ECEN 667 Power System Stability

Lecture 16: Time-Domain Simulation Solutions (Transient Stability)

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A\&M University
overbye@tamu.edu

Announcements

- Read Chapters 4 and 7
- Homework 5 is due on Tuesday Oct 31

Two Bus Example with Two GENROU Models

- Use the same system as before, except with we'll model both generators using GENROUs
- For simplicity we'll make both generators identical except set $\mathrm{H}_{1}=3, \mathrm{H}_{2}=6$; other values are $\mathrm{X}_{\mathrm{d}}=2.1, \mathrm{X}_{\mathrm{q}}=0.5, \mathrm{X}_{\mathrm{d}}=0.2, \mathrm{X}_{\mathrm{q}}=0.5, \mathrm{X}_{\mathrm{q}}{ }=\mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}=0.18, \mathrm{X}_{\mathrm{l}}=0.15$, $\mathrm{T}_{\mathrm{do}}=7.0, \mathrm{~T}_{\mathrm{qo}}^{\prime}=0.75, \mathrm{~T}_{\mathrm{do}}=0.035, \mathrm{~T}_{\mathrm{qo}}=0.05$; no saturation
- With no saturation the value of the δ 's are determined (as per the earlier lectures) by solving

$$
|E| \angle \delta=\bar{V}+\left(R_{s}+j X_{q}\right) \bar{I}
$$

- Hence for generator 1

$$
\left|E_{1}\right| \angle \delta_{1}=1.0946 \angle 11.59^{\circ}+(j 0.5)\left(1.052 \angle-18.2^{\circ}\right)=1.431 \angle 30.2^{\circ}
$$

GENROU Block Diagram

Two Bus Example with Two GENROU Models

- Using the early approach the initial state vector is
$\mathbf{x}(0)=\left[\begin{array}{c}\delta_{1} \\ \Delta \omega_{1} \\ E_{q 1}^{\prime} \\ \psi_{1 d 1} \\ \psi_{2 q 1} \\ E_{d 1}^{\prime} \\ \delta_{2} \\ \Delta \omega_{2} \\ E_{q 2}^{\prime} \\ \psi_{1 d 2} \\ \psi_{2 q 2} \\ E_{d 2}^{\prime}\end{array}\right]=\left[\begin{array}{c}0.5273 \\ 0.0 \\ 1.1948 \\ 1.1554 \\ 0.2446 \\ 0 \\ -0.5392 \\ 0 \\ 0.9044 \\ 0.8928 \\ -0.3594 \\ 0\end{array}\right]$

Note that this is a salient pole machine with $X_{q}^{\prime}=X_{q}$; hence E_{d}^{\prime} will always be zero

The initial currents in the dq reference frame are $\mathrm{I}_{\mathrm{d} 1}=0.7872, \mathrm{I}_{\mathrm{q} 1}=0.6988, \mathrm{I}_{\mathrm{d} 2}=0.2314, \mathrm{I}_{\mathrm{q} 2}=-1.0269$

Initial values of $\psi{ }^{\prime \prime}{ }_{q 1}=-0.2236$, and $\psi{ }^{\prime \prime}{ }_{\mathrm{d} 1}=1.179$

PowerWorld GENROU Initial States

Transient Stability Analysis - Case: B2_GENROU_2C

Select Step

> 3 .

Options
> Plots

- Results from RAM
> Transient Limit Monitors
States/Manual Control
All States
Generators
Buses
Transient Stability YBus GIC GMatrix

Equivalents - Validation
-" SMIB Eigenvalues
Dynamic Simulator Options

States/Manual Control
 (1) [

Solving with Euler's

- We'll again solve with Euler's, except with $\Delta \mathrm{t}$ set now to 0.01 seconds (because now we have a subtransient model with faster dynamics)
- We'll also clear the fault at $\mathrm{t}=0.05$ seconds
- For the more accurate subtransient models the swing equation is written in terms of the torques

$$
\begin{aligned}
& \frac{d \delta_{i}}{d t}=\omega_{i}-\omega_{s}=\Delta \omega_{i} \\
& \frac{2 H_{i}}{\omega_{s}} \frac{d \omega_{i}}{d t}=\frac{2 H_{i}}{\omega_{s}} \frac{d \Delta \omega_{i}}{d t}=T_{M i}-T_{E i}-D_{i}\left(\Delta \omega_{i}\right) \\
& \text { with } T_{E i}=\psi_{d, i}^{\prime \prime} i_{q i}-\psi_{q, i}^{\prime \prime} i_{d i}
\end{aligned}
$$

Other equations are solved based upon the block diagram

Norton Equivalent Current Injections

- The initial Norton equivalent current injections on the dq base for each machine are

$$
\begin{array}{rlrl}
I_{N d 1}+j I_{N q 1} & =\frac{\left(-\psi_{q 1}^{\prime \prime}+j \psi_{d 1}^{\prime \prime}\right) \omega_{1}}{j X_{1}^{\prime \prime}}=\frac{(-0.2236+j 1.179)(1.0)}{j 0.18} \\
& =6.55+j 1.242 & & \\
I_{N D 1}+j I_{N Q 1} & =2.222-j 6.286 & & \text { Recall the dq values are on the } \\
\text { machine's reference frame and } \\
I_{N d 2}+j I_{N q 2} & =4.999+j 1.826 & & \text { the DQ values are on the system } \\
I_{N D 2}+j I_{N Q 2} & =-1-j 5.227 & & \text { reference frame }
\end{array}
$$

