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Announcements

* Read Chapters 4 and 7
 Homework 5 is due on Tuesday Oct 31
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Two Bus Example with Two GENROU Models
A]m
« Use the same system as before, except with we'll model both

generators using GENROUSs

~ For simplicity we'll make both generators identical except set H,=3, H,=6;
other values are X=2.1, X,=0.5, X';=0.2, X',=0.5, X",=X";=0.18, X,=0.15,
Ty = 7.0, T',x=0.75, T"4,=0.035, T",,=0.05; no saturation

— With no saturation the value of the &'s are determined (as per the earlier
lectures) by solving

E|£8=V +(R,+ jX )T

— Hence for generator 1
\ El\ Z0,=1.0946/11.59° + ( j0.5)(1.0524 —18.20) =1.431/30.2°



GENROU Block Diagram

N Ard- Xl
v =X
W ‘L
T o E'#M_L Ad-x"d
4'&1/ T =T dn oxwd-x
¥ I
Hd-1d .
AT K2l

— .

h

L Rt 1

id
” (T v Mox'd {2 e
Lad I pN
+
Py
‘k SB n n 2 n
1 L ¥ sty
v
W Xg-
¥
I
(2 XK' |- {3
+ jf—t l =
T T
wg- s
(X g=x)7"Z
F
} Wi
» ')\ ﬁl'J'iq
(2 — w & > —
=T gqu + l‘qu‘r =T"qgo

A] ¥



Two Bus Example with Two GENROU Models
A]m

« Using the early approach the initial state vector is

6, | | 05273 | Note that this is a salient pole machine with
Aa, 0.0 X' =X, hence E'y will always be zero
E., 1.1948
V161 1.1554 The initial currents in the dq reference frame are
Vo | | 0.2446 15,=0.7872, 1,,=0.6988, 1,=0.2314, | ,=-1.0269
E!
0= =] y
6, | |—0.5392 Initial values of y" ;= -0.2236,
Aw, 0 and y" 4, =1.179
E., 0.9044
v, | | 0.8928
Wy | | —0.3594
E!, 0
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PowerWorld GENROU Initial States
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% Script - Infao - and Results... Stability... Case Info - Actions... Processing
Mode Log Optimal Power Flow [OPF) PV and QW Curves [PVOW) ATC Transient Stability [T5) GIC Schedule Topology Proces:
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Run Transient Stability Pause Abort Restore Reference | For Contingency: | Find | My Transient Contingency -
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- Simulation
- Options Reset to Start Time Transfer Present State to Power Flow Save Case in P
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Plots Run Until Spedfied Time 0.000000 | =5 Run Until Time Restore Reference Power Flow Model
'RES'-'P_‘S ﬁ":"_'” F"'!"M _ Do Specified Mumber of Timestep(s) ~ MNumber of Timesteps to Do Save Time Snapshot
- Transient Limit Monitors
A -Statesﬂdanual Contraol All States | State Limit Violations Generators Buses  Transient Stability YBus  GIC GMatrix  Two Bus Equivalents Detailed Performance Results
i All States m— e, +.0 .0 Bl | GUHE, RN, = B . U i
» - State Limit Violations B e Al e 5% #4 | Records~ Set~ Columns~ [Bg~ R~ "88- ¥ - 3 o~ B options -
- Generators Model Class | ModelType | ObjectName |  AtLimit | Statelgnored | StateName | value | Derivative | Dettax k1
Buses 1)5en Synch. Ma] GENROU 1 [Bus 1] #1 MO Angle 0.5272 0.0000000 0.0000000
- Transient Stability YBus 2| Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Speed w 0,0000 0,0000000 0,0000000
- GIC GMatrix 3|Gen Synch, Ma GENROU 1 {Bus 1) #1 NO Eqp 1.1943 0,0000000 0.0000000
. Two Bus Equivalents 4|Gen synch. Ma GENROU 1 [Bus 1) #1 NO PsiDp 1.1554 0.0000000 0.0000000
‘.. Detailed Performance Bes. 5|Gen Synch. Ma GENROU 1 (Bus 1) #1 NO PsiQpp 0.2446 0.0000000 0.0000000
Validation &|Gen Synch, Ma GENROU 1 [Bus 1] #1 MO Edp 0.0000 0.0000000 0.0000000
SMIBEi | 7|Gen Synch, Ma GENROU 2 [Bus 2] #1 MO Angle -0,5392 0.0000000 0.0000000
IgEnVaLIES 8| Gen synch. Ma GENROU 2 Bus 2) =1 NO Speed w 0.0000 0.0000000 0.0000000
. -Modal Analysis 9|Gen Synch. Ma GENROU 2 [Bus 2) #1 {le] Eqp 0.9044 0.0000000 0.0000000
i Dynamic Simulator Options 10|Gen Synch, Ma GENROU 2 [Bus 2] #1 MO PsiDp 0.85923 0.0000000 0.0000000
11|Gen Synch. Ma GENROU 2 [Bus 2] #1 MO PsiCipp -0,3554 0.0000000 0.0000000
12| Gen Synch, Ma GENROU 2 [Bus 2] #1 MO Edp 0.0000 0.0000000 0.0000000
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Solving with Euler's

