ECEN 667 Power System Stability

Lecture 16: Time-Domain Simulation Solutions (Transient Stability)

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapters 4 and 7
- Homework 5 is due on Tuesday Oct 31

Two Bus Example with Two GENROU Models

- Use the same system as before, except with we'll model both generators using GENROUs
 - For simplicity we'll make both generators identical except set H₁=3, H₂=6; other values are $X_d=2.1$, $X_q=0.5$, $X'_d=0.2$, $X'_q=0.5$, $X''_q=X''_d=0.18$, $X_1=0.15$, $T'_{do} = 7.0$, $T'_{qo}=0.75$, $T''_{do}=0.035$, $T''_{qo}=0.05$; no saturation
 - With no saturation the value of the δ 's are determined (as per the earlier lectures) by solving

 $|E| \angle \delta = \overline{V} + (R_s + jX_q)\overline{I}$

– Hence for generator 1

 $|E_1| \angle \delta_1 = 1.0946 \angle 11.59^\circ + (j0.5)(1.052 \angle -18.2^\circ) = 1.431 \angle 30.2^\circ$

GENROU Block Diagram

Two Bus Example with Two GENROU Models

• Using the early approach the initial state vector is

Note that this is a salient pole machine with $X'_q = X_q$; hence E'_d will always be zero

The initial currents in the dq reference frame are $I_{d1}=0.7872$, $I_{q1}=0.6988$, $I_{d2}=0.2314$, $I_{q2}=-1.0269$

Initial values of ψ''_{q1} = -0.2236, and ψ''_{d1} = 1.179

PowerWorld GENROU Initial States

🔼 🌇 , ANG 📾 💥 🖂 💹 🚍 💊 🕮 , -

File Case Information	Draw Onelin	nes Tools	Options	Add Ons Window	W				
E Log	mal LP I	OPF Options	PV QV		ATC	t Stability	GIC	Scheduled	
Script - Scc	Info *	and Results			Stability.			Actions	Processi
Mode Log	Optimal Power Fl	ow (OPF)	PV and QV (Curves (PVQV)	ATC Transier	nt Stability (TS)	GIC	Schedule	Topology Proce
ulation Status Initialized									
Run Transient Stability Pause	e Abort Res	tore Reference	For Contingency:	Find My Transient	t Contingency	~			
lect Step	States/Manual Con	trol							
Simulation	Davet	he Charle Trees							
Options	Reset	to Start Time				Transfer Pre	sent State to Po	ower Flow	Save Case in
- 1	Run Unti	Specified Time	0.00	0000 🚔 Run Until Tim	ne	Destare Def	arongo Dowor El	low Model	
Plots	Run Unti	Specified Time	0.00	0000 🚔 Run Until Tim		Restore Ref	erence Power Fl	low Model	
· Plots · Results from RAM		Specified Time umber of Timest		0000 🗬 Run Until Tim			erence Power Fl e Time Snapsho		
Plots Results from RAM Transient Limit Monitors	Do Specified N	umber of Timest	tep(s)	1 Number of Times	steps to Do	Sav	e Time Snapsho	t	
Plots Results from RAM Transient Limit Monitors States/Manual Control	Do Specified N		tep(s)	1 Number of Times	steps to Do	Sav	e Time Snapsho	t	Results
Plots Results from RAM Transient Limit Monitors	Do Specified N All States State	umber of Timest	tep(s) Generators Buse	1 Number of Times	YBus GIC GMatrix	Sav Two Bus Equ	e Time Snapsho	t	Results
Plots Results from RAM Transient Limit Monitors States/Manual Control	Do Specified N All States State	umber of Timest Limit Violations 누	tep(s) Generators Buse 해 않는 Records	Number of Times Transient Stability Set Columns	steps to Do YBus GIC GMatrix □ T IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sav Two Bus Equ	e Time Snapsho uivalents Deta	t iled Performance	Results Delta X K1
Plots Results from RAM Transient Limit Monitors States/Manual Control In All States State Limit Violations Generators Buses	Do Specified N All States State	umber of Timest Limit Violations	tep(s) Generators Buse Maco Records Type Object Na	Number of Times Transient Stability ▼ Set ▼ Columns ▼ ame At Limit	steps to Do YBus GIC GMatrix 딸과 국 해양하고 한왕 State Ignored S	Sav Two Bus Equ → 🌱 🖽 →	e Time Snapsho uivalents Deta sont heco f(x) = ttt	iled Performance	
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators	Do Specified N All States State	umber of Timest Limit Violations 는 1:08 +0.0 쇼 Class Model	tep(s) Generators Buse Generators Buse Records Type Object Na U 1 (Bus 1) #	Number of Times Transient Stability ▼ Set ▼ Columns ▼ ame At Limit	Steps to Do YBus GIC GMatrix GIC GMatrix GIC GMatrix State Ignored S NO An	Sav < Two Bus Equ + ❤ 開 + tate Name	e Time Snapsho uivalents Deta SORT ISU ABED f(x) - E Value	iled Performance Options * Derivative	Delta X K1
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses	Do Specified N All States State	Limit Violations	tep(s) Records Generators Buse Marco Records I Type Object Na U 1 (Bus 1) #	Number of Times Transient Stability ▼ Set ▼ Columns ▼ ame At Limit 1 1 1 1 1 1 1 1 1	State Ignored SP NO Sp NO Eq	Sav Two Bus Equ	e Time Snapsho uivalents Deta SART f(x) + H Value 0.5272	iled Performance Options • Derivative 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus	Do Specified N All States State	Limit Violations	tep(s) Records Generators Buse M Macords I Type Object Na U 1 (Bus 1) #	I ▼ Number of Times es Transient Stability • Set • Columns • ame At Limit 1 1 1 1 1 1 1 1 1 1 1 1 1	State Ignored SP NO An NO Sp NO Psi	Sav Two Bus Equ Two Bus Equ Tate Name gle eed w p Dp	e Time Snapsho uivalents Deta SMT f(x) ▼ Value 0.5272 0.0000 1.1948 1.1554	iled Performance Options Derivative 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix	Do Specified N All States State	Limit Violations	tep(s) Records Generators Buse Mageo Records I Type Object Na U 1 (Bus 1) #	I → Number of Times 2s Transient Stability ∞ Set ▼ Columns ▼ ame At Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State Ignored SP NO An NO Sp NO Psi NO Psi	Sav Two Bus Equ Two Bus Equ Tate Name gle eed w p Dp Qpp	e Time Snapsho uivalents Deta SMT f(x) ▼ Value 0.5272 0.0000 1.1948 1.1554 0.2446	iled Performance Options Derivative 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Resu	Do Specified N All States State Model 0 1 Gen Syno 2 Gen Syno 3 Gen Syno 5 Gen Syno 6 Gen Syno	Limit Violations Limit Violations Class Model Ch. Ma GENROU Ch. Ma GENROU	tep(s) Records Generators Buse Mageo Records I Type Object Na U 1 (Bus 1) #	I Number of Times 1 Transient Stability es Transient Stability • Set ▼ Columns ▼ ame At Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State Ignored S NO An NO Sp NO Psi NO Psi NO Sp NO Eq NO Psi NO Ed	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta SORT ABED f(x) ▼ Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Generators GIC GMatrix GIC GMatrix Detailed Performance Resu Validation	Do Specified N All States State Model 0 1 Gen Syno 2 Gen Syno 3 Gen Syno 5 Gen Syno 6 Gen Syno 7 Gen Syno	Limit Violations Limit Violations Class Model Ch. Ma GENROU Ch. Ma GENROU	tep(s) Records Generators Buse Mage Records I Type Object Na U 1 (Bus 1) # U 1 (Bus 2) # U 2 (Bus 2) #	I Number of Times 1 Transient Stability es Transient Stability • Set ▼ Columns ▼ ame At Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State Ignored S NO An NO Sp NO Psi NO Psi NO Eq NO Psi NO Ed NO An	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta SORT f(x) ▼ Ⅲ Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000 -0.5392	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
 Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Resu Validation SMIB Eigenvalues 	Do Specified N All States State Model 0 1 Gen Syno 2 Gen Syno 3 Gen Syno 4 Gen Syno 5 Gen Syno 6 Gen Syno 7 Gen Syno 8 Gen Syno	Limit Violations Limit Violations Class Model Ch. Ma GENROU Ch. Ma GENROU	Generators Buse Generators Buse Marco Records I Type Object Na U 1 (Bus 1) # U 1 (Bus 2) # U 2 (Bus 2) # U 2 (Bus 2) #	I → Number of Times 2s Transient Stability es Transient Stability • Set ▼ Columns ▼ ame At Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State Ignored S NO An NO Sp NO Psi NO Psi NO Ed NO Sp	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta String Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000 -0.5392 0.0000	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Resu Validation SMIB Eigenvalues Modal Analysis	Do Specified N All States State Model <u>Gen Sync</u> Gen Sync Gen Sync Gen Sync Gen Sync Gen Sync Gen Sync Gen Sync Gen Sync Gen Sync	Limit Violations	Generators Buse Generators Buse Marco Records Type Object Na U 1 (Bus 1) # U 1 (Bus 2) # U 2 (Bus 2) # U 2 (Bus 2) # U 2 (Bus 2) #	Number of Times Number of Times Set Columns Set At Limit At Limit I I I I I I I I I I I I I I I I I I	State Ignored S NO An NO Sp NO Psi NO Psi NO Eq NO Sp NO Eq NO Sp NO Eq NO Eq	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta SORT f(x) ▼ Ⅲ Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000 -0.5392	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
 Plots Results from RAM Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Resu Validation SMIB Eigenvalues 	Do Specified N All States State Model 1 Gen Synd 2 Gen Synd 3 Gen Synd 5 Gen Synd 6 Gen Synd 7 Gen Synd 8 Gen Synd 9 Gen Synd 10 Gen Synd	Limit Violations	Generators Buse Generators Buse M Masco Records Records IType Object Na U 1 (Bus 1) # U 1 (Bus 2) # U 2 (Bus 2) #	Number of Times Number of Times Set Columns Set At Limit At Limit I I I I I I I I I I I I I I I I I I	State Ignored S NO An NO Sp NO Psi NO Psi NO Eq NO Sp NO Eq NO Sp NO Eq NO Eq	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta String Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000 -0.5392 0.0000	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000
Transient Limit Monitors States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Resu Validation SMIB Eigenvalues Modal Analysis	Do Specified N All States State	Limit Violations	Generators Buse Generators Buse Marco Records Type Object Na U 1 (Bus 1) # U 1 (Bus 2) # U 2 (Bus 2) #	I Number of Times Image: Set ▼ Columns ▼ ame At Limit 1 I	State Ignored S NO An NO Sp NO Psi NO Psi NO Sp NO Eq NO Sp NO Eq NO Sp NO Sp NO Eq	Sav Two Bus Equ Two Bus Equ	e Time Snapsho uivalents Deta String Value 0.5272 0.0000 1.1948 1.1554 0.2446 0.0000 -0.5392 0.0000 0.9044	iled Performance Options ▼ Derivative 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	Delta X K1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Transient Stability Analysis - Case: B2_GENROU_2(