Moving between DQ and dq

- Recall

$$
\left[\begin{array}{l}
I_{d i} \\
I_{q i}
\end{array}\right]=\left[\begin{array}{cc}
\sin \delta & -\cos \delta \\
\cos \delta & \sin \delta
\end{array}\right]\left[\begin{array}{l}
I_{D i} \\
I_{Q i}
\end{array}\right]
$$

- And

$$
\left[\begin{array}{l}
I_{D i} \\
I_{Q i}
\end{array}\right]=\left[\begin{array}{cc}
\sin \delta & \cos \delta \\
-\cos \delta & \sin \delta
\end{array}\right]\left[\begin{array}{l}
I_{d i} \\
I_{q i}
\end{array}\right]
$$

The currents provide the key coupling between the two reference frames

Bus Admittance Matrix

- The bus admittance matrix is as from before for the classical models, except the diagonal elements are augmented using

$$
Y_{i}=\frac{1}{R_{s, i}+j X_{d, i}^{\prime \prime}}
$$

$\mathbf{Y}=\mathbf{Y}_{N}+\left[\begin{array}{cc}\frac{1}{j 0.18} & 0 \\ 0 & \frac{1}{j 0.18}\end{array}\right]=\left[\begin{array}{cc}-j 10.101 & j 4.545 \\ j 4.545 & -j 10.101\end{array}\right]$

Algebraic Solution Verification

- To check the values solve (in the network reference frame)

$$
\begin{aligned}
\mathbf{V} & =\left[\begin{array}{cc}
-j 10.101 & j 4.545 \\
j 4.545 & -j 10.101
\end{array}\right]^{-1}\left[\begin{array}{c}
2.222-j 6.286 \\
-1-j 5.227
\end{array}\right] \\
& =\left[\begin{array}{c}
1.072+j 0.22 \\
1.0
\end{array}\right]
\end{aligned}
$$

Results

- The below graph shows the results for four seconds of simulation, using Euler's with $\Delta t=0.01$ seconds

PowerWorld case is

B2_GENROU_2GEN_EULER

Results for Longer Time

- Simulating out 10 seconds indicates an unstable solution, both using Euler's and RK2 with $\Delta t=0.005$, so it is really unstable!

Euler's with $\Delta t=0.01$

RK2 with $\Delta t=0.005$

Adding More Models

- In this situation the case is unstable because we have not modeled exciters
- To each generator add an EXST1 with $\mathrm{T}_{\mathrm{R}}=0, \mathrm{~T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{B}}=0, \mathrm{~K}_{\mathrm{f}}=0, \mathrm{~K}_{\mathrm{A}}=100$, $\mathrm{T}_{\mathrm{A}}=0.1$

- This just adds one differential equation per generator

$$
\frac{d E_{F D}}{d t}=\frac{l}{T_{A}}\left(K_{A}\left(V_{R E F}-\left|V_{t}\right|\right)-E_{F D}\right)
$$

Two Bus, Two Gen With Exciters

- Below are the initial values for this case from PowerWorld

Because of the zero values the other differential equations for the exciters are included but treated as ignored

Case is B2_GENROU_2GEN_EXCITER

Viewing the States

- PowerWorld allows one to single-step through a solution, showing the $\mathbf{f}(\mathbf{x})$ and the \mathbf{K}_{1} values
- This is mostly used for education or model debugging

Derivatives shown are evaluated at the end of the time step

Two Bus Results with Exciters

- Below graph shows the angles with $\Delta t=0.01$ and a fault clearing at t=0.05 using Euler's
- With the addition of the exciters case is now stable

Load Models Introduced

- The simplest approach for modeling the loads is to treat them as constant impedances, embedding them in the bus admittance matrix - Only impact the $\mathbf{Y}_{\text {bus }}$ diagonals
- The admittances are set based upon their power flow values, scaled by the inverse of the square of the power flow bus voltage
$\bar{S}_{\text {load }, i}=\bar{V}_{i} \bar{I}_{\text {load }, i}^{*}=\left|\bar{V}_{i}\right|^{2}\left(G_{\text {load }, i}-j B_{\text {load }, i}\right)$
$G_{\text {load }, i}-j B_{\text {load }, i}=\frac{\bar{S}_{\text {load }, i}}{\left|\bar{V}_{i}\right|^{2}}$
In PowerWorld the default load model is specified on Transient Stability, Options, Power System Model page
Note the positive sign comes from the sign convention on $\bar{I}_{\text {Ioad, },}$

Example 7.4 Case (WSCC 9 Bus)

- PowerWorld Case Example_7_4 duplicates the example 7.4 case from the book, with the exception of using different generator models

Bus 5 Example: Without the load $Y_{55}=2.553-j 17.339$

$$
\begin{aligned}
& \bar{S}_{\text {load }, 5}=1.25+j 0.5 \text { and }\left|\overline{\mathrm{V}}_{5}\right|=0.996 \\
& \mathbf{Y}_{55}=2.553-j 17.579+\frac{(1.25-j 0.5)}{|0.996|^{2}}=3.813-j 17.843
\end{aligned}
$$

Nonlinear Network Equations

- With constant impedance loads the network equations can usually be written with \mathbf{I} independent of \mathbf{V}, then they can be solved directly (as we've been doing)

$$
\mathbf{V}=\mathbf{Y}^{-1} \mathbf{I}(\mathbf{x})
$$

- In general this is not the case, with constant power loads one common example. Hence in general a nonlinear solution with Newton's method is used
- We'll generalize the dependence on the algebraic variables, replacing \mathbf{V} by \mathbf{y} since they may include other values beyond just the bus voltages