« We'll again solve with Euler's, except with At set now to 0.01 seconds
(because now we have a subtransient model with faster dynamics)

— We'll also clear the fault at t=0.05 seconds

« For the more accurate subtransient models the swing equation is
written in terms of the torques

do. .
Sop -0 =Aw Other equations are solved

dt based upon the block diagram

2Hi da)i = 2H' dAa)l :TMi _TEi _Di (Aa)l)
o, dt w, dt

S

with Ty, = l//(;’,ii qi_l//(;’,ii di
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Norton Equivalent Current Injections
A]m
« The initial Norton equivalent current injections on the dq base for
each machine are
(~wi+ jvi)o  (~0.2236+ j1.179)(1.0)

g+ g = =
Nd1 J NC]l jX]r’ j018
=6.55+ ]J1.242 Ew—— | )
. . ecall the dq values are on the
o + J1 NQL — 2.222 — ]6.286 machine’s reference frame and
lgp + 1 NGz = 4,999 + j1.826 the DQ values are on the system

. . reference frame
| oo + JINQZ =-1-15.227



Moving between DQ and dq

* Recall
| [sing —coss ]| 1o
_Iqi_ CoSo sSino _|Qi_ The currents provide the key
coupling between the
two reference frames
 And

- —C0SO SIho

I, {siné cos&} .
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Bus Admittance Matrix

Al™m
 The bus admittance matrix iIs as from before for the classical models,
except the diagonal elements are augmented using

Yi = 1 "
Rs,i + de,i
- _
vy . j0.18 :{—jlo.lol j4.545 }
g L1 | L4545 -j10101
! J0.18 |




Algebraic Solution Verification

* To check the values solve (in the network reference frame)

_j10.101  j4.545 ] '[2.222 - j6.286"
| j4545 —j10.101| | —1-j5.227
1.072+ j0.22°

1.0

-1

\/ =
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Results

The below graph shows the results for four seconds of simulation, using

Euler's with At=0.01 seconds
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Results for Longer Time

A
« Simulating out 10 seconds indicates an unstable solution, both using
Euler's and RK2 with At=0.005, so it is really unstable!
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Adding More Models
A]m

e In this situation the case Is unstable because we have not modeled exciters
» To each generator add an EXST1 with Tz=0, T.=Tz=0, K=0, K,=100,
T,=0.1 :

VT VRMAX _KC IIFI:I

2 K, @ /_ »E
1+5T, | _/ i

1\"-"T1“"r]i.!4\.|!I]1~T 'KCIIFD

@ sK;

1+5T¢

— This just adds one differential equation per generator

dE 1
d{_:D - T, (KA (VREF _l\/t|)_ EFD)
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Two Bus, Two Gen With Exciters

A] ¥

 Below are the initial values for this case from PowerWorld

Case is B2 GENROU 2GEN EXCITER

All States | State Limit Violations I Generators I Buses I Transient Stability YBus I GIC GMatrix I Two Bus Equivalents |
OPT. +,.0 .00 - - - - B | BURE_ AUME ., = EEe . SORT oL
[3 B ik t8 %% 44 88, | Recorss ~ set~ colmns W - T B - B Because of the zero
Model Class | Model Type | Object Name | At Limit | State Ignored | State Name | Value | [ Va_l ues the Other
1|Gen Synch., Mac GEMR.OL 1 (Bus 1) #1 MO Angle 10,5273
2|Gen Synch. Mac GEMR.OL 1 (Bus 1) #1 MO Speed w 0,0000 - - -
3|Gen Synch. Mac GENROU 1 (Bus 1) £1 NO Eqp 1.1948 dlfferentlal equatIOnS for
4|Gen Synch, Mac GEMROL 1 (Bus 1) #1 MO P=iDp 1.1554 . i
5|Gen Synch. Mac GENROU 1 {Bus 1) #1 NO PsiCpp 0.2446 h | d d
6|Gen Synch. Mac GENROU 1Bus)#1 [ Ino Edp 0.0000 t € eXCIterS are incluae
7|Gen Exciter EXST1 1 (Bus 1) #1 MO EField before lim 2.6904 -
8|Gen Excter  EXST1 1 (Bus 1) £1 YES Sensed Vt 1.0046 but treated as |gn0red
9|Gen Exciter EX5T1 1 (Bus 1) #1 YES WLL 0.0269
10 |Gen Exciter EX5T1 1 (Bus 1) #1 MO VF 0.0000
11|Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO Angle -0,.5332
12|Gen Synch., Mac GEMROU 2 (Bus 2) #1 MO Spesd w 0.0000
13|Gen Synch., Mac GEMNR.OU 2 (Bus 2) #1 MO Egp 0,9044
14|Gen Synch. Mac GEMR.OU 2 (Bus 2) #1 MO PsiDp 0,8923
15|Gen Synch., Mac GEMROU 2 (Bus 2) #1 MO PsiQpp -0.3594
16 |Gen Synch. Mac GEMR.OU 2 (Bus 2) #1 MO Edp 0,0000
17|Gen Exdter EXST1 2 (Bus 2) #1 MO EField before lim 1,341
18 |Gen Exditer EX5T1 2 (Bus 2) #1 YES Sensed Vt 1.0000
19 |Gen Exciter EX5T1 2 (Bus 2) #1 YES WLL 0.0134
20| Gen Exdter EXST1 2 (Bus 2) #1 MO VF 0,0000