Solving with Euler's

- A M
- We'll again solve with Euler's, except with Δt set now to 0.01 seconds (because now we have a subtransient model with faster dynamics)
 - We'll also clear the fault at t=0.05 seconds
- For the more accurate subtransient models the swing equation is written in terms of the torques

$$\frac{d\delta_i}{dt} = \omega_i - \omega_s = \Delta \omega_i$$

$$\frac{2H_i}{\omega_s} \frac{d\omega_i}{dt} = \frac{2H_i}{\omega_s} \frac{d\Delta \omega_i}{dt} = T_{Mi} - T_{Ei} - D_i \left(\Delta \omega_i\right)$$
with $T_{Ei} = \psi_{d,i}'' i_{qi} - \psi_{q,i}'' i_{di}$

Other equations are solved based upon the block diagram

Norton Equivalent Current Injections

The initial Norton equivalent current injections on the dq base for ulleteach machine are

$$I_{Nd1} + jI_{Nq1} = \frac{\left(-\psi_{q1}'' + j\psi_{d1}''\right)\omega_{1}}{jX_{1}''} = \frac{\left(-0.2236 + j1.179\right)(1.0)}{j0.18}$$

= 6.55 + j1.242
$$I_{ND1} + jI_{NQ1} = 2.222 - j6.286$$

$$I_{Nd2} + jI_{Nq2} = 4.999 + j1.826$$

$$I_{ND2} + jI_{NQ2} = -1 - j5.227$$

Recall the dq values are on the machine's reference frame and the DQ values are on the system reference frame

are on the

frame and

Moving between DQ and dq

• Recall

$$\begin{bmatrix} I_{di} \\ I_{qi} \end{bmatrix} = \begin{bmatrix} \sin \delta & -\cos \delta \\ \cos \delta & \sin \delta \end{bmatrix} \begin{bmatrix} I_{Di} \\ I_{Qi} \end{bmatrix}$$