Nonlinear Network Equations

- Just like in the power flow, the complex equations are rewritten, here as a real current and a reactive current

$$
\mathbf{Y V}-\mathbf{I}(\mathbf{x}, \mathbf{y})=\mathbf{0}
$$

- The values for bus i are

$$
\begin{aligned}
& g_{D i}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{n}\left(G_{i k} V_{D k}-B_{i k} V_{Q K}\right)-I_{N D i}=0 \\
& g_{Q i}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{n}\left(G_{i k} V_{Q k}+B_{i k} V_{D K}\right)-I_{N Q i}=0
\end{aligned}
$$

This is a rectangular formulation; we also could have written the equations in polar form

- For each bus we add two new variables and two new equations
- If an infinite bus is modeled then its variables and equations are omitted since its voltage is fixed

Nonlinear Network Equations

- The network variables and equations are then

$$
\mathbf{y}=\left[\begin{array}{c}
V_{D 1} \\
V_{Q 1} \\
V_{D 2} \\
\vdots \\
V_{D n} \\
V_{Q n}
\end{array}\right] \quad \mathbf{g}(\mathbf{x}, \mathbf{y})=\left[\begin{array}{c}
\sum_{k=1}^{n}\left(G_{1 k} V_{D k}-B_{1 k} V_{Q K}\right)-I_{N D 1}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{i k} V_{Q k}+B_{i k} V_{D K}\right)-I_{N Q 1}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{2 k} V_{D k}-B_{2 k} V_{Q K}\right)-I_{N D 2}(\mathbf{x}, \mathbf{y})=0 \\
\vdots \\
\sum_{k=1}^{n}\left(G_{n k} V_{D k}-B_{n k} V_{Q K}\right)-I_{N D n}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{n k} V_{Q k}+B_{n k} V_{D K}\right)-I_{N Q n}(\mathbf{x}, \mathbf{y})=0
\end{array}\right]
$$

Nonlinear Network Equation Newton Solution

The network equations are solved using a similar procedure to that of the
Netwon-Raphson power flow
Set $v=0$; make an initial guess of $\mathbf{y}, \mathbf{y}^{(v)}$
While $\left\|\mathbf{g}\left(\mathbf{y}^{(v)}\right)\right\|>\varepsilon$ Do

$$
\begin{aligned}
\mathbf{y}^{(v+1)} & =\mathbf{y}^{(v)}-\mathbf{J}\left(\mathbf{y}^{(v)}\right)^{-1} \mathbf{g}\left(\mathbf{y}^{(v)}\right) \\
v & =v+1
\end{aligned}
$$

End While

Network Equation Jacobian Matrix

- The most computationally intensive part of the algorithm is determining and factoring the Jacobian matrix, $\mathbf{J}(\mathbf{y})$

$$
\mathbf{J}(\mathbf{y})=\left[\begin{array}{cccc}
\frac{\partial g_{D 1}(\mathbf{x}, \mathbf{y})}{\partial V_{D 1}} & \frac{\partial g_{D 1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q 1}} & \cdots & \frac{\partial g_{D 1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q n}} \\
\frac{\partial g_{Q 1}(\mathbf{x}, \mathbf{y})}{\partial V_{D 1}} & \frac{\partial g_{Q 1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q 1}} & \cdots & \frac{\partial g_{Q 1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q n}} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial g_{Q n}(\mathbf{x}, \mathbf{y})}{\partial V_{D 1}} & \frac{\partial g_{Q n}(\mathbf{x}, \mathbf{y})}{\partial V_{Q 1}} & \cdots & \frac{\partial g_{Q_{n}}(\mathbf{x}, \mathbf{y})}{\partial V_{Q n}}
\end{array}\right]
$$

Network Jacobian Matrix

- The Jacobian matrix can be stored and computed using a 2 by 2 block matrix structure
- The portion of the 2 by 2 entries just from the $\mathbf{Y}_{\text {bus }}$ are

$$
\left[\begin{array}{ll}
\frac{\partial \hat{g}_{D i}(\mathbf{x}, \mathbf{y})}{\partial V_{D j}} & \frac{\partial \hat{g}_{D i}(\mathbf{x}, \mathbf{y})}{\partial V_{Q j}} \\
\frac{\partial \hat{g}_{Q i}(\mathbf{x}, \mathbf{y})}{\partial V_{D j}} & \frac{\partial \hat{g}_{Q i}(\mathbf{x}, \mathbf{y})}{\partial V_{Q j}}
\end{array}\right]=\left[\begin{array}{cc}
G_{i j} & -B_{i j} \\
B_{i j} & G_{i j}
\end{array}\right]
$$

The "hat" was added to the g functions to indicate it is just the portion from the $\mathbf{Y}_{\text {bus }}$

- The major source of the current vector voltage sensitivity comes from non-constant impedance loads; also dc transmission lines

Example: Constant Current, Constant Power Load

- As an example, assume the load at bus k is represented with a ZIP model
$P_{\text {Load }, k}=P_{\text {BaseLoad }, k}\left(P_{z, k}\left|\bar{V}_{k}^{2}\right|+P_{i, k}\left|\bar{V}_{k}\right|+P_{p, k}\right)$
$Q_{\text {Load }, k}=Q_{\text {BaseLoad }, k}\left(Q_{z, k}\left|\bar{V}_{k}^{2}\right|+Q_{i, k}\left|\bar{V}_{k}\right|+Q_{p, k}\right)$

