Using Y, = -J1000, the fault-on conditions become

" j1007.879  j4.545 | [1.733- j3.903
V =

| j4545  —j9.545 ~1-j4.671
' —0.006 — j0.001

"1 0.486 - jO.lOSS}

Solving for the currents into the network

1.1702+ j0.52) -V |
= _013 )™Vi _1733- j3.900
JU.

L (0.9343- j0.2) J— 0(2.486 ~101058) o 1on 5 oa0

32



Solution at t=0.02

- 5,(0.02) |
Aw,(0.02)
5,(0.02)

| Aw,(0.02)

If solving with Euler's this is the final state value; using these state
values the network equations are resolved, with the solution the same

[ 0.418

0.0
—0.211
0

+0.02

0
1
—(1-0
“(1-0)
0
1

0

here since the &'s didn't vary

Then the differential equations are evaluated, using the new voltages
and currents
- These impact the calculation of Pg; with Pg;=0, P¢,=0

0418
0.00333
—0.211

| —0.00167 |

A] ¥
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PowerWorld GENCLS at t=0.02

A] ¥

% - LeHEREQR--

Case Information

Draw Onelines Tools
(%) Abort
Edit Mode | = Primal LP ﬁ (5]
5] Log
Run Mode ) SCOPF,.. OPF Case OPF Options
% Seript Infa - and Results...
Mode Log Optimal Power Flow [OPF)

Transient Stability Analysis - Case: B2_CL5_2Gen.pwh Status: Running (PF) | Simulator 20

Options Add Ons Window
—— |
% Refine Model | T @ %
PY... OV ATC... Transient Stability
Stability... Case Info -
PV and OV Curves [PVOV) ATC Transient Stability (T5)

GIC...

GIC

=2 R

Scheduled Topology
Actions... Processing...
Schedule Topology Processing

Simulation Status |Paused at 0.020000

Fun Transient Stability = |Continue Abart Restore Reference

For Contingency: | Find | My Transient Contingency

Select Step StatesManual Control
- Simulation
- Options Reset to Start Time Transfer Present State to Power Flow Save Case in PWXF
-Result Storage ; : - .
Plots Run Until Specified Time 0.000000 2= Run Until Time Restore Reference Power Flow Model
'RES'-'IT‘S ﬁ":".'"' E""M _ Do Specified Mumber of Timestep(s) - MNumber of Timesteps to Do Save Time Snapshot
- Transient Limit Monitars
W -Sfcatesﬂ'ﬂanual Cantral All States  State Limit Violations Generators Buses  Transient Stability YBus  GIC GMatrix  Two Bus Equivalents  Detailed Performance Results
- All States = OFT, .0 .00 ] . | iR AURE | g B  SORT i
-State Limit Violations 3 B il %68 5% | ¢ 93, | Records ~ Set~ Columns~ B~ R~ Wh- F BH- 3 fo- B options -
-~ Generators Model Class | ModelType | Object Name |  atiimit  |statelgnored | StateName | value | Derivative | Detaxi
-+~ Buses 1[Gen Synch. Ma TXGENCLS 1 (Bus 1) #1 NO Angle 0.4179 1.2566370 0.0000000
-+ Transient Stability YBus 2|Gen Synch. Ma TXGEMCLS 1 [Bus 1) #1 MO Speed w 0.0033 01666667 0.0033333
GIC GMatrix 3| Gen Synch. Ma TKGEMCLS 2 [Bus 2] #1 MO Angle 0.2109 0.6233187 0.0000000
. Two Bus Equivalents 4| Gen Synch. Ma TXGENCLS 2 (Bus 2} #1 NO Speed w 0.0017 00833334 -0.0016667
... Detailed Performance Rest
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Solution Values Using Euler's

* The below table gives the results using At = 0.02 for the
beginning time steps

Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz) Gen 2 Rotor Angle Gen2 Speed (Hz)

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
23.9462
25.3862
28.2662
32.5862
38.3462
38.3462
45.5462
52.1185
57.8541
62.6325
66.4064
69.1/82
70.9771
71.8392
71.7949