The currents provide the key coupling between the two reference frames

• And

$$\begin{bmatrix} I_{Di} \\ I_{Qi} \end{bmatrix} = \begin{bmatrix} \sin \delta & \cos \delta \\ -\cos \delta & \sin \delta \end{bmatrix} \begin{bmatrix} I_{di} \\ I_{qi} \end{bmatrix}$$

Bus Admittance Matrix

• The bus admittance matrix is as from before for the classical models, except the diagonal elements are augmented using

$$Y_{i} = \frac{1}{R_{s,i} + jX_{d,i}''}$$
$$Y = Y_{N} + \begin{bmatrix} \frac{1}{j0.18} & 0\\ 0 & \frac{1}{j0.18} \end{bmatrix} = \begin{bmatrix} -j10.101 & j4.545\\ j4.545 & -j10.101 \end{bmatrix}$$

9

Algebraic Solution Verification

• To check the values solve (in the network reference frame)

$$\mathbf{V} = \begin{bmatrix} -j10.101 & j4.545 \\ j4.545 & -j10.101 \end{bmatrix}^{-1} \begin{bmatrix} 2.222 - j6.286 \\ -1 - j5.227 \end{bmatrix}$$
$$= \begin{bmatrix} 1.072 + j0.22 \\ 1.0 \end{bmatrix}$$

Results

A M

11

• The below graph shows the results for four seconds of simulation, using Euler's with Δt =0.01 seconds

PowerWorld case is **B2_GENROU_2GEN_EULER**

Results for Longer Time

• Simulating out 10 seconds indicates an unstable solution, both using Euler's and RK2 with $\Delta t=0.005$, so it is really unstable!

Euler's with $\Delta t=0.01$

RK2 with $\Delta t=0.005$

Adding More Models

- In this situation the case is unstable because we have not modeled exciters
- To each generator add an EXST1 with $T_R=0$, $T_C=T_B=0$, $K_f=0$, $K_A=100$, $T_A=0.1$

- This just adds one differential equation per generator

$$\frac{dE_{FD}}{dt} = \frac{1}{T_A} \left(K_A \left(V_{REF} - \left| V_t \right| \right) - E_{FD} \right)$$

Two Bus, Two Gen With Exciters

• Below are the initial values for this case from PowerWorld

All State	s State Limit V	iolations G	enerators Buses	Transient Stability YBus	GIC GMatrix Two Bus E	quivalents
	∄ ** *** **	8 🦛 🏘	Records * Set	·▼ Columns ▼ 📴 ▼	₩₩ - ₩₩ - 🌱 🇮 -	SORT 124 ABEED f(x) ▼ ⊞
	Model Class	Model Typ	e Object Name	At Limit State	Ignored State Name	Value
1	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Angle	0.5273
2	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Speed w	0.0000
3	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Eqp	1.1948
4	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	PsiDp	1.1554
5	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	PsiQpp	0.2446
6	Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Edp	0.0000
7	Gen Exciter	EXST1	1 (Bus 1) #1	NO	EField before lim	2.6904
8	Gen Exciter	EXST1	1 (Bus 1) #1	YES	Sensed Vt	1.0946
9	Gen Exciter	EXST1	1 (Bus 1) #1	YES	VLL	0.0269
10	Gen Exciter	EXST1	1 (Bus 1) #1	NO	VF	0.0000
11	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Angle	-0.5392
12	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Speed w	0.0000
13	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Eqp	0.9044
14	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	PsiDp	0.8928
15	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	PsiQpp	-0.3594
16	Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Edp	0.0000
17	Gen Exciter	EXST1	2 (Bus 2) #1	NO	EField before lim	1.3441
18	Gen Exciter	EXST1	2 (Bus 2) #1	YES	Sensed Vt	1.0000
19	Gen Exciter	EXST1	2 (Bus 2) #1	YES	VLL	0.0134
20	Gen Exciter	EXST1	2 (Bus 2) #1	NO	VF	0.0000

Because of the zero values the other differential equations for the exciters are included but treated as ignored

Case is **B2_GENROU_2GEN_EXCITER**

Viewing the States

- PowerWorld allows one to single-step through a solution, showing the **f**(**x**) and the **K**₁ values
 - This is mostly used for education or model debugging

States State Limit V	iolations Gener	ators Buses T	ransient Stability YBus	GIC GMatrix Two Bus Eq	uivalents		
∰ ** ***	B 🏟 🍓 R	ecords 🔹 Set 🝷	Columns 🝷 🔤 🕶	₩XB + ₩XB + 💎 🗮 + 1	^{RT} f(x) ▼ ⊞	Options •	
Model Class	Model Type	Object Name	At Limit State I	gnored State Name	Value	Derivative	Delta X K1
1 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Angle	0.5288	0.6283185	0.0015708
2 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Speed w	0.0017	0.1666667	0.0016667
3 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Eqp	1.1813	-1.4246850	-0.0135115
4 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	PsiDp	1.0788	-6.1374236	-0.0766226
5 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	PsiQpp	0.1276	-7.0939033	-0.1170377
6 Gen Synch. Mac	GENROU	1 (Bus 1) #1	NO	Edp	0.0000	0.0000000	0.0000000
7 Gen Exciter	EXST1	1 (Bus 1) #1	NO	EField before lim	3.4214	65.7861970	0.7309577
8 Gen Exciter	EXST1	1 (Bus 1) #1	YES	Sensed Vt	0.0000	0.0000000	0.0000000
9 Gen Exciter	EXST1	1 (Bus 1) #1	YES	VLL	0.1000	0.0000000	0.0000000
10 Gen Exciter	EXST1	1 (Bus 1) #1	NO	VF	0.0000	0.0000000	0.0000000
11 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Angle	-0.5400	-0.2896794	-0.0007854
12 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Speed w	-0.0008	-0.0833331	-0.0007684
13 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Eqp	0.9010	-0.2497156	-0.0033918
14 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	PsiDp	0.8661	-2.1684713	-0.0267221
15 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	PsiQpp	-0.2480	8.9252864	0.1113928
16 Gen Synch. Mac	GENROU	2 (Bus 2) #1	NO	Edp	0.0000	0.0000000	0.0000000
17 Gen Exciter	EXST1	2 (Bus 2) #1	NO	EField before lim	2.2097	77.9031593	0.8655907
18 Gen Exciter	EXST1	2 (Bus 2) #1	YES	Sensed Vt	0.5032	0.0000000	0.0000000
19 Gen Exciter	EXST1	2 (Bus 2) #1	YES	VLL	0.1000	0.0000000	0.0000000
20 Gen Exciter	EXST1	2 (Bus 2) #1	NO	VF	0.0000	0.0000000	0.0000000

Derivatives shown are evaluated at the end of the time step

Two Bus Results with Exciters

Â.