The base load values are
set from the
power flow

- Constant impedance could be in the $\mathbf{Y}_{\text {bus }}$
$\hat{P}_{\text {Load }, k}=P_{\text {BaseLoad }, k}\left(P_{i, k}\left|\bar{V}_{k}\right|+P_{p, k}\right)=\left(P_{B L, i, k}\left|\bar{V}_{k}\right|+P_{B L, p, k}\right)$
$\hat{Q}_{\text {Load }, k}=Q_{\text {BaseLoad }, k}\left(Q_{i, k}\left|\bar{V}_{k}\right|+Q_{p, k}\right)=\left(Q_{B L, i, k}\left|\bar{V}_{k}\right|+Q_{B L, p, k}\right)$
- Usually solved in per unit on network MVA base

Example: Constant Current, Constant Power Load

- The current is then

$$
\begin{aligned}
& \bar{I}_{\text {Load }, k}=I_{D, \text { Load }, k}+j I_{Q, \text { Load }, k}=\left(\frac{\hat{P}_{\text {Load }, k}+j \hat{Q}_{\text {Load }, k}}{\bar{V}_{k}}\right)^{*} \\
& =\left(\frac{\left(P_{B L, i, k} \sqrt{V_{D K}^{2}+V_{Q K}^{2}}+P_{B L, p, k}\right)-j\left(Q_{B L, i, k} \sqrt{V_{D K}^{2}+V_{Q K}^{2}}+Q_{B L, p, k}\right)}{V_{D k}-j V_{Q k}}\right)
\end{aligned}
$$

- Multiply the numerator and denominator by $\mathrm{V}_{\mathrm{DK}}+\mathrm{j} \mathrm{V}_{\mathrm{QK}}$ to write as the real current and the reactive current

Example: Constant Current, Constant Power Load

$$
\begin{aligned}
& I_{D, L o a d, k}=\frac{V_{D k} P_{B L, p, k}+V_{Q K} Q_{B L, p, k}}{V_{D K}^{2}+V_{Q K}^{2}}+\frac{V_{D k} P_{B L, i, k}+V_{Q K} Q_{B L, i, k}}{\sqrt{V_{D K}^{2}+V_{Q K}^{2}}} \\
& I_{Q, \text { Load }, k}=\frac{V_{Q k} P_{B L, p, k}-V_{D K} Q_{B L, p, k}}{V_{D K}^{2}+V_{Q K}^{2}}+\frac{V_{Q k} P_{B L, i, k}-V_{D K} Q_{B L, i, k}}{\sqrt{V_{D K}^{2}+V_{Q K}^{2}}}
\end{aligned}
$$

- The Jacobian entries are then found by differentiating with respect to V_{DK} and V_{QK}
- Only affect the 2 by 2 block diagonal values
- Usually constant current and constant power models are replaced by a constant impedance model if the voltage goes too low, like during a fault

Example: 7.4 ZIP Case

- Example 7.4 is modified so the loads are represented by a model with 30% constant power, 30% constant current and 40% constant impedance
- In PowerWorld load models can be entered in a number of different ways; a tedious but simple approach is to specify a model for each individual load
- Right click on the load symbol to display the Load Options dialog, select Stability, and select WSCC to enter a ZIP model, in which p1\&q1 are the normalized about of constant impedance load, p2\&q2 the amount of constant current load, and p3\&q3 the amount of constant power load

Case is Example_7_4_ZIP

Example 7.4 ZIP One-line

Example 7.4 ZIP Bus 8 Load Values

- As an example the values for bus 8 are given (per unit, 100 MVA base)
$1.00=P_{\text {BassLoad, } 8}\left(0.4 \times 1.016^{2}+0.3 \times 1.016+0.3\right)$
$\rightarrow P_{\text {Bascload }, 8}=0.983$
$0.35=Q_{\text {Baseload, }, 8}\left(0.4 \times 1.016^{2}+0.3 \times 1.016+0.3\right)$
$\rightarrow Q_{\text {Baseload }, 8}=0.344$
$I_{D, \text { Load }, 8}+j I_{Q, \text { Load }, 8}=\left(\frac{1+j 0.35}{1.0158+j 0.0129}\right)^{*}=0.9887-j 0.332$

Example: 7.4 ZIP Case Jacobian

- For this case the 2 by 2 block between buses 8 and 7 is

$$
\left[\begin{array}{cc}
-1.155 & 9.784 \\
-9.784 & -1.155
\end{array}\right]
$$

This is referencing slide 29

- And between 8 and 9 is
$\left[\begin{array}{cc}-1.617 & 13.698 \\ -13.698 & -1.617\end{array}\right]$
These entries are easily checked with the $\mathbf{Y}_{\text {bus }}$
- The 2 by 2 block for the bus 8 diagonal is
$\left[\begin{array}{cc}2.876 & -23.352 \\ 23.632 & 3.745\end{array}\right]$

The check here is
left for the student

Additional Comments

- When coding Jacobian values, a good way to check that the entries are correct is to make sure that for a small perturbation about the solution the Newton's method has quadratic convergence
- When running the simulation the Jacobian is actually seldom rebuilt and refactored
- If the Jacobian is not too bad it will still converge
- To converge Newton's method needs a good initial guess, which is usually the last time step solution
- Convergence can be an issue following large system disturbances, such as a fault

Explicit Method Long-Term Solutions

- The explicit method can be used for long-term solutions
- For example in PowerWorld DS we've done solutions of large systems for many hours
- Numerical errors do not tend to build-up because of the need to satisfy the algebraic equations
- However, sometimes models have default parameter values that cause unexpected behavior when run over longer periods of time (such as default trips after 99 seconds below 0.1 Hz).
- Some models have slow unstable modes