60

60.2
60.4
60.6
60.8

61

61
60.9128
60.7966
60.6637
60.5241
60.385
60.2498
60.1197
59.9938
59.8702

-12.0829
-12.0829
-12.8029
-14.2429
-16.4029
-19.2829
-19.2829
-22.8829

-26.169
-29.0368

-31.426
o002
-34.6988
-35.5982
-36.0292
-36.0071

60

59.9
59.8
59.7
59.6
59.5
993
59.5436
59.6017
59.6682
59.7379
59.8075
59.8751
59.9401
60.0031
60.0649

A] ¥
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Solution at t=0.02 with RK2
Al™m

« With RK2 the first part of the time step Is the same as Euler's, that Is
solving the network equations with

X(t+ADY =x (1) +k, =x(t) +ATF(x(1))

« Then calculate k2 and get a final value for x(t+At)
k, = At f(x(t)+k, )

X(t+At)= x(t)+%( K+ K, )

* Finally solve the network equations using the final value for x(t+At)

36



Solution at t=0.02 with RK2

From the first half of the time step

x(0.02)" =

Then i, — At f(x(t)+k, ) =0.02

- 0.418 |
0.00333
—0.211

—0.00167 |

- 0.0251
0.00333
—0.0126

~0.00167

A] ¥
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Solution at t=0.02 with RK2

 The new values for the Norton currents are

M= 1.281_424.69 _1.851— j3.880
J0.3
T = 0.95546—212.43 _ _1.028— 4.665
JO.

—j1007.879 j4.545 ][ 1.851— j3.880
V(0.02) =

| j4545  —j9.545| | -1.028— j4.665

"—0.006 — j0.001
| 0.486 — j0.108

A] ¥



Solution Values Using RK?2

* The below table gives the results using At = 0.02 for the beginning

time steps

Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz) Gen 2 Rotor Angle Gen2 Speed (Hz)

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
24.6662
26.8262
30.4262
35.4662
41.9462
41.9462
48.7754

54.697
59.6315

63.558
66.4888
68.4501
69.4669
69.5548
68.7151

60

60.2
60.4
60.6
60.8

61

61
60.8852
60.7538
60.6153
60.4763
60.3399
60.2071
60.077
59.9481
59.8183

-12.0829
-12.4429
=ILS 12
-15.3175
-17.8321
-21.0667
-21.0667
-24.4759
-27.4312
-29.8931
-31.8509
sooieliY

-34.286

-34.789
-34.8275
-34.4022

60

59.9
59.8
59.7008
59.6008
59.5008
59.5008
59.5581
59.6239
59.6931
59.7626
59.8308
59.8972
59.9623
60.0267
60.0916

A] ¥

39



Angle Reference

A
* The initial angles are given by the angles from the power flow, which
are based on the slack bus's angle

* As presented the transient stability angles are with respect to a
synchronous reference frame

— Sometimes this is fine, such as for either shorter studies, or ones in which there is
little speed variation

— Oftentimes this is not best since the when the frequencies are not nominal, the
angles shift from the reference frame

« Other reference frames can be used, such as with respect to a particular
generator's value, which mimics the power flow approach; the selected
reference has no impact on the solution
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Subtransient Models

K

« The Norton current injection approach is what is commonly used with
subtransient models in industry

 |f subtransient saliency is neglected (as Is the case with GENROU and
GENSAL in which X"=X",) then the current injection is

- =L jE” (_W” n JW(;,) - ;ﬁfjwii
| |, =— L = : T S
v + 2w R, + jX" R, + jX" “ f’ &

— Subtransient saliency can be handled with this approach, but it is more involved
(see Arrillaga, Computer Analysis of Power Systems, section 6.6.3)
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Subtransient Models
A]m
* Note, the values here are on the dqg reference frame

* We can now extend the approach introduced for the classical
machine model to subtransient models