- Below graph shows the angles with $\Delta t=0.01$ and a fault clearing at t=0.05 using Euler's
 - With the addition of the exciters case is now stable

Load Models Introduced

- The simplest approach for modeling the loads is to treat them as constant impedances, embedding them in the bus admittance matrix
 Only impact the Y_{bus} diagonals
- The admittances are set based upon their power flow values, scaled by the inverse of the square of the power flow bus voltage

$$\overline{S}_{load,i} = \overline{V}_{i}\overline{I}_{load,i}^{*} = \left|\overline{V}_{i}\right|^{2} \left(G_{load,i} - jB_{load,i}\right)$$
$$G_{load,i} - jB_{load,i} = \frac{\overline{S}_{load,i}}{\left|\overline{V}_{i}\right|^{2}}$$

Note the positive sign comes from the sign convention on $\overline{I}_{load,i}$

In PowerWorld the default load model is specified on **Transient Stability, Options, Power System Model** page

Example 7.4 Case (WSCC 9 Bus)

• PowerWorld Case **Example_7_4** duplicates the example 7.4 case from the book, with the exception of using different generator models

Violations Generators Buses Tr	ansient Stability YBus	GIC GMatrix Tw	o Bus Equivalents						
20 晶 鷸。 Records * Set * Columns * 国 * 職 * 職 * 第 由 * 日 * 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日									
Name	Bus 1	Bus 2	Bus 3	Bus 4	Bus 5	Bus 6	Bus 7	Bus 8	Bus 9
1 Bus1	0.000 - j42.361			-0.000 + j17.361					
2 Bus 2		0.000 - j27.111					-0.000 + j16.000		
3 Bus 3			0.000 - j23.732						-0.000 + j17.065
4 Bus 4	-0.000 + j17.361			3.307 - j39.309	-1.365 + j11.604	-1.942 + j10.511			
5 Bus 5				-1.365 + j11.604	3.814 - j17.843		-1.188 + j5.975		
6 Bus 6				-1.942 + j10.511		4.102 - j16.133			-1.282 + j5.588
7 Bus 7		-0.000 + j16.000			-1.188 + j5.975	-	2.805 - j35.446	-1.617 + j13.698	-
8 Bus 8		_					-1.617 + j13.698	3.741 - j23.642	-1.155 + j9.784
9 Bus 9			-0.000 + j17.065			-1.282 + j5.588		-1.155 + j9.784	2.437 - j32.154

Bus 5 Example: Without the load $Y_{55} = 2.553 - j17.339$ $\overline{S}_{load,5} = 1.25 + j0.5$ and $|\overline{V}_5| = 0.996$ $\mathbf{Y}_{55} = 2.553 - j17.579 + \frac{(1.25 - j0.5)}{|0.996|^2} = 3.813 - j17.843$

Nonlinear Network Equations

- With constant impedance loads the network equations can usually be written with I independent of V, then they can be solved directly (as we've been doing) $V = Y^{-1} I(x)$
- In general this is not the case, with constant power loads one common example. Hence in general a nonlinear solution with Newton's method is used
- We'll generalize the dependence on the algebraic variables, replacing
 V by y since they may include other values beyond just the bus voltages

20

Nonlinear Network Equations

- Just like in the power flow, the complex equations are rewritten, here as a real current and a reactive current $\mathbf{YV} - \mathbf{I}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$ This is a rectangular
- The values for bus i are $g_{Di}(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} \left(G_{ik} V_{Dk} - B_{ik} V_{QK} \right) - I_{NDi} = 0$ $g_{Qi}(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} \left(G_{ik} V_{Qk} + B_{ik} V_{DK} \right) - I_{NQi} = 0$

This is a rectangular formulation; we also could have written the equations in polar form

- For each bus we add two new variables and two new equations
- If an infinite bus is modeled then its variables and equations are omitted since its voltage is fixed

Nonlinear Network Equations

• The network variables and equations are then

$$\mathbf{y} = \begin{bmatrix} V_{D1} \\ V_{Q1} \\ V_{D2} \\ \vdots \\ V_{Dn} \\ V_{Qn} \end{bmatrix} \quad \mathbf{g}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \sum_{k=1}^{n} (G_{1k}V_{Dk} - B_{1k}V_{QK}) - I_{ND1}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{ik}V_{Qk} + B_{ik}V_{DK}) - I_{ND2}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{2k}V_{Dk} - B_{2k}V_{QK}) - I_{ND2}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{nk}V_{Dk} - B_{nk}V_{QK}) - I_{NDn}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{nk}V_{Dk} - B_{nk}V_{QK}) - I_{NDn}(\mathbf{x}, \mathbf{y}) = 0 \end{bmatrix}$$

Nonlinear Network Equation Newton Solution

The network equations are solved using

a similar procedure to that of the

Netwon-Raphson power flow

Set v = 0; make an initial guess of \mathbf{y} , $\mathbf{y}^{(v)}$ While $\|\mathbf{g}(\mathbf{y}^{(v)})\| > \varepsilon$ Do $\mathbf{y}^{(v+1)} = \|\mathbf{y}^{(v)} - \mathbf{J}(\mathbf{y}^{(v)})^{-1}\mathbf{g}(\mathbf{y}^{(v)})$ v = v+1End While

Network Equation Jacobian Matrix

• The most computationally intensive part of the algorithm is determining and factoring the Jacobian matrix, **J**(**y**)

$$\mathbf{J}(\mathbf{y}) = \begin{bmatrix} \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \\ \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \end{bmatrix}$$

Network Jacobian Matrix

- The Jacobian matrix can be stored and computed using a 2 by 2 block ۲ matrix structure
- The portion of the 2 by 2 entries just from the Y_{bus} are \bullet

 $\begin{bmatrix} \frac{\partial \hat{g}_{Di}(\mathbf{x}, \mathbf{y})}{\partial V_{Dj}} & \frac{\partial \hat{g}_{Di}(\mathbf{x}, \mathbf{y})}{\partial V_{Qj}} \\ \frac{\partial \hat{g}_{Qi}(\mathbf{x}, \mathbf{y})}{\partial V_{Dj}} & \frac{\partial \hat{g}_{Qi}(\mathbf{x}, \mathbf{y})}{\partial V_{Qj}} \end{bmatrix} = \begin{bmatrix} G_{ij} & -B_{ij} \\ B_{ij} & G_{ij} \end{bmatrix}$ The "hat" was added to the g functions to indicate it is just the portion from the \mathbf{Y}_{bus}

