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Announcements

• Read Chapters 4 and 7

• Homework 5 is due on Thursday Nov 2
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Simultaneous Implicit

• The other major solution approach is the simultaneous implicit in which 

the algebraic and differential equations are solved simultaneously

• This method has the advantage of being numerically stable

• In the last lecture we considered the trapezoidal approach 
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Infinite Bus GENCLS Implicit Solution

• Assume a solid three phase fault is applied at the bus 1 generator 

terminal, reducing PE1 to zero during the fault, and then the fault is 

self-cleared at time Tclear
, resulting in the post-fault system being 

identical to the pre-fault system 

– During the fault-on time the equations reduce to 
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That is, with a solid fault on the 

terminal of the generator, during

the fault PE1 = 0
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Infinite Bus GENCLS Implicit Solution

• The initial conditions are 

• Let t = 0.02 seconds

• During the fault the Jacobian is 

• Set the initial guess for x(0.02) as x(0), and
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• Then calculate the initial mismatch

• With x(0.02)(0) = x(0) this becomes 

• Then
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• Repeating for the next iteration

• Hence we have converged with

Infinite Bus GENCLS Implicit Solution
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• Iteration continues until t = Tclear, assumed to be 0.1 seconds in this 

example

• At this point, when the fault is self-cleared, the equations change, 

requiring a re-evaluation of f(x(Tclear))

Infinite Bus GENCLS Implicit Solution
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• With the change in f(x) the Jacobian also changes

• Iteration for x(0.12) is as before, except using the 

new function and the new Jacobian

Infinite Bus GENCLS Implicit Solution
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Two Bus System Results

• The below graph shows the generator angle for varying values of t; 

recall the implicit method is numerically stable
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Adding the Algebraic Constraints

• Since the classical model can be formulated with all the values on the 

network reference frame, initially we just need to add the network 

equations

• We'll again formulate the network equations using the form  

• As before the complex equations will be expressed using two real 

equations, with voltages and currents expressed in rectangular coordinates

( , )     or  ( , )= − =Ι x y YV YV Ι x y 0
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Adding the Algebraic Constraints

• The network equations are as before
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• In the simultaneous implicit method x and y are determined 

simultaneously; hence in the Jacobian we need to determine the 

dependence of the network equations on x, and the state equations on y

• With the classical model the Norton current depends on x as  

Coupling of x and y with the Classical Model 
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• In the state equations the coupling with y is recognized by noting   

Coupling of x and y with the Classical Model 
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Hence we have PEi written in terms of the voltages (y)

These are the algebraic equations
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Variables and Mismatch Equations

• In solving the Newton algorithm the variables now include x and y 

(recalling that here y is just the vector of the real and imaginary bus 

voltages 

• The mismatch equations now include the state integration equations

• And the algebraic equations
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Jacobian Matrix

• Since the h(x,y) and g(x,y) are coupled, the Jacobian is

– With the classical model the coupling is the Norton current at bus i 

depends on i (i.e., x) and the electrical power (PEi) in the swing equation 

depends on VDi and VQi (i.e., y) 
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Jacobian Matrix Entries

• The dependence of the Norton current injections on  is

– In the Jacobian the sign is flipped because we defined 
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Jacobian Matrix Entries

• The dependence of the swing equation on the generator terminal voltage is 
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Two Bus, Two Gen GENCLS Example

• We'll reconsider the two bus, two generator case from the previous 

lecture ; fault at Bus 1, cleared after 0.06 seconds

– Initial conditions and Ybus are as covered in Lecture 16

GENCLS

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

PowerWorld Case B2_CLS_2Gen 
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• Initial terminal voltages are

Two Bus, Two Gen GENCLS Example
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Two Bus, Two Gen Initial Jacobian
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Results Comparison

• The below graph compares the angle for the generator at bus 1 

using t=0.02 between RK2 and the Implicit Trapezoidal; also 

Implicit with t=0.06
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Four Bus Comparison

Fault at Bus 3 for 0.12 seconds; self-cleared
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Done with Stability Solutions: On to Load Modeling

• Load modeling is certainly challenging!