 [Initialization is as before, which gives the &'s and other state values

* Each time step Is as before, except we use the d's for each generator
to transfer values between the network reference frame and each

machine's dg reference frame
— The currents provide the coupling
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Two Bus Example with Two GENROU Models
A]m
« Use the same system as before, except with we'll model both

generators using GENROUSs

~ For simplicity we'll make both generators identical except set H,=3, H,=6;
other values are X=2.1, X,=0.5, X';=0.2, X',=0.5, X",=X";=0.18, X,=0.15,
Ty = 7.0, T',x=0.75, T"4,=0.035, T",,=0.05; no saturation

— With no saturation the value of the &'s are determined (as per the earlier
lectures) by solving

E|£8=V +(R,+ jX )T

— Hence for generator 1
\ El\ Z0,=1.0946/11.59° + ( j0.5)(1.0524 —18.20) =1.431/30.2°
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GENROU Block Diagram

Mard-xl
Nd-Xl

Efd_@_.. ! ey 1 i d—ad
='do v

- 4 kET/ T dn Tl xd-x
L -

¥

v |
Hd-1d ) L
TR XKd-X 4-EX IS E
F
-.:"“\ f‘: id
:.l:adltd z :+ W-xd | xfxﬁ
+
Py
» =e 2
1L [ v = swttd )
v
W Xg-
¥
I
ar Xg-d'q |- {3
+ jf—t l =
T T
wg- s
(X g=x)7"Z
F
-

¥ig _
(2 — ;é\ > — e

=T gqu - l\-__/r

" =T"qgo
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Two Bus Example with Two GENROU Models
A]m

« Using the early approach the initial state vector is

6, | | 05273 | Note that this is a salient pole machine with
Aa, 0.0 X' =X, hence E'y will always be zero
E., 1.1948
V161 1.1554 The initial currents in the dq reference frame are
Vo | | 0.2446 15,=0.7872, 1,,=0.6988, 1,=0.2314, | ,=-1.0269
E!
0= =] y
6, | |—0.5392 Initial values of y" ;= -0.2236,
Aw, 0 and y" 4, =1.179
E., 0.9044
v, | | 0.8928
Wy | | —0.3594
E!, 0
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PowerWorld GENROU Initial States

-LLN =] Fo [ —
B E- PR E8E K- -
Case Information Draw Onelines Tools
. () Abort _ .
Edit Mode Primal LP ﬁ sl

Options Add Ons Window

E }—?{4 Refine Model ;{3
V...  Qv..