The major source of the current vector voltage sensitivity comes from • non-constant impedance loads; also dc transmission lines

Example: Constant Current, Constant Power Load

• As an example, assume the load at bus k is represented with a ZIP model

$$P_{Load,k} = P_{BaseLoad,k} \left(P_{z,k} \left| \overline{V}_k^2 \right| + P_{i,k} \left| \overline{V}_k \right| + P_{p,k} \right)$$
$$Q_{Load,k} = Q_{BaseLoad,k} \left(Q_{z,k} \left| \overline{V}_k^2 \right| + Q_{i,k} \left| \overline{V}_k \right| + Q_{p,k} \right)$$

The base load values are set from the power flow

- Constant impedance could be in the \mathbf{Y}_{bus} $\hat{P}_{Load,k} = P_{BaseLoad,k} \left(P_{i,k} \left| \overline{V}_k \right| + P_{p,k} \right) = \left(P_{BL,i,k} \left| \overline{V}_k \right| + P_{BL,p,k} \right)$ $\hat{Q}_{Load,k} = Q_{BaseLoad,k} \left(Q_{i,k} \left| \overline{V}_k \right| + Q_{p,k} \right) = \left(Q_{BL,i,k} \left| \overline{V}_k \right| + Q_{BL,p,k} \right)$
- Usually solved in per unit on network MVA base

ÄМ

Example: Constant Current, Constant Power Load

• The current is then

$$\begin{split} \overline{I}_{Load,k} &= I_{D,Load,k} + jI_{Q,Load,k} = \left(\frac{\hat{P}_{Load,k} + j\hat{Q}_{Load,k}}{\overline{V}_{k}}\right)^{*} \\ &= \left(\frac{\left(P_{BL,i,k}\sqrt{V_{DK}^{2} + V_{QK}^{2}} + P_{BL,p,k}\right) - j\left(Q_{BL,i,k}\sqrt{V_{DK}^{2} + V_{QK}^{2}} + Q_{BL,p,k}\right)}{V_{Dk} - jV_{Qk}}\right) \end{split}$$

• Multiply the numerator and denominator by $V_{DK}+jV_{QK}$ to write as the real current and the reactive current

Example: Constant Current, Constant Power Load

$$\begin{split} I_{D,Load,k} &= \frac{V_{Dk}P_{BL,p,k} + V_{QK}Q_{BL,p,k}}{V_{DK}^2 + V_{QK}^2} + \frac{V_{Dk}P_{BL,i,k} + V_{QK}Q_{BL,i,k}}{\sqrt{V_{DK}^2 + V_{QK}^2}} \\ I_{Q,Load,k} &= \frac{V_{Qk}P_{BL,p,k} - V_{DK}Q_{BL,p,k}}{V_{DK}^2 + V_{QK}^2} + \frac{V_{Qk}P_{BL,i,k} - V_{DK}Q_{BL,i,k}}{\sqrt{V_{DK}^2 + V_{QK}^2}} \end{split}$$

- The Jacobian entries are then found by differentiating with respect to V_{DK} and V_{QK}
 - Only affect the 2 by 2 block diagonal values
- Usually constant current and constant power models are replaced by a constant impedance model if the voltage goes too low, like during a fault

Example: 7.4 ZIP Case

- Example 7.4 is modified so the loads are represented by a model with 30% constant power, 30% constant current and 40% constant impedance
 - In PowerWorld load models can be entered in a number of different ways; a tedious but simple approach is to specify a model for each individual load
 - Right click on the load symbol to display the Load Options dialog, select Stability, and select WSCC to enter a ZIP model, in which p1&q1 are the normalized about of constant impedance load, p2&q2 the amount of constant current load, and p3&q3 the amount of constant power load

Case is **Example_7_4_ZIP**

Example 7.4 ZIP One-line

Example 7.4 ZIP Bus 8 Load Values

• As an example the values for bus 8 are given (per unit, 100 MVA base)

$$1.00 = P_{BaseLoad,8} \left(0.4 \times 1.016^2 + 0.3 \times 1.016 + 0.3 \right)$$

 $\rightarrow P_{BaseLoad,8} = 0.983$

$$0.35 = Q_{BaseLoad,8} \left(0.4 \times 1.016^2 + 0.3 \times 1.016 + 0.3 \right)$$

$$\rightarrow Q_{BaseLoad,8} = 0.344$$

$$I_{D,Load,8} + jI_{Q,Load,8} = \left(\frac{1+j0.35}{1.0158+j0.0129}\right)^* = 0.9887 - j0.332$$

Example: 7.4 ZIP Case Jacobian

• For this case the 2 by 2 block between buses 8 and 7 is

 $\begin{bmatrix} -1.155 & 9.784 \\ -9.784 & -1.155 \end{bmatrix}$

This is referencing slide 29

- And between 8 and 9 is $\begin{bmatrix} -1.617 & 13.698 \\ -13.698 & -1.617 \end{bmatrix}$ These entries are easily checked with the \mathbf{Y}_{bus}
- The 2 by 2 block for the bus 8 diagonal is

 $\begin{bmatrix} 2.876 & -23.352 \\ 23.632 & 3.745 \end{bmatrix}$

The check here is left for the student

Additional Comments

- AM
- When coding Jacobian values, a good way to check that the entries are correct is to make sure that for a small perturbation about the solution the Newton's method has quadratic convergence
- When running the simulation the Jacobian is actually seldom rebuilt and refactored
 - If the Jacobian is not too bad it will still converge
- To converge Newton's method needs a good initial guess, which is usually the last time step solution
 - Convergence can be an issue following large system disturbances, such as a fault

Explicit Method Long-Term Solutions

A M

- The explicit method can be used for long-term solutions
 - For example in PowerWorld DS we've done solutions of large systems for many hours
- Numerical errors do not tend to build-up because of the need to satisfy the algebraic equations
- However, sometimes models have default parameter values that cause unexpected behavior when run over longer periods of time (such as default trips after 99 seconds below 0.1 Hz).
- Some models have slow unstable modes

Simultaneous Implicit

- The other major solution approach is the simultaneous implicit in which the algebraic and differential equations are solved simultaneously
- This method has the advantage of being numerically stable

35

Simultaneous Implicit

- Recalling an initial lecture, we covered two common implicit integration approaches for solving $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
 - Backward Euler $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f} (\mathbf{x}(t + \Delta t))$

