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Announcements

* Read Chapter 8
 Homework 6 1s due on Tuesday Nov 21
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Power System Stability Terms

Power system stability
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Fig. 4. Classification of power system stability

[a] IEEE/PES Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic behavior in
systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020




PowerWorld Two Bus Example

Bus 1
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Select option category
Power Fiow Solution
Environment
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File Management
Case Information Displays
Message Log
Distributed Computing

Save to Aux

x=0.2

Power Flow Solution
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® Alocate across buses using the user-specified remote regulation percentages
(O Allocate so all generators are at same relative point in their [min .. max] var range
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Options for Areas on Economic Dispatch

0.933 pu
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Commercial power flow software usually
auto converts constant power loads at low
voltages; set these fields to zero to disable

this conversion

Case is Bus2_ PV
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Power Flow Region of Convergence

Convergence
regions with
P=100 MW,

Q=0 Mvar
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Load Parameter Space Representation

* With a constant power model there is a maximum loadability
surface, >
— Defined as point in which the power flow Jacobian is singular

— For the lossless two bus system it can be determined as

55300
2 P> Unsolvable region
_ })L 4 Q + iB — 0 EZSO No power flow solutions
L — T
B 4 § 200
ks
g 150 Solvable region
o Two power flow solutions
=100
b
g 50
(<7
o

o

100 200 300 400 500 600
Real power load (MW)

o




Load Model Impact

* With a static load model regardless of the voltage dependency the
same PV curve is traced

— But whether a point of maximum loadability exists depends on the assumed
load model

« If voltage exponent is > 1 then multiple solutions do not exist (see B.C. Lesieutre, P.W.
Sauer and M. A. Pai “Sufficient conditions on static load models for network solvability,”
NAPS 1992, pp. 262-271)

x=0.2 Change the load to constant
impedance; hence it
becomes a linear model
Bus 1 0.943 pu
1335MW
44@Mvar
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ZIP Model Coefficients
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One popular static load model 1s the ZIP; lots of papers on the
“correct” amount of each type
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Table 1 from M. Diaz-Aguilo, et. al.,
“Field-Validated Load Model for the
Analysis of CVR in Distribution
Secondary Networks: Energy
Conservation,” IEEE Trans. Power
Delivery, Oct. 2013




ZIP Model Coefficients
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Fig. 3. Active and reactive test results with constrained curve fitting. The ZIP
curve with the 100-V cutoff is shown in the solid line and ZIP with the actual
cutoff voltage in the dashed line. The two sets of ZIPs are shown in Table VIIL.

Television

Test ’.’-_ by =

result f oo Vv
2 | cut-off fit
< Actual cut-off
- voltage fit
= i Voltage (V)
40 60 80 100 120
Projector
s
v
Actual cut-off 100V
voltage fit cut-off fit
Test ,,/’.!
result -

........... i | [Voltzge (_Y_}_.
20 40 60 B0 100 120

Refrigerator
Test ,.‘; woov |
result ", £74 cut-off fit
i }?.. | P |
'_"‘-nr.T!l'"-ﬁ‘.

i

| Actual cut-off
voltage fit |
I i, W : Voltage (V)|

20 40 o0 80 100 120
Ajir Compressor 3ph
Test & | . .
| result _,." "‘*"‘M-.--
"._I 4 Actual
'q‘;’ cut-off 100 W
F voltage fit  cut-off fit |
rd Voltage (V)
50 100 150 200

Reactive Power (VAr)

Reactive Power (VAr)  Reactive Power (VAr)

Reactive Power (VAr)

100 |

50 |

1400

1000

600

Television
4 Test 100 V

i
_-="" i result cut-off fit
Loem B N

Actual 3
cut-off 1

voltage fit

" —
[y

r
~ Voltage (V)
40 60 80 100 120

Projector
Actual cut-off '_i_ 100V
voltage fit 1 L‘l‘tl-al‘[f fit

Test % h * 2+
LY .
result : = i
Lomdecid et | Voltage (V)|
20 40 60 80 100 120
Refrigerator
Test A 100 V
cut-oft fit

:resu]t\;' i
=3

I §od
Actual cut-off !!;, \
voltage fit ¥ "%, -
xY H R S T

Vol

-~ 1 tage (V)

s O -

20 40 60 80 100 120
Air Compressor 3ph

Temt |
r‘[:::;L a" .‘ 100 vV - .
I ;i "t., cut-off fit
\_f ,‘:?.'_-L‘
¢ Actual e
Vi cut-off
_.»" voliage fit voltage (V)
50 100 150 200

Figure 3 from A, Bokhari, et. al.,
“Experimental Determination of the ZIP
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Application: Conservation Voltage Reduction (CVR)

Al
* If the “steady-state” load has a true dependence on voltage, then a
change (usually a reduction) in the voltage should result in a total

decrease in energy consumption

* Ifan “optimal” voltage could be determined, then this could result in a
net energy savings