• For large system models an aggregate load can consist of many 

thousands of individual devices

• The load is constantly changing, with key diurnal and temperature 

variations

– For example, a higher percentage of lighting load at night, more air 

conditioner load on hot days 

• Load model behavior can be quite complex during the low voltages 

that may occur in transient stability

• Testing aggregate load models for extreme conditions is not feasible 

– we need to wait for disturbances!
24



Load Modeling

• Traditionally load models have been divided into two groups

– Static: load is a algebraic function of bus voltage and sometimes frequency

– Dynamic: load is represented with a dynamic model, with induction motor 

models the most common

• The simplest load model is a static constant impedance

– Has been widely used

– Allowed the Ybus to be reduced, eliminating essentially all non-generator 

buses

– Presents no issues as voltage falls to zero

– No longer commonly used
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Load Modeling References

• Many papers and reports are available!

• A classic reference on load modeling is by the IEEE Task Force on Load 

Representation for Dynamic Performance, "Load Representation for 

Dynamic Performance Analysis," IEEE Trans. on Power Systems, May 

1993, pp. 472-48

• NERC 2016, “Dynamic Load Modeling”; available at 
https://www.nerc.com/comm/PC/LoadModelingTaskForceDL/Dynamic%20Load%20Modeling%20Tech%20Ref%202016-11-

14%20-%20FINAL.PDF

• NERC Reliability Guideline, “Developing Load Model Composition Data, 

2017”

• EPRI Technical Guide to Composite Load Modeling, Sept. 2020

– https://www.epri.com/research/programs/027570/results/3002019209
26
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ZIP Load Model (Covered Last Lecture)

• Another common static load model is the ZIP, in which the load is 

represented as

• Some models allow more general voltage dependence
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The voltage exponent for reactive power is often > 2
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ZIP Model Coefficients

• An interesting paper on the experimental determination of the ZIP parameters is A. 

Bokhari, et. al., "Experimental Determination of the ZIP Coefficients for Modern 

Residential and Commercial Loads, and Industrial Loads," IEEE Trans. Power 

Delivery, 2014

– Presents test results for loads as voltage is varied; also highlights that load behavior 

changes with newer technologies

• Below figure (part of fig 4 of paper), compares real and reactive behavior of light ballast 
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ZIP Model Coefficients

A portion of Table VII from the

Bokhari 2014 paper 

The Z,I,P coefficients

sum to zero; note that for

some models the 

absolute values of the

parameters are quite 

large, indicating a 

difficult fit
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Discharge Lighting Models

• Discharge lighting (such as fluorescent lamps) have been at major portion 

of the load (10-15%) though now it is getting increasingly replaced by 

LEDs

• Discharge lighting has been modeled for sufficiently high voltage with a 

real power as constant current and reactive power with a high voltage 

dependence

– Linear reduction for voltage between 0.65 and 0.75 pu

– Extinguished (i.e., no load) for voltages below 
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May need to change with newer 

electronic ballasts – e.g., reactive

power increasing as the voltage drops!
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Static Load Model  Frequency Dependence

• Frequency dependence is sometimes included, to recognize that the load 

could change with the frequency

• Here fk is the per unit bus frequency, which is calculated as

• Typical values for Pf and Qf are 1 and -1 respectively 
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A typical value for T is about 0.02 seconds. Some models 

just have frequency dependence on the constant power load
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Induction Machines

• Term induction machine is used to indicate either generator or motor; 

most uses are as motors 

• Induction machines have two major components

– A stationary stator, which is supplied with an ac voltage; windings in stator 

create a rotating magnetic field

– A rotating rotor, in which an ac current is induced (hence the name) 

• Two basic design types based on rotor design

– Squirrel-cage: rotor consists of shorted conducting bars laid into magnetic 

material in a cage structure

– Wound-rotor: rotor has windings similar to stator, with slip rings used to 

provide external access to the rotor windings

32



Squirrel Cage Rotor Picture

Image 1 Source: www.quora.com/What-

will-happen-If-the-Squirrel-cage-motor-

rotor-conductors-are-not-skewed

Image 2 Source: 

www.polytechnichub.com/squirrel-cage-rotor/

Embedded in laminated 

magnetic material
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Induction Machine Overview

• Speed of rotating magnetic field (synchronous speed) depends on number 

of poles

• Frequency of induced currents in rotor depends on frequency difference 

between the rotating magnetic field and the rotor

where  is the stator electrical frequency, is mechanical speed, 

and  is the rotor electrical frequency
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Induction Machine Slip

• Key value is slip, s, defined as

• As defined, when operating as a motor an induction machine will have a 

positive slip, slip is negative when operating as a generator

– Slip is zero at synchronous speed, a speed at which no rotor current is induced;  

s=1 at stand still 

where N  is the synchronous speed, and

N  is the actual speed (in RPM)

s act

s

s

act

N N
s

N

−
=
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Basic Induction Machine Model