Simultaneous Implicit

- The other major solution approach is the simultaneous implicit in which the algebraic and differential equations are solved simultaneously
- This method has the advantage of being numerically stable

Simultaneous Implicit

- Recalling an initial lecture, we covered two common implicit integration approaches for solving $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$
- Backward Euler $\quad \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \mathbf{f}(\mathbf{x}(t+\Delta t))$

For a linear system we have

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=[I-\Delta t \mathbf{A}]^{-1} \mathbf{x}(t) \\
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\frac{\Delta t}{2}[\mathbf{f}(\mathbf{x}(t))+\mathbf{f}(\mathbf{x}(t+\Delta t))]
\end{aligned}
$$

For a linear system we have

$$
\mathbf{x}(t+\Delta t)=[I-\Delta t \mathbf{A}]^{-1}\left[I+\frac{\Delta t}{2} \mathbf{A}\right] \mathbf{x}(t)
$$

- We'll just consider trapezoidal, but for nonlinear cases

Nonlinear Trapezoidal

- We can use Newton's method to solve $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with the trapezoidal
$-\mathbf{x}(t+\Delta t)+\mathbf{x}(t)+\frac{\Delta t}{2}(\mathbf{f}(\mathbf{x}(t+\Delta t))+\mathbf{f}(\mathbf{x}(t)))=\mathbf{0}$
- We are solving for $\mathbf{x}(\mathrm{t}+\Delta \mathrm{t}) ; \mathbf{x}(\mathrm{t})$ is known
- The Jacobian matrix is

$$
\mathbf{J}(\mathbf{x}(t+\Delta t))=\frac{\Delta t}{2}\left[\begin{array}{ccc}
\frac{\partial f_{l}}{\partial x_{l}} & \cdots & \frac{\partial f_{l}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{l}} & \cdots & \frac{\partial f_{l}}{\partial x_{n}}
\end{array}\right]-\mathbf{I} \quad \begin{aligned}
& \text { The }-\mathbf{I} \text { comes from } \\
& \text { differentiating }-\mathbf{x}(\mathrm{t}+\Delta \mathrm{t})
\end{aligned}
$$

Nonlinear Trapezoidal using Newton's Method

- The full solution would be at each time step
- Set the initial guess for $\mathbf{x}(\mathrm{t}+\Delta \mathrm{t})$ as $\mathbf{x}(\mathrm{t})$, and initialize the iteration counter $\mathrm{k}=0$
- Determine the mismatch at each iteration k as

$$
\mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}\right) \square-\mathbf{x}(t+\Delta t)^{(k)}+\mathbf{x}(t)+\frac{\Delta t}{2}\left(\mathbf{f}\left(\mathbf{x}(t+\Delta t)^{(k)}\right)+\mathbf{f}(\mathbf{x}(t))\right)
$$

- Determine the Jacobian matrix
- Solve $\mathbf{x}(t+\Delta t)^{(k+l)}=\mathbf{x}(t+\Delta t)^{(k)}-\left[\mathbf{J}\left(\mathbf{x}(t+\Delta t)^{(k)}\right]^{-1} \mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}\right)\right.$
- Iterate until done

Infinite Bus GENCLS Example

- Use the previous two bus system with gen 4 again modeled with a classical model with $X_{d}{ }^{\prime}=0.3, \mathrm{H}=3$ and $\mathrm{D}=0$

Bus 2

In this example $X_{\mathrm{th}}=(0.22+0.3)$, with the internal voltage
$\bar{E}_{1}^{\prime}=1.281 \angle 23.95^{\circ}$ giving $\mathrm{E}_{1}^{\prime}=1.281$ and $\delta_{1}=23.95^{\circ}$

Infinite Bus GENCLS Implicit Solution

- Assume a solid three phase fault is applied at the bus 1 generator terminal, reducing $\mathrm{P}_{\mathrm{E} 1}$ to zero during the fault, and then the fault is self-cleared at time $\mathrm{T}^{\text {clear }}$, resulting in the post-fault system being identical to the pre-fault system
- During the fault-on time the equations reduce to

$$
\begin{aligned}
& \frac{d \delta_{l}}{d t}=\Delta \omega_{1, p u} \omega_{s} \\
& \frac{d \Delta \omega_{1, p u}}{d t}=\frac{1}{2 \times 3}(1-0)
\end{aligned}
$$

That is, with a solid fault on the terminal of the generator, during the fault $\mathrm{P}_{\mathrm{E} 1}=0$

Infinite Bus GENCLS Implicit Solution

- The initial conditions are

$$
\mathbf{x}(0)=\left[\begin{array}{c}
\delta(0) \\
\omega_{p u}(0)
\end{array}\right]=\left[\begin{array}{c}
0.418 \\
0
\end{array}\right]
$$

- Let $\Delta t=0.02$ seconds
- During the fault the Jacobian is

$$
\mathbf{J}(\mathbf{x}(t+\Delta t))=\frac{0.02}{2}\left[\begin{array}{cc}
0 & \omega_{s} \\
0 & 0
\end{array}\right]-\mathbf{I}=\left[\begin{array}{cc}
-1 & 3.77 \\
0 & -1
\end{array}\right]
$$

- Set the initial guess for $\mathbf{x}(0.02)$ as $\mathbf{x}(0)$, and

$$
\mathbf{f}(\mathbf{x}(0))=\left[\begin{array}{c}
0 \\
0.1667
\end{array}\right]
$$