For a linear system we have

– Trapezoidal

 $\mathbf{x}(t + \Delta t) = \left[I - \Delta t \mathbf{A}\right]^{-1} \mathbf{x}(t)$ $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \frac{\Delta t}{2} \left[\mathbf{f}\left(\mathbf{x}(t)\right) + \mathbf{f}\left(\mathbf{x}(t + \Delta t)\right)\right]$

For a linear system we have

$$\mathbf{x}(t + \Delta t) = \left[I - \Delta t \mathbf{A}\right]^{-1} \left[I + \frac{\Delta t}{2} \mathbf{A}\right] \mathbf{x}(t)$$

• We'll just consider trapezoidal, but for nonlinear cases

Nonlinear Trapezoidal

• We can use Newton's method to solve $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with the trapezoidal

$$-\mathbf{x}(t+\Delta t) + \mathbf{x}(t) + \frac{\Delta t}{2} \left(\mathbf{f} \left(\mathbf{x}(t+\Delta t) \right) + \mathbf{f} \left(\mathbf{x}(t) \right) \right) = \mathbf{0}$$

- We are solving for $\mathbf{x}(t+\Delta t)$; $\mathbf{x}(t)$ is known
- The Jacobian matrix is

J(

$$\mathbf{x}(t+\Delta t) = \frac{\Delta t}{2} \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \end{bmatrix} - \mathbf{I}$$

The $-\mathbf{I}$ comes from differentiating $-\mathbf{x}(t+\Delta t)$

Right now we are just considering the differential equations; we'll introduce the algebraic equations shortly

Nonlinear Trapezoidal using Newton's Method

A M

- The full solution would be at each time step
 - Set the initial guess for $\mathbf{x}(t+\Delta t)$ as $\mathbf{x}(t)$, and initialize the iteration counter $\mathbf{k} = 0$
 - Determine the mismatch at each iteration k as

$$\mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}\right)\Box - \mathbf{x}(t+\Delta t)^{(k)} + \mathbf{x}(t) + \frac{\Delta t}{2}\left(\mathbf{f}\left(\mathbf{x}(t+\Delta t)^{(k)}\right) + \mathbf{f}\left(\mathbf{x}(t)\right)\right)$$

– Determine the Jacobian matrix

- Solve
$$\mathbf{x}(t + \Delta t)^{(k+1)} = \mathbf{x}(t + \Delta t)^{(k)} - \left[\mathbf{J}(\mathbf{x}(t + \Delta t)^{(k)}\right]^{-1} \mathbf{h}\left(\mathbf{x}(t + \Delta t)^{(k)}\right)$$

– Iterate until done

Infinite Bus GENCLS Example

• Use the previous two bus system with gen 4 again modeled with a classical model with $X_d'=0.3$, H=3 and D=0

In this example $X_{th} = (0.22 + 0.3)$, with the internal voltage $\overline{E'}_1 = 1.281 \angle 23.95^\circ$ giving $E'_1 = 1.281 \text{ and } \delta_1 = 23.95^\circ$

- Assume a solid three phase fault is applied at the bus 1 generator terminal, reducing P_{E1} to zero during the fault, and then the fault is self-cleared at time T^{clear} resulting in the post-fault system being identical to the pre-fault system
 - During the fault-on time the equations reduce to

$$\frac{d\delta_{I}}{dt} = \Delta \omega_{I,pu} \omega_{s}$$
$$\frac{d\Delta \omega_{I,pu}}{dt} = \frac{1}{2 \times 3} (1 - 0)$$

That is, with a solid fault on the terminal of the generator, during the fault $P_{E1} = 0$

• The initial conditions are

$$\mathbf{x}(0) = \begin{bmatrix} \delta(0) \\ \omega_{pu}(0) \end{bmatrix} = \begin{bmatrix} 0.418 \\ 0 \end{bmatrix}$$

- Let $\Delta t = 0.02$ seconds
- During the fault the Jacobian is

$$\mathbf{J}\left(\mathbf{x}(t+\Delta t)\right) = \frac{0.02}{2} \begin{bmatrix} 0 & \omega_s \\ 0 & 0 \end{bmatrix} - \mathbf{I} = \begin{bmatrix} -1 & 3.77 \\ 0 & -1 \end{bmatrix}$$

• Set the initial guess for $\mathbf{x}(0.02)$ as $\mathbf{x}(0)$, and

$$\mathbf{f}\left(\mathbf{x}(0)\right) = \begin{bmatrix} 0\\ 0.1667 \end{bmatrix}$$

• Then calculate the initial mismatch

$$\mathbf{h}\left(\mathbf{x}(0.02)^{(0)}\right)\square - \mathbf{x}(0.02)^{(0)} + \mathbf{x}(0) + \frac{0.02}{2}\left(\mathbf{f}\left(\mathbf{x}(0.02)^{(0)}\right) + \mathbf{f}\left(\mathbf{x}(0)\right)\right)$$

• With $\mathbf{x}(0.02)^{(0)} = \mathbf{x}(0)$ this becomes

$$\mathbf{h}\left(\mathbf{x}(0.02)^{(0)}\right) = -\begin{bmatrix} 0.418\\0 \end{bmatrix} + \begin{bmatrix} 0.418\\0 \end{bmatrix} + \frac{0.02}{2} \left(\begin{bmatrix} 0\\0.167 \end{bmatrix} + \begin{bmatrix} 0\\0.167 \end{bmatrix} \right) = \begin{bmatrix} 0\\0.00334 \end{bmatrix}$$

• Then
$$\mathbf{x}(0.02)^{(1)} = \begin{bmatrix} 0.418 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 & 3.77 \\ 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0.00334 \end{bmatrix} = \begin{bmatrix} 0.4306 \\ 0.00334 \end{bmatrix}$$

• Repeating for the next iteration

$$\mathbf{f}\left(\mathbf{x}(0.02)^{(1)}\right) = \begin{bmatrix} 1.259\\ 0.1667 \end{bmatrix}$$
$$\mathbf{h}\left(\mathbf{x}(0.02)^{(1)}\right) = -\begin{bmatrix} 0.4306\\ 0.00334 \end{bmatrix} + \begin{bmatrix} 0.418\\ 0 \end{bmatrix} + \frac{0.02}{2}\left(\begin{bmatrix} 1.259\\ 0.167 \end{bmatrix} + \begin{bmatrix} 0\\ 0.167 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 0.0\\ 0.0 \end{bmatrix}$$

• Hence we have converged with $\mathbf{x}(0.02) = \begin{bmatrix} 0.4306 \\ 0.00334 \end{bmatrix}$

