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Announcements

* Read Chapter 8
 Homework 6 1s due on Tuesday Nov 21
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Small Signal Stability Analysis

Al
* Small signal stability 1s the ability of the power system to maintain
synchronism following a small disturbance

— System 1s continually subject to small disturbances, such as changes in the load
* The operating equilibrium point (EP) obviously must be stable

* Small system stability analysis (SSA) is studied to get a feel for how close
the system 1s to losing stability and to get additional insight into the
system response
~ There must be positive damping




Model Based SSA

Assume the power system i1s modeled in our standard form as
x=f(x,y)
0=g(xy)

The system can be linearized about an equilibrium point

Ax = AAx + BAy If there are just classical generator

0 = CAx + DAy models then D is the power flow
Jacobian; otherwise it also includes

Eliminating Ay gives the stator algebraic equations

Ax=(A-BD'C)Ax=A_ Ax
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Modal Analysis - Comments

Al
* The matrix A, can be calculated doing a partial factorization, just like what
is done with Kron reduction in creating power system equivalents

* SSA 1s done by looking at the eigenvalues (and other properties) of ASys

* Modal analysis (analysis of small signal stability through eigenvalue

analysis) 1s at the core of SSA software

Goal is to determine how the
various parameters affect the
response of the system

* In Modal Analysis one looks at:
— Eigenvalues, Eigenvectors (left or right)

— Participation factors
— Mode shape

* Power System Stabilizer (PSS) design in a multi-machine context can be
done using the modal analysis method.




Eigenvalues, Right Eigenvectors

T

For an n by n matrix A the eigenvalues of A are the roots of the
characteristic equation:

det[A - AI]=|A-AI|=0

* Assume A,...A, as distinct (no repeated eigenvalues).

* For each eigenvalue A, there exists an eigenvector such that:
Av, = AV,

* v.is called a right eigenvector

* If A, 1s complex, then v, has complex entries




Left Eigenvectors, Eigenvector Properties

T

* For each eigenvalue A, there exists a left eigenvector w; such that:

WA=wA1
« Equivalently, the left eigenvector is the right eigenvector of A'; that is,
A'w, = 4w,

* The right and left eigenvectors are orthogonal 1.e.

t to. : :
WZ.VZ.?’—'O,WI.VJ.—O (i+#]J)

* We can normalize the eigenvectors so that:

wv. =1, wv. =0 ({i#]))




Eigenvector Example

2-4

3+4(3)° +4(10) _3+4/49
2 2

1 4
A= ,

A*=31-10=0= 4, =

-1 4
A-A|=0 = ; =0

=5,-2

Right Eigenvectors 4, =5

v V.. +4v, =5y choose v,, =1=v,, =1
11 11 21 11
AV1=5VII>V1=|: }:

vy, v, +2v,, =5v, v - {1}
=

Similarly,

4
222—2:>V2=|: 3}




Eigenvector Example

* Left eigenvectors | 4
A=5SWA=w5=[w, wﬂ]{3 2} =5[w, wy]

4w, +2w,, =5w,,

R
L

Verify wiv, =7, wov, =7, wov, =0, w,v, =0
We would like to make w'v, =1.

This can be done in many ways.




Eigenvector Example

113 1
Let W =—
4 -1

Then W'V =1

Lo 1[3 4] 4] [1 o
A/ PR PR bl

e [t can be verified that WI=V-1

* The left and right eigenvectors are used in
computing the participation factor matrix.
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Modal Matrices

The deviation away from an equilibrium point can be defined as

AX = AAX

From this equation it 1s difficult to determine how parameters in A affect a
particular x because of the variable coupling

To decouple the problem first define the matrices of the right and left
eigenvectors (the modal matrices)

V represents the right
eigenvectors

T
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Modal Matrices

* It follows that
V'AV = A
* To decouple the variables define z so
Ax=Vz > Ax=Vz=AAx=AVz
 Then
2=V 'AVz=WAVz = Az

* Since A 1s diagonal, the equations

are now uncoupled with
z, = Az,

* SO0 Ax(?)=Vz(?)

T

Example
1 4
A=
3 2
(1 4
V=
1 -3
; 5 0
V7AV =
0 2
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Modal Matrices

* Thus the response can be written in terms of the individual eigenvalues
and right eigenvectors as

Note, we are requiring
that the eigenvalues be
distinct!