14



Viewing the States

A
« PowerWorld allows one to single-step through a solution, showing
the f(x) and the K, values

— This i1s mostly used for education or model debugging

All States | State Limit Violations | Generators | Buses | Transient Stability YBus | GIC GMatrix | Two Bus Equiualents|
D % "'||" *_'.;'.3 .;':_'3 ?&D Records = Set = Columns - * H.E* "&E* ¥ BE'H' E%E fix) - @ Options -

Model Class | Model Type | Object Mame | At Limit State Ignored | State Mame | Value | Derivative Delta ¥ K1
1|Gen Synch., Mac GEMROLU 1(Bus 1) #1 | MO Angle 0.5238 0.6283185 0.0015708
2|Gen Synch., Mac GEMROU 1(Bus 1) #1 MO Speed w 0.0017 0.1666667 0.0016667
3|Gen Synch, Mac GEMROU 1(Bus 1) #1 MO Eqp 1.1813 -1,4246850 -0,0135115
4|Gen Synch. Mac GEMR.OU 1(Bus 1) #1 MO P=iDp 1.0788 -6.1374236 -0.0766226
5|Gen Synch. Mac GENROU 1 (Bus 1) %1 NO PsiQpp 0.1276  -7.093%033  -0.1170377
6 |Gen Synch, Mac GEMROLU 1 (Bus 1) #1 MO Edp 0,0000 0,0000000 0,0000000
7 |Gen Exdter EX5T1 1(Bus 1) #1 MO EField before lim 34214 65.7861970 0.7309577
3 [Gen Exciter EX5T1 1(Bus 1) #1 YES Sensed Vi 0.0000 0.0000000 0.0000000
9 [Gen Exciter EX5T1 1(Bus 1) #1 YES VLL 0.1000 0.0000000 0.0000000
10 |Gen Exditer EX5T1 1 (Bus 1) #1 MO VF 0,0000 0,0000000 0,0000000
11|Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO Angle -0, 5400 -0.2896794 -0.0007354
12|Gen Synch, Mac GEMROL 2 (Bus 2) #1 MO Speed w -0.0008 -0.0833331 -0.0007584
13|Gen Synch. Mac GEMROL 2 (Bus 7) #1 MO Eqp 0.9010 -0.29497156 -0.0033918
14|Gen Synch, Mac GEMROU 2 (Bus 2) #1 MO PsiDp 0.8061 -2,1684713 -0,0207221
15|Gen Synch. Mac GENROU 2 (Bus 2) #1 ND PsiQpp -0.2480 89252364  0.1113928
16 |Gen Synch, Mac GEMROL 2 (Bus 2) #1 MO Edp 0.0000 0.0000000 0.0000000
17 |Gen Exditer EX5T1 2 (Bus 7) #1 MO EField before lim 2,2097 F7.9031593 0.8655907
18 |Gen Exciter EX5T1 2 (Bus 2) #1 YES Sensed Vi 0.5032 0.0000000 0.0000000
19| Gen Exciter EX5T1 2 (Bus 2) #1 YES VLL 0.1000 0.0000000 0.0000000

20 [Gen Exciter EX5T1 2 (Bus 7) #1 MO VF 0.0000 0.0000000 0.0000000

Derivatives shown are evaluated at the end of the time step 15



Two Bus Results with Exciters

A
* Below graph shows the angles with At=0.01 and a fault clearing at
t=0.05 using Euler's

— With the addition of the exciters case IS now stable
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Load Models Introduced

A]Mm
* The simplest approach for modeling the loads is to treat them as
constant iImpedances, embedding them in the bus admittance matrix

— Only impact the Y, diagonals

« The admittances are set based upon their power flow values, scaled by
the inverse of the square of the power flow bus voltage

Srsacs =ViTias = Vo[ (Groass — 1Bioaas ) In PowerWorld the default load
S model is specified on Transient
oadi ~ Broadi =~ Stability, Options, Power
v, System Model page