• A basic (single cage) induction machine circuit model is given below

– Model is derived in an undergraduate machines class 

• Circuit is useful for understanding the static behavior of the machine 

• Effective rotor resistance (Rr/s) models the rotor electrical losses (Rr) 

and the mechanical power Rr(1-s)/s

( )
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r r

1 sR
R R

s s

−
= +
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Induction Machine Dynamics

• Expressing all values in per unit (with the base covered later), the 

mechanical equation for a machine is 

• Similar to what was done for a synchronous machine, the induction 

machine can be modeled as an equivalent voltage behind a stator 

resistance and transient reactance (later we'll introduce, but not derive, 

the subtransient model)

( )

M

E

where H is the inertia constant, T  is the mechanical

torque and T  is the electrical torque (to be defined)

M E

ds 1
T T

dt 2H
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Induction Machine Dynamics

• Define

• Also define the open circuit time constant

where  is the apparent reactance seen when the rotor 

is locked (s=1) and X is the synchronous reactance
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 =
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Induction Machine Dynamics

• Electrically the induction machine is modeled similar to the classical 

generator model, except here we use the "motor convention" in which 

ID+jIQ is assumed positive into the machine 

( )( )

( )( )

D D s D Q

Q Q s Q D

D
s Q D Q

o

Q

s D Q D

o

V E R I X I

V E R I X I

dE 1
sE E X X I

dt T

dE 1
sE E X X I

dt T





 = + −

 = + +


  = − + −




  = − − − −



All calculations are 

done on the network

reference frame
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Induction Machine Dynamics

• The induction machine electrical torque, TE, and terminal electrical 

load, PE, are then

• Similar to a synchronous machine, once the initial values are determined 

the differential equations are fairly easy to simulate

– Key initial value needed is the slip

( )D D Q Q

E

s

E D D Q Q

E I E I
T

P V I V I



 +
=

= +

Recall we are using the motor

convention so positive PE 

represents load
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Specifying Induction Machine Parameters

• In transient stability packages induction machine parameters are 

specified in per unit

– If unit is modeled as a generator in the power flow (such as CIMTR1 or 

GENWRI) then use the generator's MVA base (as with synchronous machines)

– With loads it is more complicated.  

• Sometimes an explicit MVA base is specified.  If so, then use this value.  But this can be 

cumbersome since often the same per unit machine values are used for many loads

• The default is to use the MW value for the load, often scaled by a multiplier (say 1.25)
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Determining the Initial Values

• To determine the initial values, it is important to recognize that for a fixed 

terminal voltage there is only one independent value: the slip, s

– For a fixed slip, the model is just

a simple circuit with resistances

and reactances

• The initial slip is chosen to match the power flow real power value.  Then 

to match the reactive power value (for either a load or a generator), the 

approach is to add a shunt capacitor in parallel with the induction machine

• We'll first consider torque-speed curves, then return to determining the 

initial slip 
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Torque-Speed Curves

• To help understand the behavior of an induction machine it is useful to 

plot various values as a function of speed (or equivalently, slip)

– Solve the equivalent circuit for a specified terminal voltage, and varying values of 

slip

– Plot results

– Recall torque times speed = power 

• Here speed is the rotor speed

– When using per unit, the per unit speed is just 1-s

( )E EP T 1 s= −
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Induction Motor Example

• Assume the below 60 Hz system, with the entire load modeled as a 

single cage induction motor with per unit values on a 125 MVA base of 

H=1.0, Rs=0.01, Xs=0.06, Xm=4.0, Rr=0.03, Xr=0.04

– In the CIM5 model R1=Rr and X1=Xr

slack

X=0.1

Signal Generator

CIM5

Bus 1 Bus 2

 -5.77 Deg  0.00 Deg

 0.995 pu 1.000 pu

MW 100

Mvar   0

PowerWorld case B2_IndMotor
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Induction Motor Example

• With a terminal voltage of 0.9950

we can solve the circuit for 

specified values of s

• The input impedance and current are

• Then with s=1 we get   

( )

.
( ) ,

r
m r

in s s
r in in

r m

R
jX jX

V 0 995 0s
Z R jX I

R Z Z
j X X

s

 
+    = + + = =

+ +

.
. . . .

. .