Infinite Bus GENCLS Implicit Solution

- Then calculate the initial mismatch

$$
\mathbf{h}\left(\mathbf{x}(0.02)^{(0)}\right) \square-\mathbf{x}(0.02)^{(0)}+\mathbf{x}(0)+\frac{0.02}{2}\left(\mathbf{f}\left(\mathbf{x}(0.02)^{(0)}\right)+\mathbf{f}(\mathbf{x}(0))\right)
$$

- With $\mathbf{x}(0.02)^{(0)}=\mathbf{x}(0)$ this becomes

$$
\mathbf{h}\left(\mathbf{x}(0.02)^{(0)}\right)=-\left[\begin{array}{c}
0.418 \\
0
\end{array}\right]+\left[\begin{array}{c}
0.418 \\
0
\end{array}\right]+\frac{0.02}{2}\left(\left[\begin{array}{c}
0 \\
0.167
\end{array}\right]+\left[\begin{array}{c}
0 \\
0.167
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
0.00334
\end{array}\right]
$$

- Then

$$
\mathbf{x}(0.02)^{(1)}=\left[\begin{array}{c}
0.418 \\
0
\end{array}\right]-\left[\begin{array}{cc}
-1 & 3.77 \\
0 & -1
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0.00334
\end{array}\right]=\left[\begin{array}{c}
0.4306 \\
0.00334
\end{array}\right]
$$

Infinite Bus GENCLS Implicit Solution

- Repeating for the next iteration

$$
\begin{aligned}
\mathbf{f}\left(\mathbf{x}(0.02)^{(I)}\right) & =\left[\begin{array}{c}
1.259 \\
0.1667
\end{array}\right] \\
\mathbf{h}\left(\mathbf{x}(0.02)^{(I)}\right) & =-\left[\begin{array}{c}
0.4306 \\
0.00334
\end{array}\right]+\left[\begin{array}{c}
0.418 \\
0
\end{array}\right]+\frac{0.02}{2}\left(\left[\begin{array}{c}
1.259 \\
0.167
\end{array}\right]+\left[\begin{array}{c}
0 \\
0.167
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
0.0 \\
0.0
\end{array}\right]
\end{aligned}
$$

- Hence we have converged with $\mathbf{x}(0.02)=\left[\begin{array}{c}0.4306 \\ 0.00334\end{array}\right]$

Infinite Bus GENCLS Implicit Solution

- Iteration continues until $\mathrm{t}=\mathrm{T}^{\text {clear }}$, assumed to be 0.1 seconds in this example

$$
\mathbf{x}(0.10)=\left[\begin{array}{l}
0.7321 \\
0.0167
\end{array}\right]
$$

- At this point, when the fault is self-cleared, the equations change, requiring a re-evaluation of $\mathbf{f}\left(\mathbf{x}\left(\mathrm{T}^{\text {clear }}\right)\right)$

$$
\begin{aligned}
& \frac{d \delta}{d t}=\Delta \omega_{p u} \omega_{s} \\
& \frac{d \Delta \omega_{p u}}{d t}=\frac{1}{6}\left(1-\frac{1.281}{0.52} \sin \delta\right)
\end{aligned}
$$

$$
\mathbf{f}\left(\mathbf{x}\left(0.1^{+}\right)\right)=\left[\begin{array}{c}
6.30 \\
-0.1078
\end{array}\right]
$$

Infinite Bus GENCLS Implicit Solution

- With the change in $\mathbf{f}(\mathbf{x})$ the Jacobian also changes

$$
\mathbf{J}\left(\mathbf{x}\left(0.12^{(0)}\right)\right)=\frac{0.02}{2}\left[\begin{array}{cc}
0 & \omega_{s} \\
-0.305 & 0
\end{array}\right]-\mathbf{I}=\left[\begin{array}{cc}
-1 & 3.77 \\
-0.00305 & -1
\end{array}\right]
$$

- Iteration for $\mathbf{x}(0.12)$ is as before, except using the new function and the new Jacobian

This also converges quickly, with one or two iterations

$$
\begin{aligned}
& \mathbf{h}\left(\mathbf{x}(0.12)^{(0)}\right) \square-\mathbf{x}(0.12)^{(0)}+\mathbf{x}(0.01)+\frac{0.02}{2}\left(\mathbf{f}\left(\mathbf{x}(0.12)^{(0)}\right)+\mathbf{f}\left(\mathbf{x}\left(0.10^{+}\right)\right)\right) \\
& \mathbf{x}(0.12)^{(1)}=\left[\begin{array}{c}
0.7321 \\
0.0167
\end{array}\right]-\left[\begin{array}{cc}
-1 & 3.77 \\
-0.00305 & -1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.1257 \\
-0.00216
\end{array}\right]=\left[\begin{array}{c}
0.848 \\
0.0142
\end{array}\right]
\end{aligned}
$$

Computational Considerations

- As presented for a large system most of the computation is associated with updating and factoring the Jacobian. But the Jacobian actually changes little and hence seldom needs to be rebuilt/factored
- Rather than using $\mathbf{x}(t)$ as the initial guess for $\mathbf{x}(t+\Delta t)$, prediction can be used when previous values are available

$$
\mathbf{x}(t+\Delta t)^{(0)}=\mathbf{x}(t)+(\mathbf{x}(t)-\mathbf{x}(t-\Delta t))
$$

Two Bus System Results

- The below graph shows the generator angle for varying values of $\Delta \mathrm{t}$; recall the implicit method is numerically stable

Adding the Algebraic Constraints

- Since the classical model can be formulated with all the values on the network reference frame, initially we just need to add the network equations
- We'll again formulate the network equations using the form

$$
\mathbf{I}(\mathbf{x}, \mathbf{y})=\mathbf{Y} \mathbf{V} \quad \text { or } \mathbf{Y} \mathbf{V}-\mathbf{I}(\mathbf{x}, \mathbf{y})=\mathbf{0}
$$