Note the positive sign comes from
the sign convention on 1,

load,i

17



Example 7.4 Case (WSCC 9 Bus)

PowerWorld Case Example 7 4 duplicates the example 7.4 case from
the book, with the exception of using different generator models

Violations | Generators | Buses | Transient Stability YBus | GIC GMatrix | Two Bus Equivalents

?&D Records = Set = Columns - ' “.E* ﬂé}fg' b Efﬁ" ﬁﬂ fix) - HH | Options -
Name Bus 1 | Bus 2 | Bus 3 | Bus 4 Bus 5 Bus & Bus 7 Bus 8 Bus 9

1|Bus1 0.000 -j42.361 0,000 +417.361
2|Bus 2 0.000 -j27.111 -0.000 +j16,000
3|Bus 3 0,000 -j23.732 -0.000 +j17.065
4|Bus 4 -0.000 +j17.361 3.307 -j39.309 -1.365 +j11.604 -1.942 +j10.511
5|Bus 5 -1.365 +j11.604 3.814-j17.843 -1.188 +j5.975
6|Bus 6 -1.942 +410.511 4,102 -j16.133 -1.282 +j5.588
7|Bus 7 -0.000 +j16.000 -1.138 +35.975 2,805 -j35.445 -1.617 +j13.698
3|Bus 8 -1.617 +j13.698 3.741-j23.642 -1,155 +j9.734
9|Bus 9 -0.000 +317.065 -1.282 +35.588 -1.155 +j9.784 2.437 -j32.154

Bus 5 Example: Without the load Y., = 2.553- j17.339

Sioas.s =125+ 0.5 and |V;|=0.996
(1.25- j0.5)

0.996|

w

Y., = 2.553- j17.579+ =3.813— j17.843

A] ¥
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Nonlinear Network Equations

A] ¥

« With constant impedance loads the network equations can usually be
written with | independent of V, then they can be solved directly (as

we've been doing)
V=Y"1(x)

* In general this Is not the case, with constant power loads one common
example. Hence in general a nonlinear solution with Newton's method

IS used
« We'll generalize the dependence on the algebraic variables, replacing
V by y since they may include other values beyond just the bus

voltages

19



Nonlinear Network Equations

A]m
 Just like in the power flow, the complex equations are rewritten, here
as a real current and a reactive current

YV -1(xy)=0 _ This is a rectangular
 The values for bus I are formulation; we also
MOE Z(Gikak ~ B,V )_ lo =0 could have written
k=1 the equations in
3 olar form
Joi (X Y) = Z(GikVQk + B Vo )_ lyoi =0 P
k=1

* For each bus we add two new variables and two new equations

 |f an infinite bus is modeled then its variables and equations are
omitted since its voltage is fixed

20



Nonlinear Network Equations

The network variables and equations are then

ag(x,y) =

n
2 (leVDk — BuVok ) — b (X,y) =0
k=1
n
2 (GikVQk + By Vpk ) — o (X, y) =0
k=1
n
Z(GZkVDk — By Vok ) —Inp2(Xy) =0
k=1
n
2 (GnkVDk — BV ) —Inpn (X Y) =0
k=1
n
2 (GnkVQk + B Vpk )_ Inon (X Y) =0

7\_
Il
|

A] ¥
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Nonlinear Network Equation Newton Solution

A] ¥

The network equations are solved using
a similar procedure to that of the
Netwon-Raphson power flow

Setv = 0; make an initial guess of y, y*)

While g(y")| > & Do
y" =y -3y gy
V = v+1

End While

22



Network Equation Jacobian Matrix

« The most computationally intensive part of the algorithm is
determining and factoring the Jacobian matrix, J(y)

00p(XY) 99pi(XY)  09py(%.Y)

Ao (%Y) G (X,Y) . 0901 (X,Y)

8an(x,y) 8an(x,y) @an(X,y)
Np, No Ny

A] ¥



Network Jacobian Matrix

A]m
« The Jacobian matrix can be stored and computed using a 2 by 2 block
matrix structure

* The portion of the 2 by 2 entries just from the Y are

09pi(X,y)  9pi(%.Y) | o
N N G. _p.7 The"hat” was added to
D) QL || ! the g functions to indicate
0qi(%.Y) dhqi(X.Y) | | By Gj | itisjustthe portion from
i GVDJ GVQJ _ the Ybus

« The major source of the current vector voltage sensitivity comes from
non-constant impedance loads; also dc transmission lines