* Some challenges are 1) the voltage profile across a feeder 1s not
constant, 2) the load composition 1s constantly changing, 3) a decrease
in power consumption might result in a decrease in useable output from
the load, and 4) loads are dynamic and an 1nitial decrease might be
balanced by a later increase
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Dynamic Load Response

As first reported 1n the below paper, following a change 1n voltage
there will be a dynamic load response
— Residential supply voltage should be between 114 and 126 V

If there 1s a heating v v e e
load the response R E
might be on the i .
order of ten minutes ’ o 'l: .
Longer term issues ; :
can also come into S A A
play Y — T oy s R ond

Useful paper and figure reference: D. Karlsson, D.J. Hill, “Modeling and Identification of Nonlinear
Dynamic Loads in Power Systems,” IEEE. Trans. on Power Systems, Feb 1994, pp. 157-166
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Determining a Metric to Voltage Collapse

Al
* The goal of much of the voltage stability work was to determine an easy
to calculate metric (or metrics) of the current operating point to voltage
collapse

— PV and QV curves (or some combination) can determine such a metric along a
particular path

w
o
o

Unsolvable region
No power flow solutions

— Goal was to have a path independent metric.
The closest boundary point was considered,
but this could be quite misleading
if the system was not going to
move in that direction "™ Realpowerload (i)

150 Solvable region
Two power flow solutions

-
o
o

Reactive power load (Mvar)
o
o

(=]

o

— Any linearization about the current operating point (i.e., the Jacobian) does not
consider important nonlinearities like generators hitting their reactive power limits

12




Assessing Voltage Margin Using PV and QV Curve
Analysis T

* A common method for assessing the distance in parameter space to
voltage instability (or an undesirable voltage profile) is to trace how
the voltage magnitudes vary as the system parameters (such as the
loads) are changed in a specified direction

— If the direction involves changing the real power (P) this is known as a PV
curve; if the change i1s with the reactive power (Q) then this is a QV curve

 PV/QV curve analysis can be generalized to any parameter change,
and can include the consideration of contingencies

13




PV and QV Analysis in PowerWorld

* Requires setting up what 1s known in PowerWorld as an injection group

— An injection group specifies a set of objects, such as generators and loads, that can
inject or absorb power

— Injection groups can be defined by selecting Case Information, Aggregation,
Injection Groups

* The PV and/or QV analysis then varies the injections in the injection
group, tracing out the PV curve

* This allows optional consideration of contingencies
* The PV tool can be displayed by selecting Add-Ons, PV

This has already been done in the Bus2 PV case

T
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PV and QV Analysis in PowerWorld:
Two Bus Example

* Setup page defines the source and sink and step size

[®) pv CURVES - o EEl ‘
v Setup Setup
- Common Options
~Injecton Group Rampl o Transfer power between the following two injection groups:
_—
Interface Ramping OF| | @) nsection Group Source/Sirk Source |Gen v| e lne e
Advanced Options 5 ——————————————————— View / Define Injection Groups
Quantities tn track O Interface MY Flow sink I T
- Limit violations *
By Source and Sin
QVsetup Common Options  Injection Group Ramping Options  Interface Ramping Options  Advanced Options
PV Results
P P'”‘SI Critical Scenarios D
Plot Designer .
_Plnmsﬁ:mm e Stop after finding at leasf] |21 oitical scenarios
. . .
Base Case and Contingendies
Elsepcnogerces — ptuonally contingencics
[[JRun base case to completion Base Case Solution Options ... .
Yyt ot ko can be considered
Initial Step Size (Mv 1|J.un-i =
Minimimum Step Size (MW): 2005 ‘
When convergence fails, SolE
reduce step by a factor of L= . *
e : Step sizes for tracin g the
< >
Save Ausiliary ... | |Load Auilary .. Launch QV curve tool .., P Hep | close
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PV and QV Analysis in PowerWorld:

Two Bus Example T

* The PV Results Page does the actual solution

— Plots can be defined to show the results
« This should be done beforehand

— Other Actions, Restore initial state restores the pre-study state

il e e € Option to restore initial state
== —
e - Click the Run button to run the
— Gl G il il ) MG G B PV analysis;
Check the Restore Initial State
on Completion of Run to restore
the pre-PV state (by default it 1s
not restored)

16




PV and QV Analysis in PowerWorld:
Two Bus Example

Z:: To restore the starting case,
o8] on the PV Results page
078 select Other Actions,

0.76—; Restore Initial State

0.74
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0.68 7| ' y Y T d ¥ J T ! ' y ! ¥ ' i ! ' ' ' ! ' ' '
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v

T
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PV and QV Analysis in PowerWorld:

37 Bus Example

T e
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Usually other limits also need to be considered in doing a realistic PV analysis;

example case 1s Bus37_PV
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Oscillations

T

* An oscillation 1s just a repetitive motion that can be
either undamped, positively damped (decaying with
time) or negatively damped (growing with time)

e [fthe oscillation can be written as a sinusoid then

e” (a cos(awt)+ bsin(a)t)) =e”Ccos(wt+0)