Transient Stability Analysis - Case: B2_GENROU_2(

A B2 R

=
Log
i)
Run Mode ) SCOPF,, OPF Case  OPF Options ATC... Transient Stability GIC... Scheduled Topology
% Script - Infao - and Results... Stability... Case Info - Actions... Processing
Mode Log Optimal Power Flow [OPF) PV and QW Curves [PVOW) ATC Transient Stability [T5) GIC Schedule Topology Proces:
Simulation Status |Iniﬁalized
Run Transient Stability Pause Abort Restore Reference | For Contingency: | Find | My Transient Contingency -
Select Step StatesManual Contral
- Simulation
- Options Reset to Start Time Transfer Present State to Power Flow Save Case in P
-Result Storage ; . - .
Plots Run Until Spedfied Time 0.000000 | =5 Run Until Time Restore Reference Power Flow Model
'RES'-'P_‘S ﬁ":"_'” F"'!"M _ Do Specified Mumber of Timestep(s) ~ MNumber of Timesteps to Do Save Time Snapshot
- Transient Limit Monitors
A -Statesﬂdanual Contraol All States | State Limit Violations Generators Buses  Transient Stability YBus  GIC GMatrix  Two Bus Equivalents Detailed Performance Results
i All States m— e, +.0 .0 Bl | GUHE, RN, = B . U i
» - State Limit Violations B e Al e 5% #4 | Records~ Set~ Columns~ [Bg~ R~ "88- ¥ - 3 o~ B options -
- Generators Model Class | ModelType | ObjectName |  AtLimit | Statelgnored | StateName | value | Derivative | Dettax k1
Buses 1)5en Synch. Ma] GENROU 1 [Bus 1] #1 MO Angle 0.5272 0.0000000 0.0000000
- Transient Stability YBus 2| Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Speed w 0,0000 0,0000000 0,0000000
- GIC GMatrix 3|Gen Synch, Ma GENROU 1 {Bus 1) #1 NO Eqp 1.1943 0,0000000 0.0000000
. Two Bus Equivalents 4|Gen synch. Ma GENROU 1 [Bus 1) #1 NO PsiDp 1.1554 0.0000000 0.0000000
‘.. Detailed Performance Bes. 5|Gen Synch. Ma GENROU 1 (Bus 1) #1 NO PsiQpp 0.2446 0.0000000 0.0000000
Validation &|Gen Synch, Ma GENROU 1 [Bus 1] #1 MO Edp 0.0000 0.0000000 0.0000000
SMIBEi | 7|Gen Synch, Ma GENROU 2 [Bus 2] #1 MO Angle -0,5392 0.0000000 0.0000000
IgEnVaLIES 8| Gen synch. Ma GENROU 2 Bus 2) =1 NO Speed w 0.0000 0.0000000 0.0000000
. -Modal Analysis 9|Gen Synch. Ma GENROU 2 [Bus 2) #1 {le] Eqp 0.9044 0.0000000 0.0000000
i Dynamic Simulator Options 10|Gen Synch, Ma GENROU 2 [Bus 2] #1 MO PsiDp 0.85923 0.0000000 0.0000000
11|Gen Synch. Ma GENROU 2 [Bus 2] #1 MO PsiCipp -0,3554 0.0000000 0.0000000
12| Gen Synch, Ma GENROU 2 [Bus 2] #1 MO Edp 0.0000 0.0000000 0.0000000

AlM

®
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Solving with Euler's
K
« We'll again solve with Euler's, except with At set now to 0.01 seconds
(because now we have a subtransient model with faster dynamics)
— We'll also clear the fault at t=0.05 seconds

« For the more accurate subtransient models the swing equation is
written in terms of the torques

do. .
Sop -0 =Aw Other equations are solved

dt based upon the block diagram

2Hi da)i = 2H' dAa)l :TMi _TEi _Di (Aa)l)
o, dt w, dt

S

with Ty, = l//(;’,ii qi_l//(;’,ii di
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Norton Equivalent Current Injections
A]m
« The initial Norton equivalent current injections on the dq base for
each machine are
(~wi+ jvi)o  (~0.2236+ j1.179)(1.0)

g+ g = =
Nd1 J NC]l jX]r’ j018
=6.55+ ]J1.242 Ew—— | )
. . ecall the dq values are on the
o + J1 NQL — 2.222 — ]6.286 machine’s reference frame and
lgp + 1 NGz = 4,999 + j1.826 the DQ values are on the system

. . reference frame
| oo + JINQZ =-1-15.227
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Moving between DQ and dq

* Recall
| [sing —coss ]| 1o
_Iqi_ CoSo sSino _|Qi_ The currents provide the key
coupling between the
two reference frames
 And

- —C0SO SIho

I, {siné cos&} .

A] ¥



Bus Admittance Matrix

Al™m
 The bus admittance matrix iIs as from before for the classical models,
except the diagonal elements are augmented using

Yi = 1 "
Rs,i + de,i
- _
vy . j0.18 :{—jlo.lol j4.545 }
g L1 | L4545 -j10101
! J0.18 |
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Algebraic Solution Verification

* To check the values solve (in the network reference frame)

_j10.101  j4.545 ] '[2.222 - j6.286"
| j4545 —j10.101| | —1-j5.227
1.072+ j0.22°

1.0

-1

\/ =

A] ¥



Results

The below graph shows the results for four seconds of simulation, using

Euler's with At=0.01 seconds
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Results for Longer Time

A
« Simulating out 10 seconds indicates an unstable solution, both using
Euler's and RK2 with At=0.005, so it is really unstable!
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