24



Example: Constant Current, Constant Power Load

A] ¥

« As an example, assume the load at bus k Is represented with a ZIP model

—> _
I:)Load,k — I:)BaseLoad,k (Pz,k Ivk ‘_I_ I:)i,k ‘Vk T I:)p,k) Ui (2259 ozt

values are
_ -2 i set from the
QLoad,k o QBaseLoad,k (Qz,k Vk ‘_I_Qi,k |Vk ‘ +Qp,k)

power flow

 Constant impedance could be in the Y

N

PLoad,k = PBaseLoad,k (Plk Nk ‘ T Pp,k ) = (PBL,i,k ‘\7k ‘ T PBL,p,k)
QLoad,k = QBaseLoad,k (Qi,k ‘\7k ‘ T Qp,k ) = (QBL,i,k ’\7k ‘ T QBL,p,k )

« Usually solved in per unit on network MV A base

25



Example: Constant Current, Constant Power Load

A] ¥

 The current iIs then

T ) Ll | Ploadk + 1Q0oad
Load,k = "D,Load,k J Q,Load ,k \7
k

*

[ : \
(PBL,i,k DZK +VQZK + PBL,p,k)_ J(QBL,i,k I32K +VQZK +QBL,p,k)

Vo = o

\ J

* Multiply the numerator and denominator by Vi, +]V to write as the real
current and the reactive current

26



Example: Constant Current, Constant Power Load

AIIM
VDk PBL,p,k +VQKQBL,p,k V BL i K T KQBLl
ID Load k — 2 2 + 5
Vik +VQK DK —|—VQK
VQk PBL,p,k _VDKQBL,p,k VQk PBLl VDKQBL,i,k
IQ Load ,k — 2 2 + 5
Vi +Vox 2 +Vik

* The Jacobian entries are then found by differentiating with respect to V.
and Vi

— Only affect the 2 by 2 block diagonal values

« Usually constant current and constant power models are replaced by a
constant impedance model if the voltage goes too low, like during a fault

27



Example: 7.4 ZIP Case

« Example 7.4 is modified so the loads are represented by a model
with 30% constant power, 30% constant current and 40%

constant impedance
— In PowerWorld load models can be entered in a number of different
ways; a tedious but simple approach is to specify a model for each

Individual load
Right click on the load symbol to display the Load Options dialog, select Stability,

and select WSCC to enter a ZIP model, in which p1&ql are the normalized about
of constant impedance load, p2&q2 the amount of constant current load, and

p3&03 the amount of constant power load

Case Is Example 7 4 ZIP

A] ¥
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Example 7.4 ZIP One-line

Bus 2 Bus 7 Bus 8

163 MW

1.02
7 Mvar 025 pu

Bus 5 100MW Bus6
35 Mvar
125 MW
50 Mvar

Bus1 1.040 pu

2
27 wvar

Bus 9 Bus 3

1.032pu 1.025pu

90 MW
30 Mvar

85 MW
-11 Mvar

A] ¥
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Example 7.4 ZIP Bus 8 Load Values
A]Mm

« As an example the values for bus 8 are given (per unit, 100 MVA base)
1.00 = Payegyga 5 (0-4x1.016° +0.3x 1.016 +0.3)

— I:)BaseLoad,B = 0983
0.35 = Qgaepronas (0-4%1.016% +0.3x1.016 +0.3)
— QBaseLoad,S = 0344

*

1+]0.55 ] —0.9887 — j0.332

1.0158 + j0.0129

ID,Load,8 T JIQ,Load,8 :(

30



Example: 7.4 ZIP Case Jacobian

For this case the 2 by 2 block between buses 8 and 7 iIs

{—1-155 9784 } This is referencing slide 29

-9.784 -1.155

And between 8 and 9 Is
-1.617 13.698 These entries are easily
-13.698 -1.617 checked with the Y,

The 2 by 2 block for the bus 8 diagonal is

{ 2.876 —23.352}

23632 3.745 The check here is

left for the student

A] ¥
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Additional Comments

A]m
* When coding Jacobian values, a good way to check that the entries are
correct i1s to make sure that for a small perturbation about the solution

the Newton's method has quadratic convergence

* When running the simulation the Jacobian is actually seldom rebuilt
and refactored

— If the Jacobian is not too bad it will still converge

« To converge Newton's method needs a good initial guess, which is
usually the last time step solution

— Convergence can be an issue following large system disturbances, such as a fault

32



Explicit Method Long-Term Solutions

A] ¥

The explicit method can be used for long-term solutions

— For example in PowerWorld DS we’ve done solutions of large systems for
many hours

Numerical errors do not tend to build-up because of the need to
satisfy the algebraic equations

However, sometimes models have default parameter values that
cause unexpected behavior when run over longer periods of time
(such as default trips after 99 seconds below 0.1 Hz).