Ax(t) =) v,z,(0)e™
i=1

e Furthermore with
Ax=VZ = z=V 'x=W'x

* So z(t) can be written as using the left eigenvectors as

X, (1) ]

z(t) = Wx(t)=[w, w,...w |

| x, (1) ]

T
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Modal Matrices

T

* We can then write the response x(t) in terms of the modes of the system
z,(t) = w,/ x(t)
z,(0) = wix(0)Ac,
so x(t) =Y v,ce™
i=1
Expanding Ax. (t) =v,c,e’ +v.,c,e™ +..v. c e™

 So ¢, is a scalar that represents the magnitude of excitation of the i'" mode
from the initial conditions

13




Numerical example

M W

Figenvalues are A, =—4, 4, =2

| 1
Figenvectors are v, z{ } , V, z{ }

1 1
Modal matrix V =
—4 2

0.2425 0.4472}

Normalize so V =
—0.9701 0.8944

T

Left eigenvector matrix is:
W v — 1.3745 —-0.6872
- 1.4908 03727

z=W'AVz

MmN
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Numerical example (contd)

z=—4z, , 2(0)=V"x(0)

-, [mO]_[4123
R EXC)

4t 2t T 4.123
z,(t)=z,0)e" ; z,(t)=z,(0)e”",C=W X(0)=|: 0 }

x=Vz Because of the initial condition,
x, (1) _ I 1|l z/(2) the 2" mode does not get excited
ol 2o,
0.2425 0.4472 2 1
= ¢ |:_0.9701} z,(H)+c, {0.8944} z,()= ;Civizi(o)e l

T
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Mode Shape, Sensitivity and Participation Factors

T

So we have
x(1)=Vz(t), z(t)=W'x(?)

* Xx(t) are the original state variables, z(t) are the transformed
variables so that each variable is associated with only one mode.

* From the first equation the right eigenvector gives the “mode
shape™ 1.e. relative activity of state variables when a particular
mode 1s excited.

* For example the degree of activity of the state variable x, 1n the v,
mode 1s given by the element V,. of the right eigenvector matrix V

16




Mode Shape, Sensitivity and Participation Factors

T

The magnitude of elements of v, give the extent of activities of » state
variables in the i mode and angles of elements (if complex) give phase
displacements of the state variables with regard to the mode.

The left eigenvector w. identifies which combination of original state
variables display only the i™* mode.

17




Eigenvalue Parameter Sensitivity

T

To derive the sensitivity of the eigenvalues to the parameters recall Av, =
Av;; take the partial derivative with respect to Ay; by using the chain rule

OA ov, OA oV,
V,+A—=—=V, + A4 —
OA 04, 04, OA,.

g

Multiply by w;

. OA . OV, . O
W, V.+WA—-=Ww, V. +w. A
GAkj GAkj 8Akj aAkj

' OA vV, + W, [A—-AI] oV, =W, oA v,
oA, o4, ' o4,

J

W

i
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Eigenvalue Parameter Sensitivity

This is simplified by noting that w;(A —41) =0
by the definition of w. being a left eigenvector

Therefore

. 0A oA

1

W, vV,
0A,; 0A,;

Since all elements of %A are zero, except the k™ row, j column is 1

0A,;
e Thus
aﬂvi — WkiV'i
oA, f

T
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Sensitivity Example

* In the previous example we had

1 4 1 4 1[3 1
A= , A,=5-2, V= , W==
3 2 ™ 1 -3 704 -1

* Then the sensitivity of A, and A, to changes in A are

oA, on _1[3 3] a4, 1[4 -3
:VVkiI/]l s - —
oA, 0A 7|4 4 oA 7|4 3

A 1 4 R
* For example with A {3 3 J A, =5.057,-1.957
i Or lf A 1 4 )
A= , =5.61,—-1.61,
is 3i A

|

T
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Participation Factors

* The participation factors, P, ., are used to determine how much the k™ state
variable participates in the i mode

B, =V.W,

* The sum of the participation factors for any mode or any variable sum to 1

* The participation factors are quite useful in relating the eigenvalues to
portions of a model

* For the previous example with P,. = V,. W, _and

LRI L P—l34
320 |1 =3 74 ' 704 3

T
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SSA Two Generator Example

* Consider the two bus, two classical generator system from lectures 18
and 20 with X,,'=0.3, H,=3.0, X ;,'=0.2, H,=6.0

GENCLS  Bus 1 GENCLS

11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

* Essentially everything needed to calculate the A, B, C and D matrices
was covered in lecture 15