- Iteration continues until $t = T^{clear}$, assumed to be 0.1 seconds in this example $\mathbf{x}(0.10) = \begin{bmatrix} 0.7321 \\ 0.0167 \end{bmatrix}$
- At this point, when the fault is self-cleared, the equations change, requiring a re-evaluation of $f(\mathbf{x}(T^{clear}))$

$$\frac{d\delta}{dt} = \Delta \omega_{pu} \omega_s$$

$$\frac{d\Delta \omega_{pu}}{dt} = \frac{1}{6} \left(1 - \frac{1.281}{0.52} \sin \delta \right) \qquad \mathbf{f} \left(\mathbf{x} \left(0.1^+ \right) \right) = \begin{bmatrix} 6.30 \\ -0.1078 \end{bmatrix}$$

• With the change in f(x) the Jacobian also changes

$$\mathbf{J}\left(\mathbf{x}(0.12^{(0)})\right) = \frac{0.02}{2} \begin{bmatrix} 0 & \omega_s \\ -0.305 & 0 \end{bmatrix} - \mathbf{I} = \begin{bmatrix} -1 & 3.77 \\ -0.00305 & -1 \end{bmatrix}$$

• Iteration for **x**(0.12) is as before, except using the new function and the new Jacobian

This also converges quickly, with one or two iterations

$$\mathbf{h} \left(\mathbf{x}(0.12)^{(0)} \right) \Box - \mathbf{x}(0.12)^{(0)} + \mathbf{x}(0.01) + \frac{0.02}{2} \left(\mathbf{f} \left(\mathbf{x}(0.12)^{(0)} \right) + \mathbf{f} \left(\mathbf{x}(0.10^+) \right) \right)$$
$$\mathbf{x}(0.12)^{(1)} = \begin{bmatrix} 0.7321 \\ 0.0167 \end{bmatrix} - \begin{bmatrix} -1 & 3.77 \\ -0.00305 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0.1257 \\ -0.00216 \end{bmatrix} = \begin{bmatrix} 0.848 \\ 0.0142 \end{bmatrix}$$

Computational Considerations

- As presented for a large system most of the computation is associated with updating and factoring the Jacobian. But the Jacobian actually changes little and hence seldom needs to be rebuilt/factored
- Rather than using $\mathbf{x}(t)$ as the initial guess for $\mathbf{x}(t+\Delta t)$, prediction can be used when previous values are available

$$\mathbf{x}(t + \Delta t)^{(0)} = \mathbf{x}(t) + (\mathbf{x}(t) - \mathbf{x}(t - \Delta t))$$

Two Bus System Results

• The below graph shows the generator angle for varying values of Δt ; recall the implicit method is numerically stable

46

Adding the Algebraic Constraints

- A M
- Since the classical model can be formulated with all the values on the network reference frame, initially we just need to add the network equations
- We'll again formulate the network equations using the form

I(x,y) = YV or YV - I(x,y) = 0

• As before the complex equations will be expressed using two real equations, with voltages and currents expressed in rectangular coordinates

Adding the Algebraic Constraints

• The network equations are as before

$$\mathbf{y} = \begin{bmatrix} V_{D1} \\ V_{Q1} \\ V_{D2} \\ \vdots \\ V_{Dn} \\ V_{Qn} \end{bmatrix} \quad \mathbf{g}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \sum_{k=1}^{n} (G_{1k}V_{Dk} - B_{1k}V_{QK}) - I_{ND1}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{ik}V_{Qk} + B_{ik}V_{DK}) - I_{ND2}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{2k}V_{Dk} - B_{2k}V_{QK}) - I_{ND2}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{nk}V_{Dk} - B_{nk}V_{QK}) - I_{NDn}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{nk}V_{Qk} + B_{nk}V_{DK}) - I_{NQn}(\mathbf{x}, \mathbf{y}) = 0 \end{bmatrix}$$

Coupling of x and y with the Classical Model

- In the simultaneous implicit method **x** and **y** are determined simultaneously; hence in the Jacobian we need to determine the
- dependence of the network equations on \mathbf{x} , and the state equations on \mathbf{y}
- With the classical model the Norton current depends on **x** as

$$\begin{split} \overline{I}_{Ni} &= \frac{E_i' \angle \delta_i}{R_{s,i} + jX_{d,i}'}, \quad G_i + jB_i = \frac{1}{R_{s,i} + jX_{d,i}'} \\ \overline{I}_{Ni} &= I_{DNi} + jI_{QNi} = E_i' (\cos \delta_i + j \sin \delta_i) (G_i + jB_i) \\ E_{Di} + jE_{Qi} &= E_i' (\cos \delta_i + j \sin \delta_i) \\ I_{DNi} &= E_{Di}G_i - E_{Qi}B_i \\ I_{QNi} &= E_{Di}B_i + E_{Qi}G_i \end{split}$$
Recall with the classical model E_i ' is constant

Coupling of x and y with the Classical Model

• In the state equations the coupling with **y** is recognized by noting

$$P_{Ei} = E_{Di}I_{Di} + E_{Qi}I_{Qi}$$

$$I_{Di} + jI_{Qi} = \left(\left(E_{Di} - V_{Di}\right) + j\left(E_{Qi} - V_{Qi}\right)\right)\left(G_{i} + jB_{i}\right)$$

$$I_{Di} = \left(E_{Di} - V_{Di}\right)G_{i} - \left(E_{Qi} - V_{Qi}\right)B_{i}$$
These are the algebraic equations
$$I_{Qi} = \left(E_{Di} - V_{Di}\right)B_{i} + \left(E_{Qi} - V_{Qi}\right)G_{i}$$

$$P_{Ei} = E_{Di}\left(\left(E_{Di} - V_{Di}\right)G_{i} - \left(E_{Qi} - V_{Qi}\right)B_{i}\right) + E_{Qi}\left(\left(E_{Di} - V_{Di}\right)B_{i} + \left(E_{Qi} - V_{Qi}\right)G_{i}\right)$$

$$P_{Ei} = \left(E_{Di}^{2} - E_{Di}V_{Di}\right)G_{i} + \left(E_{Qi}^{2} - E_{Qi}V_{Qi}\right)G_{i} + \left(E_{Di}V_{Qi} - E_{Qi}V_{Di}\right)B_{i}$$

Hence we have P_{Ei} written in terms of the voltages (y)