Some models have slow unstable modes

33



Simultaneous Implicit

t

"'he other major solution approach is the simultaneous implicit in which
ne algebraic and differential equations are solved simultaneously

"his method has the advantage of being numerically stable

A] ¥
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Simultaneous Implicit

Recalling an initial lecture, we covered two common implicit
Integration approaches for solving x =f(x)

- Backward Euler X(t+ At) = X(t) + Atf (X(t + At))
For a linear system we have
x(t+At) =[1 - AtA] ™ x(t)

At
_ Trapezoidal X(t + At) :x(t)+7[f(x(t))+f(x(t+At))]

For a linear system we have
X(t+At) = | —AtA]l[l +%A}x(t)

We'll just consider trapezoidal, but for nonlinear cases

A] ¥
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Nonlinear Trapezoidal

A] ¥

We can use Newton's method to solve x =f(x) with the trapezoidal

—x(t+At>+x(t)+§(f(x(t+At>)+f(x(t)))=o Right now we are just

We are solving for x(t+At); x(t) Is known
The Jacobian matrix Is

J(x(t+At)):%

" of,

of,

OX,

of, |

OX

of,
OX

n

considering the differential
equations; we'll introduce the
algebraic equations shortly

The —1 comes from
differentiating -x(t+At)

36



Nonlinear Trapezoidal using Newton's Method

The full solution would be at each time step

Set the initial guess for x(t+At) as x(t), and initialize the iteration counter k =0
Determine the mismatch at each iteration k as

P (X(E+ A% )T =x(E+ A +x(0) + S (F (x(t+ ADY) +F (x(V)

Determine the Jacobian matrix

-1
Solve X(t+At)*™ =x(t +At)® - I(x(t+ A" | “h(x(t+At)®)
Iterate until done

A] ¥
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Infinite Bus GENCLS Example
A]m

« Use the previous two bus system with gen 4 again modeled with a
classical model with X,'=0.3, H=3 and D=0

Bus 2
Bus 1
GENCLS Infinite Bus
X=0.22 .
) R ) __| )
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

In this example X, = (0.22 + 0.3), with the internal voltage
E'; =1.281£23.95° giving E';=1.281 and §,= 23.95°
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Infinite Bus GENCLS Implicit Solution
K
« Assume a solid three phase fault is applied at the bus 1 generator
terminal, reducing Pg, to zero during the fault, and then the fault is
self-cleared at time Te" resulting in the post-fault system being
Identical to the pre-fault system
— During the fault-on time the equations reduce to

% =A@, ,,0 That is, with a solid fault on the
terminal of the generator, during
dAw, ,, _ 1 (1_0) the fault P, =0
dt 2 %3
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Infinite Bus GENCLS Implicit Solution

The nitial conditions are

_5(0) 0.418
X(O):_wpu(O)H 0 }

Let At = 0.02 seconds
During the fault the Jacobian is

0 -1 3.77
o220 #1227

Set the initial guess for x(0.02) as x(0), and

F(x(0))= {0.1(6)367}

A] ¥
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Infinite Bus GENCLS Implicit Solution
Al
Then calculate the initial mismatch

: : 0.02 :
1(x(0.02)) 0 -x(0.02)® +x(O)+T(f (x(0.02)”)+(x(0)))

« With x(0.02)© = x(0) this becomes

h(x(002)<0>)—— 0.418 +0.418 L 002 0 . o 1) [ o
| N 0 0 2 (]10.167 | [0.167 | |0.00334

» Then o [04187 [-1 3771 O 0.4306
0 0 -1 | |0.00334 |0.00334

41



Infinite Bus GENCLS Implicit Solution
A]Mm

* Repeating for the next iteration

wy [ 1.259
f(x(002)")- {0.1667

0.4306 ] [0.418 1.259 0
h(x(0.02)") =- + 002 +
0.00334| | 0 2 ||0.167 | |0.167
0.0
0.0

* Hence we have converged with x(0.02) {

0.4306
0.00334
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Infinite Bus GENCLS Implicit Solution

Iteration continues until t = T¢clear assumed to be 0.1 seconds in this

10,7321
0.0167

example
X(0.10) =

At this point, when the fault is self-cleared, the equations change,
requiring a re-evaluation of f(x(Tclear))

"1 -0.1078

A] ¥
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Infinite Bus GENCLS Implicit Solution

A
« With the change in f(x) the Jacobian also changes
0 | -1 377
J(x(o.12<°>)):% C 1=
2 |-0305 0 -0.00305 -1
_ _ _ This also converges
* Iteration for x(0.12) is as before, except using the quickly, with one or
new function and the new Jacobian two iterations

: ; 0.02 ; .
h(x(0.12)®) 0 —x(0.12) +x(0.01) +T(f (x(0.12)?)+f(x(0.107)))

0.7321 1 3.77T'[ 0.1257 0.848
0.0167 | |-0.00305 -1 | |-0.00216 | |0.0142
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Computational Considerations

A] ¥

* As presented for a large system most of the computation is associated
with updating and factoring the Jacobian. But the Jacobian actually
changes little and hence seldom needs to be rebuilt/factored

« Rather than using Xx(t) as the initial guess for x(t+At), prediction can be
used when previous values are available

X(t+ At = x(t) + (X(t) —x(t — At))
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Two Bus System Results