0 995
I 3 404 j8 624 S 3 387 j8 581

0 0394 j0 0998
= = − → = +

+

Note, values are per 

unit on a 125 MVA base
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Induction Motor Example

• PowerWorld allows for display of the variation in various induction 

machine values with respect to speed

– Right click on load, select Load Information Dialog, Stability

– On bottom of display click Show Torque Speed Dialog

– Adjust the terminal voltage and pu scalar as desired; set v=0.995 and the pu scalar to 

1.0 to show values on the 125 MVA base used in the previous solution

– Right click on column and select Set/Toggle/Columns, Plot Column to plot the 

column
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Induction Motor Example Torque-Speed Curves

• The below graph shows the torque-speed curve for this induction 

machine; note the high reactive power consumption on starting (which 

is why the lights may dim when starting a cloth dryer!)

From the graph you can see 

with a 100 MW load (0.8 pu 

on the 125 MW base), the 

slip is about 0.025
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Calculating the Initial Slip

• One way to calculate the initial slip is to just solve the below five 

equations for five unknowns (s, ID, IQ, E'D,E'Q) with PE, VD and VQ inputs 

( )( )

( )( )

E D D Q Q

D D s D Q

Q Q s Q D

D
s Q D Q

o

Q

s Q Q D

o

P V I V I

V E R I X I

V E R I X I

dE 1
0 sE E X X I

dt T

dE 1
0 sE E X X I

dt T





= +

 = + −

 = + +


  = = − + −




  = = − − −



These are nonlinear equations

that can have multiple solutions

so use Newton’s method, with an

initial guess of s small (say 0.01)

Initial slip in example is 0.0251
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Double Cage Induction Machines

• In the design of induction machines, there are various tradeoffs, such as 

between starting torque (obviously one needs enough to start) and 

operating efficiency

– The highest efficiency possible is 1-slip, so operating at low slip is desirable

• A common way to achieve high starting torque with good operating 

efficiency is to use a double cage design

– E.g., the rotor has two embedded squirrel cages, one with a high R and lower X for 

starting, and one with lower R and higher X for running

– Modeled by extending our model by having two rotor circuits in parallel; add 

subtransient values X" and T"o 
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Example Double Cage Model

• Double cage rotors are modeled by adding two additional differential 

equations

Image source: PSLF Manual, version 18.1_02; MotorW 

Some models also include

saturation, a topic that we will skip

PowerWorld case 

B2_IndMotor_DoubleCage
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Double Cage Induction Motor Model

• The previous example can be extended to model a double cage rotor 

by setting R2=0.01, X2=0.08

– The below graph shows the modified curves, notice the increase in the slope by 

s=0, meaning it is operating with higher efficiency (s=0.0063 now!)

The additional winding does

result in lower initial impedance 

and hence a  higher starting 

reactive power 
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Induction Motor Classes

• Four major classes of induction motors, based on application.  Key values 

are starting torque, pull-out torque, full-load torque, and starting current

Image source: ecmweb.com/motors/understanding-induction-motor-nameplate-information

In steady-state the motor will operate on 

the right side of the curve at the point at 

which the electrical torque matches the 

mechanical torque

A: Fans, pumps machine tools

B: Similar to A

C: Compressors, conveyors

D: High inertia such as hoists
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Induction Motor Stalling

• Height of the torque-speed curve varies with the square of the terminal 

voltage

• When the terminal voltage decreases, such as during a fault, the 

mechanical torque can exceed the electrical torque

– This causes the motor to decelerate, perhaps quite quickly, with the rate 

proportional to its inertia

– This deceleration causing the slip to increase, perhaps causing the motor to stall 

with s=1, resulting in a high reactive current draw

– Too many stalled motors can prevent the voltage from recovering 
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Motor Stalling Example

• Using case WSCC_CIM5, which models the WSCC 9 bus case with 

100% induction motor load

• Change the fault scenario to say a fault midway between buses 5 and 7, 

cleared by opening the line
Results are for a 

0.05 second fault

Usually motor load

is much less than 100%
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Impact of Model Protection Parameters

• Some load models, such as the 

CIM5, have built-in protection 

system models.  For CIM5 the Vi 

and Ti fields are used to disconnect 

the load when its voltage is less than 

Vi for Ti cycles

– When running simulations you need

to check for such events
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Motor Stalling With Longer Fault

• The below image shows the WECC_CIM5 system with the fault 

clearing extended to 0.12 seconds

The models are no longer giving

realistic results; two generators

trip on over speed; then the load 

trips after 4 seconds.
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Transient Limit Monitors