- As before the complex equations will be expressed using two real equations, with voltages and currents expressed in rectangular coordinates

Adding the Algebraic Constraints

- The network equations are as before

$$
\mathbf{y}=\left[\begin{array}{c}
V_{D 1} \\
V_{Q 1} \\
V_{D 2} \\
\vdots \\
V_{D n} \\
V_{Q n}
\end{array}\right] \mathbf{g (x , y)}=\left[\begin{array}{c}
\sum_{k=1}^{n}\left(G_{1 k} V_{D k}-B_{1 k} V_{Q K}\right)-I_{N D 1}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{i k} V_{Q k}+B_{i k} V_{D K}\right)-I_{N Q 1}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{2 k} V_{D k}-B_{2 k} V_{Q K}\right)-I_{N D 2}(\mathbf{x}, \mathbf{y})=0 \\
\vdots \\
\sum_{k=1}^{n}\left(G_{n k} V_{D k}-B_{n k} V_{Q K}\right)-I_{N D n}(\mathbf{x}, \mathbf{y})=0 \\
\sum_{k=1}^{n}\left(G_{n k} V_{Q k}+B_{n k} V_{D K}\right)-I_{N Q n}(\mathbf{x}, \mathbf{y})=0
\end{array}\right]
$$

Coupling of x and y with the Classical Model

- In the simultaneous implicit method \mathbf{x} and \mathbf{y} are determined simultaneously; hence in the Jacobian we need to determine the dependence of the network equations on \mathbf{x}, and the state equations on \mathbf{y}
- With the classical model the Norton current depends on \mathbf{x} as

$$
\begin{array}{ll}
\bar{I}_{N i}=\frac{E_{i}^{\prime} \angle \delta_{i}}{R_{s, i}+j X_{d, i}^{\prime}}, \quad G_{i}+j B_{i}=\frac{1}{R_{s, i}+j X_{d, i}^{\prime}} \\
\bar{I}_{N i}=I_{D N i}+j I_{Q N i}=E_{i}^{\prime}\left(\cos \delta_{i}+j \sin \delta_{i}\right)\left(G_{i}+j B_{i}\right) \\
E_{D i}+j E_{Q i}=E_{i}^{\prime}\left(\cos \delta_{i}+j \sin \delta_{i}\right) & \text { Recall with the classical } \\
I_{D N i}=E_{D i} G_{i}-E_{Q i} B_{i} & \text { model } \mathrm{E}_{\mathrm{i}}^{\prime} \text { is constant } \\
I_{Q N i}=E_{D i} B_{i}+E_{Q i} G_{i} &
\end{array}
$$

Coupling of x and y with the Classical Model

- In the state equations the coupling with \mathbf{y} is recognized by noting

$$
\begin{aligned}
& \mathrm{P}_{E i}=E_{D i} I_{D i}+E_{Q i} I_{Q i} \\
& I_{D i}+j I_{Q i}=\left(\left(E_{D i}-V_{D i}\right)+j\left(E_{Q i}-V_{Q i}\right)\right)\left(G_{i}+j B_{i}\right) \\
& I_{D i}=\left(E_{D i}-V_{D i}\right) G_{i}-\left(E_{Q i}-V_{Q i}\right) B_{i} \quad \text { These are the algebraic equations } \\
& I_{Q i}=\left(E_{D i}-V_{D i}\right) B_{i}+\left(E_{Q i}-V_{Q i}\right) G_{i} \\
& \mathrm{P}_{E i}=E_{D i}\left(\left(E_{D i}-V_{D i}\right) G_{i}-\left(E_{Q i}-V_{Q i}\right) B_{i}\right)+E_{Q i}\left(\left(E_{D i}-V_{D i}\right) B_{i}+\left(E_{Q i}-V_{Q i}\right) G_{i}\right) \\
& \mathrm{P}_{E i}=\left(E_{D i}^{2}-E_{D i} V_{D i}\right) G_{i}+\left(E_{Q i}^{2}-E_{Q i} V_{Q i}\right) G_{i}+\left(E_{D i} V_{Q i}-E_{Q i} V_{D i}\right) B_{i}
\end{aligned}
$$

Hence we have P_{Ei} written in terms of the voltages (\mathbf{y})

Variables and Mismatch Equations

- In solving the Newton algorithm the variables now include \mathbf{x} and \mathbf{y} (recalling that here \mathbf{y} is just the vector of the real and imaginary bus voltages
- The mismatch equations now include the state integration equations

$$
\begin{aligned}
& \mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}\right)= \\
& -\mathbf{x}(t+\Delta t)^{(k)}+\mathbf{x}(t)+\frac{\Delta t}{2}\left(\mathbf{f}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)+\mathbf{f}(\mathbf{x}(t), \mathbf{y}(t))\right)
\end{aligned}
$$

- And the algebraic equations

$$
\mathbf{g}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)
$$

Jacobian Matrix

- Since the $\mathbf{h}(\mathbf{x}, \mathbf{y})$ and $\mathbf{g}(\mathbf{x}, \mathbf{y})$ are coupled, the Jacobian is
$J\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)$
$=\left[\begin{array}{ll}\frac{\partial \mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)}{\partial \mathbf{x}} & \frac{\partial \mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{g}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)}{\partial \mathbf{x}} & \frac{\partial \mathbf{g}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right)}{\partial \mathbf{y}}\end{array}\right]$
- With the classical model the coupling is the Norton current at bus i depends on δ_{i} (i.e., $\left.\mathbf{x}\right)$ and the electrical power $\left(\mathrm{P}_{\mathrm{Ej}}\right)$ in the swing equation depends on V_{Di} and V_{Qi} (i.e., \mathbf{y})