« The below graph shows the generator angle for varying values of At;

recall the implicit method is numerically stable
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Adding the Algebraic Constraints
A]m

* Since the classical model can be formulated with all the values on the
network reference frame, initially we just need to add the network

equations
« We'll again formulate the network equations using the form

Ix,y)=YV or YV-I(x,y)=0

* As before the complex equations will be expressed using two real
equations, with voltages and currents expressed in rectangular coordinates
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Adding the Algebraic Constraints

The network e

ag(x,y) =

uations are as before

n

Z(leVDk — By Vok )_ Inp1 (X Y) =0
k=1

n
kZ(GikVQk + By Vi ) — o (X, y) =0
1
n
Z(GZkVDk — B Vok ) —Inp2(X,y) =0
k=1
n
> (GukVok —BikVok ) — Inpn (%) =0
k=1
n
2 (GnkVQk + B Vpk )_ Inon (X, y) =0

Py
I

1

A] ¥
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Coupling of x and y with the Classical Model
K
* |In the simultaneous implicit method x and y are determined

simultaneously; hence in the Jacobian we need to determine the

dependence of the network equations on X, and the state equations on y

* With the classical model the Norton current depends on x as

I_Ni — Eil-é‘i , Gi + jBi — 1-
Rei + X4, Rei + 1Xg,

i = lon + ilow = E/(c0s8, + jsing, )(G; + jB,)

Eoi + JE = E/(cosd, + jsing;)

| -EG_-EB Recall with the classical
DNi ™ =Dii - Qi model E;’ is constant

IQNi — EDi Bi + EQiGi
49



Coupling of x and y with the Classical Model

In the state equations the coupling with y is recognized by noting

PEi = EDiIDi T EQi IQi

| + jIQi :((EDi _VDi)‘|’ j(EQi _VQi))(Gi T jBi)
IDi = (EDi _VDi )G' _(EQi _VQi ) Bi

These are the algebraic equations
( Eoi Vo ) B, + ( EQi _VQi )Gi

o

PEi = EDi (( EDi _VDi )Gi _(EQi _VQi ) Bi)+ EQi ((EDi _VDi ) Bi "'(EQi _VQi )Gi)
PEi :(Eéi - EDiVDi )Gi "‘(Eéi - EQiVQi )Gi "‘(EDiVQi - EQiVDi ) Bi

Hence we have Pg; written in terms of the voltages (y)

A] ¥
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Variables and Mismatch Equations

A
* In solving the Newton algorithm the variables now include x and y
(recalling that here vy is just the vector of the real and imaginary bus

voltages
« The mismatch equations now include the state integration equations

h(x(t+At)®) =
—x(t+AD)® + x(t) + %(f (x(t+AD®, y(t+A)® )+ (x(1), y(t)))
* And the algebraic equations

g(x(t+AD)Y, y(t+At)®)

ol



Jacobian Matrix

 Since the h(x,y) and g(x,y) are coupled, the Jacobian is
J(x(t+ADY y(t+Aat)®)

oh(x(t+AD)Y,y(t+A0)®)  oh(x(t+A®,y(t+at)®)
OX oy

og(x(t+AD)®,y(t+Aan™)  ag(x(t+Aa)®,yt+At)")
OX oy

— With the classical model the coupling is the Norton current at bus |

depends on o; (i.e., X) and the electrical power (Pg;) In the swing equation
depends on Vp,; and Vy, (1.€., )

A] ¥



Jacobian Matrix Entries

« The dependence of the Norton current injections on o Is
| i = E Ccoso.G —E/sing.B
loni = B/ €0S0,B; + E/sin 5,G

Noni _ —E/sin6,G, —E/cos J.B,

Ol oni

=—E/sin6.B; + E; c0s 5.G,

— In the Jacobian the sign is flipped because we defined

g(x,y) =YV-IXxy)

A] ¥
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Jacobian Matrix Entries

A]m
* The dependence of the swing equation on the generator terminal voltage Is
é.‘i — Aa)i.pua)s
. 1
Aa)i,pu = ﬁ(PMi - P - D, (Aa)i,pu ))
PEi :(Eéi o EDiVDi )Gi "‘(Eéi o EQiVQi )Gi +(EDiVQi o EQiVDi ) Bi
OA @,
= ! (EDiGi +EQiBi)
oV, 2H.
OA @,
= : (EQiGi _EDiBi)
Ny 2H,

o4



Two Bus, Two Gen GENCLS Example
A]m

« We'll reconsider the two bus, two generator case from the previous
lecture ; fault at Bus 1, cleared after 0.06 seconds

— Initial conditions and Y are as covered in Lecture 16

Bus 1
GENCLS buS GENCLS
. X=0,22 \
> P>

11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

PowerWorld Case B2 CLS 2Gen
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Two Bus, Two Gen GENCLS Example