Variables and Mismatch Equations

- A M
- In solving the Newton algorithm the variables now include **x** and **y** (recalling that here **y** is just the vector of the real and imaginary bus voltages
- The mismatch equations now include the state integration equations

$$\mathbf{h}\left(\mathbf{x}(t+\Delta t)^{(k)}\right) = -\mathbf{x}(t+\Delta t)^{(k)} + \mathbf{x}(t) + \frac{\Delta t}{2}\left(\mathbf{f}\left(\mathbf{x}(t+\Delta t)^{(k)}, \mathbf{y}(t+\Delta t)^{(k)}\right) + \mathbf{f}\left(\mathbf{x}(t), \mathbf{y}(t)\right)\right)$$

• And the algebraic equations

$$\mathbf{g}(\mathbf{x}(t+\Delta t)^{(k)},\mathbf{y}(t+\Delta t)^{(k)})$$

Jacobian Matrix

- Since the $\mathbf{h}(\mathbf{x}, \mathbf{y})$ and $\mathbf{g}(\mathbf{x}, \mathbf{y})$ are coupled, the Jacobian is $J\left(\mathbf{x}(t + \Delta t)^{(k)}, \mathbf{y}(t + \Delta t)^{(k)}\right)$ $= \begin{bmatrix} \frac{\partial \mathbf{h}\left(\mathbf{x}(t + \Delta t)^{(k)}, \mathbf{y}(t + \Delta t)^{(k)}\right)}{\partial \mathbf{x}} & \frac{\partial \mathbf{h}\left(\mathbf{x}(t + \Delta t)^{(k)}, \mathbf{y}(t + \Delta t)^{(k)}\right)}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{g}\left(\mathbf{x}(t + \Delta t)^{(k)}, \mathbf{y}(t + \Delta t)^{(k)}\right)}{\partial \mathbf{x}} & \frac{\partial \mathbf{g}\left(\mathbf{x}(t + \Delta t)^{(k)}, \mathbf{y}(t + \Delta t)^{(k)}\right)}{\partial \mathbf{y}} \end{bmatrix}$
 - With the classical model the coupling is the Norton current at bus i depends on δ_i (i.e., **x**) and the electrical power (P_{Ei}) in the swing equation depends on V_{Di} and V_{Qi} (i.e., **y**)

Jacobian Matrix Entries

- The dependence of the Norton current injections on δ is
 - $I_{DNi} = E'_{i} \cos \delta_{i} G_{i} E'_{i} \sin \delta_{i} B_{i}$ $I_{QNi} = E'_{i} \cos \delta_{i} B_{i} + E'_{i} \sin \delta_{i} G_{i}$ $\frac{\partial I_{DNi}}{\partial \delta_{i}} = -E'_{i} \sin \delta_{i} G_{i} E'_{i} \cos \delta_{i} B_{i}$ $\frac{\partial I_{QNi}}{\partial \delta_{i}} = -E'_{i} \sin \delta_{i} B_{i} + E'_{i} \cos \delta_{i} G_{i}$
 - In the Jacobian the sign is flipped because we defined
 - $\mathbf{g}(\mathbf{x},\mathbf{y}) = \mathbf{Y}\mathbf{V} \mathbf{I}(\mathbf{x},\mathbf{y})$

Jacobian Matrix Entries

• The dependence of the swing equation on the generator terminal voltage is

$$\begin{split} \dot{\delta_i} &= \Delta \omega_{i,pu} \omega_s \\ \Delta \dot{\omega}_{i,pu} &= \frac{1}{2H_i} \Big(P_{Mi} - P_{Ei} - D_i \left(\Delta \omega_{i,pu} \right) \Big) \\ \mathbf{P}_{Ei} &= \Big(E_{Di}^2 - E_{Di} V_{Di} \Big) G_i + \Big(E_{Qi}^2 - E_{Qi} V_{Qi} \Big) G_i + \Big(E_{Di} V_{Qi} - E_{Qi} V_{Di} \Big) B_i \\ \frac{\partial \Delta \dot{\omega}_{i,pu}}{\partial V_{Di}} &= \frac{1}{2H_i} \Big(E_{Di} G_i + E_{Qi} B_i \Big) \\ \frac{\partial \Delta \dot{\omega}_{i,pu}}{\partial V_{Qi}} &= \frac{1}{2H_i} \Big(E_{Qi} G_i - E_{Di} B_i \Big) \end{split}$$

Ā M

Two Bus, Two Gen GENCLS Example

- We'll reconsider the two bus, two generator case from the previous lecture ; fault at Bus 1, cleared after 0.06 seconds
- Initial conditions and \mathbf{Y}_{bus} are as covered in Lecture 16

PowerWorld Case B2_CLS_2Gen

Two Bus, Two Gen GENCLS Example

• Initial terminal voltages are

$$\begin{split} V_{D1} + jV_{Q1} &= 1.0726 + j0.22, \quad V_{D2} + jV_{Q2} = 1.0\\ \overline{E}_1 &= 1.281 \angle 23.95^\circ, \quad \overline{E}_2 = 0.955 \angle -12.08\\ \overline{I}_{N1} &= \frac{1.1709 + j0.52}{j0.3} = 1.733 - j3.903\\ \overline{I}_{N2} &= \frac{0.9343 - j0.2}{j0.2} = -1 - j4.6714\\ \mathbf{Y} &= \mathbf{Y}_N + \begin{bmatrix} \frac{1}{j0.333} & 0\\ 0 & \frac{1}{j0.2} \end{bmatrix} = \begin{bmatrix} -j7.879 & j4.545\\ j4.545 & -j9.545 \end{bmatrix} \end{split}$$

Two Bus, Two Gen Initial Jacobian

Γ	$\delta_{_{I}}$	$\Delta \omega_l$	$\delta_{_2}$	$\Delta \omega_2$	V_{D1}	V_{Q1}	V_{D2}	V_{Q2}
$\dot{\delta_1}$	-1	3.77	0	0	0	0	0	0
$\Delta \dot{\omega}_{I}$	-0.0076	-1	0	0	-0.0029	0.0065	0	0
$\dot{\delta_2}$	0	0	-1	3.77	0	0	0	0
$\Delta \dot{\omega}_2$	0	0	-0.0039	-1	0	0	0.0008	0.0039
I_{D1}	-3.90	0	0	0	0	7.879	0	-4.545
I_{Q1}	-1.73	0	0	0	-7.879	0	4.545	0
I_{D2}	0	0	-4.67	0	0	-4.545	0	9.545
I_{Q2}	0	0	1.00	0	4.545	0	-9.545	0

Results Comparison

• The below graph compares the angle for the generator at bus 1 using Δt =0.02 between RK2 and the Implicit Trapezoidal; also Implicit with Δt =0.06

Four Bus Comparison

A M

Fault at Bus 3 for 0.12 seconds; self-cleared

59