—b
where C =+ 4’ + B” and 6 = tan (7) The percent damping is just the
damping ratio multiplied by 100;
* The damping ratio is goal is sufficiently positive damping
—a
95 =
o’ +w’

19




Power System Oscillations

Al
* Power systems can experience a wide range of oscillations, ranging from
highly damped and high frequency switching transients to sustained low

frequency (< 2 Hz) inter-area oscillations affecting an entire interconnect

* Types of oscillations include
— Transients: Usually high frequency and highly damped
— Local plant: Usually from 1 to 5 Hz
— Inter-area oscillations: From 0.15 to 1 Hz
— Slower dynamics: Such as AGC, less than 0.15 Hz
— Subsynchronous resonance: 10 to 50 Hz (less than synchronous)

20




Example Oscillations

* The left graph shows an oscillation that was observed during a 1996
WECC Blackout, the right from the 8/14/2003 blackout
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References

AJp
 For the 1996 WECC blackout, more information 1s available at

— www.nerc.com/pa/rrm/ea/System%20Disturbance%20Reports%%20DL/1996System
Disturbance.pdf; the July 2, 1996 event was caused by a tree contact

* Charlie Concordia wrote a paper on electric grid oscillations in 1938

— C. Concordia, S. B. Crary, J.M. Lyons, Stability Characteristics of Turbine
Generators, AIEE Transactions, vol. 57, pp. 732-744, 1938.

* Thereis a 2021 NERC document on oscillations at
www.nerc.com/comm/PC/SMSResourcesDocuments/Interconnection Osc
illation Analysis.pdf
- Also see T.J. Overbye, S. Kunkolienkar, F. Safdarian, A. Birchfield, “On the

Existence of Dominant Inter-Area Oscillation Modes in the North American Eastern

Interconnect Stability Simulations”, 57th Hawaii International Conference on
: Tane ] narv-2024 (on-Overbve enc M1ad 22
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Modes

* A mode is a concept from linear system analysis

— Electric grids certainly are not linear, but usually their response to small
disturbances 1s approximated as linear

* A mode corresponds to one of the eigenvalues of the response or, for
oscillations, a complex pair of eigenvalues

* A mode has a frequency and damping; all parts of the system oscillate
with this pattern

* The mode shape tells how parts of the system participate in the mode

* There can be multiple modes in a system; power systems can have
many modes

T
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Causes of Power System Oscillations

Al
* The response of a simple system can be divided into 1its natural response
versus 1ts forced response

— The natural response tells how the system will response to an initial disturbance
without any additional (external) influences; this response shows the system’s modes

— A forced response 1s associated with an external disturbance; if the external
disturbance is periodic then the system will oscillate at least partially at this frequency

— Often forced oscillations are due to control failures

* Resonance occurs when a forced response 1s at a similar frequency to one
of the system’s modes

* An power system can experience both types of oscillations
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Forced Oscillations in WECC (from [1])

Summer 2013 24 hour data: 0.37 Hz oscillations observed for several
hours. Confirmed to be forced oscillations at a hydro plant from vortex
effect.

2014 data: Another 0.5 Hz oscillation also observed. Source points to
hydro unit as well. And 0.7 Hz. And 1.12 Hz. And 2 Hz.

Resonance possible when system modes are poorly damped and close to
the forcing function. Resonance can be observed in model simulations.

1. M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/24/3.%20Mani%200scillation%20Monitoring.pdf

T
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Observing Modes and Damping

T

* With the advent of wide-scale PMU deployments, the modes and dampinga

can be observed two ways
— Event (ringdown) analysis — this requires an event
— Ambient noise analysis — always available, but not as distinct

Ud

Thon MMy p A fir

024
Ambient Noise Analysis

<

014 0.4 Hz at +10% damping. Inter-Area Mode. |

Event
Analysis
0.4 Hz at +10% damping. Inter-Area Mode.
05:14:10 08:15:00 09:15:50 09:16:40

00

Image Source: M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/24/3.%20Mani%200scillation%20Monitoring.pdf
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Resonance with Interarea Mode [1]

* Resonance effect high when:
~ Forced oscillation frequency near system mode frequency
~ System mode poorly damped
~ Forced oscillation location near the two distant ends of mode

» Resonance effect medium when

— Some conditions hold

e Resonance effect small when
— None of the conditions holds

1. M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/24/3.%20Mani%200scillation%20Monitoring.pdf

T
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Medium Resonance on 11/29/2005

CPJK-Olinda MW

-200
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Miagnitude

0000700 000180 000320 000500 00105240 010820 0010700 0014 201320
Tims | sac)

e 20 MW 0.26 Hz Forced Oscillation in Alberta Canada
* 200 MW Oscillations on California-Oregon Inter-tie

* System mode 0.27 Hz at 8% damping

 Two out of the three conditions were true.

1. M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/24/3.%20Mani%200scillation%20Monitoring.pdf

T
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An On-line Oscillation Detection Tool

T
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Image source: WECC Joint Synchronized Information Subcommittee Report, October 2013
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