• There are different performance criteria that need to be met for a scenario 

Image from WECC Planning and 

Operating Criteria 

Similar performance 

criteria exist for 

frequency deviations
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A Concern: Fault Induced Delayed Voltage 
Recovery (FIDVR)

• FIDVR is a situation in which the system voltage remains significantly 

reduced for at least several seconds following a fault (at either the 

transmission or distribution level)

– It is most concerning in the high voltage grid, but found to be unexpectedly 

prevalent in the distribution system

• Stalled residential air 

conditioning units are a 

key cause of FIDVR – 

they can stall within the 

three cycles needed to

clear a fault

Image Source: NERC, Fault Induced Delayed Voltage Recovery (FIDVR) Advisory, July 2015 58



Motor Starting

• Motor starting analysis looks at the impacts of starting a motor or a 

series of motors (usually quite large motors) on the power grid

– Examples are new load or black start plans

• While not all transient stability motor load models allow the motor to 

start, some do

• When energized, the initial condition for the motor is slip of 1.0

• Motor starting can generate very small time constants
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Motor Starting Example

• Case WSCC_MotorStarting takes the previous WSCC case with 

100% motor load, and considers starting the motor at bus 8

• In the power flow the load at bus 8 is modeled as zero (open) with 

a CIM5

• The contingency is closing the load

– Divided into four loads to stagger the start (we can't start it all at once)

• Since power flow load is zero, the CIM5 load must also specify the 

size of the motor

– This is done in the Tnom field and by setting an MVA base value
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Motor Starting Example

• Below graph shows the bus voltages for starting the four motors 

three seconds apart

slack

Bus1

  14 MW

  94 Mvar

Bus 4

Bus 5

MW 118

  42 Mvar

Bus 2

 185 MW

  53 Mvar

Bus 7

Bus 8

Bus 9 Bus 3

  92 MW

  27 Mvar  39 MW   23 Mvar

Bus 6

  86 MW

  25 Mvar

0.882 pu0.909 pu

0.888 pu

0.833 pu

0.901 pu 0.917 pu

0.912 pu

0.949 pu

1.003 pu

  37 MW   92 Mvar    0 MW    0 Mvar

   0 MW    0 Mvar

20181614121086420

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

V pu_Bus Bus1

gfedcb

V pu_Bus Bus 2

gfedcb

V pu_Bus Bus 3

gfedcb

V pu_Bus Bus 4

gfedcbV pu_Bus Bus 5

gfedcb

V pu_Bus Bus 6

gfedcb

V pu_Bus Bus 7

gfedcb

V pu_Bus Bus 8

gfedcbV pu_Bus Bus 9

gfedcb

61



Motor Starting: Fast Dynamics

• One issue with the starting of induction motors is the need to model 

relatively fast initial electrical dynamics

– Below graph shows E'r for a motor at bus 8 as it is starting

Load Bus 8 #1 States of Load\Epr

Load Bus 8 #1 States of Load\Epr
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Motor Starting: Fast Dynamics

• These fast dynamics can be seen to vary with slip in the ss term

• Simulating with the explicit method either requires a small overall t 

or the use of multi-rate methods

( )( )

( )( )
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
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Multi-Rate Explicit Integration

• Key idea is to integrate some differential equations with a potentially 

much faster time step then others

• Faster variables are integrated with time step h, slower variable with 

time step H

– Slower variables assumed fixed or interpolated during the faster time step 

integration

Figure from Jingjia Chen and M. L. Crow, "A Variable Partitioning Strategy for the Multirate Method in Power Systems," Power Systems, IEEE Transactions on, vol. 23, pp. 

259-266, 2008. 64



Multi-Rate Explicit Integration

• First proposed by C. Gear in 1974

• Power systems use first presented by M Crow in 1994 

• In power systems usually applied to some exciters, stabilizers, and to 

induction motors when their slip is high

• Subinterval length can be customized for each model based on its 

parameters (in range of 4 to 128 times the regular time step)

• Tradeoff in computation

C. Gear, Multirate Methods for Ordinary Differential Equations, Univ. Illinois at Urbana-Champaign, Tech. Rep., 1974.

M. Crow and J. G. Chen, “The multirate method for simulation of power system dynamics,” IEEE Trans. Power Syst., 

vol. 9, no. 3, pp.1684–1690, Aug. 1994.
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