Initial terminal voltages are

VDl + jVQl

E, =1.281,23.95°,

N1

N 2

<
Il

E, =0.955/ —

J0.3

- _ 11709+ j0.52

- _09343-j0.2

Yy +

j0.2
T 1
j0.333

0

J

=-1-j4.6714

[-i7.879
| j4.545

1
0.2

12.08

~1.733—- j3.903

j4.545
—j9.545

=1.0726 + j0.22, Vp, + jVo, =1.0

|

A] ¥
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Two Bus, Two Gen Initial Jacobian

6,
Ad,

51

-1
~0.0076

0

Aw,
3.77
-1

O O O O O O

52

Aw,
0
0

VDl VQl
0 0
~0.0029 0.0065
0 0
0 0
0 7.879
-7879 0
0  -4545
4.545 0

VD2
0
0
0
0.0008
0
4.545
0
~9.545

Vo,
0
0
0
0.0039
4,545
0
9.545

0

A] ¥
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Results Comparison

* The below graph compares the angle for the generator at bus 1
using At=0.02 between RK2 and the Implicit Trapezoidal; also
Implicit with At=0.06
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Four Bus Comparison

Fault at Bus 3 for 0.12 seconds; self-cleared

Bus 1 Bus 2

A] ¥

GENCLS Bus 4
z u|x=o.1 GENCLS 800
7.72 Deg 700
10551 pu | s (] T=0.01
31 De -2.40 Deg 00 De
e o § osiom ooom, . 600 ——dT=0.03
£ 500 dT=0.06
I
|
s 400
]
©
2 300 e
]
]
100 /
D .I | | | | |
0 0.5 Simulation TiRe {Secondg) 25




	Slide 0: ECEN 667 Power System Stability
	Slide 1: Announcements
	Slide 2: Two Bus Example with Two GENROU Models
	Slide 3: GENROU Block Diagram
	Slide 4: Two Bus Example with Two GENROU Models
	Slide 5: PowerWorld GENROU Initial States
	Slide 6: Solving with Euler's
	Slide 7: Norton Equivalent Current Injections
	Slide 8: Moving between DQ and dq
	Slide 9: Bus Admittance Matrix
	Slide 10: Algebraic Solution Verification
	Slide 11: Results
	Slide 12: Results for Longer Time
	Slide 13: Adding More Models
	Slide 14: Two Bus, Two Gen With Exciters
	Slide 15: Viewing the States
	Slide 16: Two Bus Results with Exciters
	Slide 17: Load Models Introduced
	Slide 18: Example 7.4 Case (WSCC 9 Bus)
	Slide 19: Nonlinear Network Equations
	Slide 20: Nonlinear Network Equations
	Slide 21: Nonlinear Network Equations
	Slide 22: Nonlinear Network Equation Newton Solution
	Slide 23: Network Equation Jacobian Matrix
	Slide 24: Network Jacobian Matrix
	Slide 25: Example: Constant Current, Constant Power Load
	Slide 26: Example: Constant Current, Constant Power Load
	Slide 27: Example: Constant Current, Constant Power Load
	Slide 28: Example: 7.4 ZIP Case
	Slide 29: Example 7.4 ZIP One-line
	Slide 30: Example 7.4 ZIP Bus 8 Load Values
	Slide 31: Example: 7.4 ZIP Case Jacobian
	Slide 32: Additional Comments
	Slide 33: Explicit Method Long-Term Solutions
	Slide 34: Simultaneous Implicit
	Slide 35: Simultaneous Implicit
	Slide 36: Nonlinear Trapezoidal 
	Slide 37: Nonlinear Trapezoidal using Newton's Method
	Slide 38: Infinite Bus GENCLS Example
	Slide 39: Infinite Bus GENCLS Implicit Solution
	Slide 40: Infinite Bus GENCLS Implicit Solution
	Slide 41: Infinite Bus GENCLS Implicit Solution
	Slide 42: Infinite Bus GENCLS Implicit Solution
	Slide 43: Infinite Bus GENCLS Implicit Solution
	Slide 44: Infinite Bus GENCLS Implicit Solution
	Slide 45: Computational Considerations
	Slide 46: Two Bus System Results
	Slide 47: Adding the Algebraic Constraints
	Slide 48: Adding the Algebraic Constraints
	Slide 49: Coupling of x and y with the Classical Model 
	Slide 50: Coupling of x and y with the Classical Model 
	Slide 51: Variables and Mismatch Equations
	Slide 52: Jacobian Matrix
	Slide 53: Jacobian Matrix Entries
	Slide 54: Jacobian Matrix Entries
	Slide 55: Two Bus, Two Gen GENCLS Example
	Slide 56: Two Bus, Two Gen GENCLS Example
	Slide 57: Two Bus, Two Gen Initial Jacobian
	Slide 58: Results Comparison
	Slide 59: Four Bus Comparison