Jacobian Matrix Entries

- The dependence of the Norton current injections on δ is

$$
\begin{aligned}
& I_{D N i}=E_{i}^{\prime} \cos \delta_{i} G_{i}-E_{i}^{\prime} \sin \delta_{i} B_{i} \\
& I_{Q N i}=E_{i}^{\prime} \cos \delta_{i} B_{i}+E_{i}^{\prime} \sin \delta_{i} G_{i} \\
& \frac{\partial I_{D N i}}{\partial \delta_{i}}=-E_{i}^{\prime} \sin \delta_{i} G_{i}-E_{i}^{\prime} \cos \delta_{i} B_{i} \\
& \frac{\partial I_{Q N i}}{\partial \delta_{i}}=-E_{i}^{\prime} \sin \delta_{i} B_{i}+E_{i}^{\prime} \cos \delta_{i} G_{i}
\end{aligned}
$$

- In the Jacobian the sign is flipped because we defined

$$
\mathbf{g}(\mathbf{x}, \mathrm{y})=\mathbf{Y} \mathbf{V}-\mathbf{I}(\mathbf{x}, \mathrm{y})
$$

Jacobian Matrix Entries

- The dependence of the swing equation on the generator terminal voltage is

$$
\begin{aligned}
& \dot{\delta}_{i}=\Delta \omega_{i, p u} \omega_{s} \\
& \Delta \dot{\omega}_{i, p u}=\frac{1}{2 H_{i}}\left(P_{M i}-P_{E i}-D_{i}\left(\Delta \omega_{i, p u}\right)\right) \\
& \mathrm{P}_{E i}=\left(E_{D i}^{2}-E_{D i} V_{D i}\right) G_{i}+\left(E_{Q i}^{2}-E_{Q i} V_{Q i}\right) G_{i}+\left(E_{D i} V_{Q i}-E_{Q i} V_{D i}\right) B_{i} \\
& \frac{\partial \Delta \dot{\omega}_{i, p u}}{\partial V_{D i}}=\frac{1}{2 H_{i}}\left(E_{D i} G_{i}+E_{Q i} B_{i}\right) \\
& \frac{\partial \Delta \dot{\omega}_{i, p u}}{\partial V_{Q i}}=\frac{1}{2 H_{i}}\left(E_{Q i} G_{i}-E_{D i} B_{i}\right)
\end{aligned}
$$

Two Bus, Two Gen GENCLS Example

- We'll reconsider the two bus, two generator case from the previous lecture ; fault at Bus 1, cleared after 0.06 seconds
- Initial conditions and $\mathbf{Y}_{\text {bus }}$ are as covered in Lecture 16

PowerWorld Case B2_CLS_2Gen

Two Bus, Two Gen GENCLS Example

- Initial terminal voltages are

$$
\begin{aligned}
& V_{D I}+j V_{Q 1}=1.0726+j 0.22, \quad V_{D 2}+j V_{Q 2}=1.0 \\
& \bar{E}_{1}=1.281 \angle 23.95^{\circ}, \quad \bar{E}_{2}=0.955 \angle-12.08 \\
& \bar{I}_{N 1}=\frac{1.1709+j 0.52}{j 0.3}=1.733-j 3.903 \\
& \bar{I}_{N 2}=\frac{0.9343-j 0.2}{j 0.2}=-1-j 4.6714 \\
& \mathbf{Y}=\mathbf{Y}_{N}+\left[\begin{array}{cc}
\frac{1}{j 0.333} & 0 \\
0 & \frac{1}{j 0.2}
\end{array}\right]=\left[\begin{array}{cc}
-j 7.879 & j 4.545 \\
j 4.545 & -j 9.545
\end{array}\right]
\end{aligned}
$$

Two Bus, Two Gen Initial Jacobian

$\left[\begin{array}{ccccccccc} & \delta_{1} & \Delta \omega_{1} & \delta_{2} & \Delta \omega_{2} & V_{D 1} & V_{Q 1} & V_{D 2} & V_{Q 2} \\ \dot{\delta}_{1} & -1 & 3.77 & 0 & 0 & 0 & 0 & 0 & 0 \\ \Delta \dot{\omega}_{1} & -0.0076 & -1 & 0 & 0 & -0.0029 & 0.0065 & 0 & 0 \\ \dot{\delta}_{2} & 0 & 0 & -1 & 3.77 & 0 & 0 & 0 & 0 \\ \Delta \dot{\omega}_{2} & 0 & 0 & -0.0039 & -1 & 0 & 0 & 0.0008 & 0.0039 \\ I_{D 1} & -3.90 & 0 & 0 & 0 & 0 & 7.879 & 0 & -4.545 \\ I_{Q 1} & -1.73 & 0 & 0 & 0 & -7.879 & 0 & 4.545 & 0 \\ I_{D 2} & 0 & 0 & -4.67 & 0 & 0 & -4.545 & 0 & 9.545 \\ I_{Q 2} & 0 & 0 & 1.00 & 0 & 4.545 & 0 & -9.545 & 0\end{array}\right]$

Results Comparison

- The below graph compares the angle for the generator at bus 1 using $\Delta t=0.02$ between RK2 and the Implicit Trapezoidal; also Implicit with $\Delta t=0.06$

Four Bus Comparison

$\hat{A}]^{M}$

Fault at Bus 3 for 0.12 seconds; self-cleared