T
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SSA Two Generator Example

* The A matrix is calculated differentiating f(x,y) with respect to x
(where x 1s 0, A®,, 0,, Aw,)

dAZLP“ =3 []{ ] (P, - P, -DAw,,)
% =Aw, o)
dAzz’p” = ;I 2 (P, = P:, - DAw, )

P :(Ef)i _EDiVDi) G, +(Eéi —EQiVQ,-) G +(EDiVQi _EQiVDi)Bi
E, + jE, =E/(cos5, + jsind,)

T
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SSA Two Generator Example

* @Giving

* B, C and D are as calculated previously for the implicit integration,

0
—-0.761
0
0

376.99
0
0
0

0 0

0 0

0 376.99
—0.389 0

except the elements in B are not multiplied by At/2

B=

0

0

-0.2889 0.6505

0
0

0
0

0 0

0 0

0 0
0.0833 0.3893 |

T

24




SSA Two Generator Example

The C and D matrices are

[-3.903 0 0 0]
C_ ~1.733 0 0 0
0 0 -4671 0/

0 0 10 0
Giving

A, =A-BD'C=

0

0
| 4.54

0
—-0.229
0

0.114

7.88

~7.88 0

—4.54
0

376.99
0
0
0

0
4.54
0
—-9.54

0
0.229
0
—-0.114

—4.54 ]

9.54

0

0
376.99

0

T
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SSA Two Generator

* (alculating the eigenvalues gives a complex pair and two zero
eigenvalues

* The complex pair, with values of +/- 111.39 corresponds to the
generators oscillating against each other at 1.81 Hz

* One of the zero eigenvalues corresponds to the lack of an angle
reference

— Could be rectified by redefining angles to be with respect to a reference angle (see
book 226) or we just live with the zero

* Other zero 1s associated with lack of speed dependence in the generator
torques

T
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SSA Two Generator Speeds

Al
* The two generator system response is shown below for a small
disturbance

Rt VR VN VO | R | VR i Notice the actual
60.4E l l l \ \
035 I response closely matches
62.02; IA\ /A‘ / \ ﬁ /A\ ]A‘ ]A\ [A\ the CaICUIated frequency
sosd LA LA L [i] LD [] RIIRVA
o g |/ [0 A A A
522251 A VO O A A A O VLN
g |1 N | [
075 \/ \/ \/ \/ \/ \J \ |
e |
59.55E l ’ \ ‘
S N | I \ ) | A A VA
f — L\ : — y v _ vV VvV .V

||7 —— Speed, Gen Bus 1#1 [v —— Speed, Gen Bus 2 #1 I 27




SSA Three Generator Example

* The two generator system 1s extended to three generators with
the third generator having H; of 8 and X;;'=0.3

GENCLS BUSl X=0.2 Buls;2 GENCLS

T
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SSA Three Generator Example

* Using SSA, two frequencies are 1dentified: one at 2.02 Hz and

one at 1.51 Hz

1.0012

1.0010

1.0008

1.0006

1.0004

1.0002]

1.0000]

0.9998

0.9996

1.0018
1.0016
1.0014

|

0.9994

U

<

0

T
0.5

1

T
1.5

2

T
25

3

T
3.5

4

||7 — Speed_Gen Bus 1#1 [v — Speed_Gen Bus 2#1 [v — Speed_Gen 3

#1'

T
4.5

The oscillation 1s started with
a short, self-clearing fault

Shortly we’ll discuss modal analysis
to determine the contribution of each
mode to each signal

PowerWorld case
B2 CLS 3Gen_ SSA

T
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Large System Studies

AlM
* The challenge with large systems, which could have more than 100,000 v
states, 1s the shear size
~ Most eigenvalues are associated with the local plants
~ Computing all the eigenvalues is computationally challenging, order n?
* Specialized approaches can be used to calculate particular eigenvalues of
large matrices
— See Kundur, Section 12.8 and associated references

30




Single Machine Infinite Bus

A quite useful analysis technique is to consider the small signal stability
associated with a single generator connected to the rest of the system
through an equivalent transmission line

Driving point impedance looking into the system 1s used to calculate the
equivalent line's impedance
~ The Z; value can be calculated quite quickly using sparse vector methods

Rest of the system 1s assumed to be an infinite bus with its voltage set to
match the generator's real and reactive power injection and voltage

T
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Small SMIB Example

* As asmall example, consider the 4 bus system shown below, 1n
which bus 2 really is an infinite bus

Bus 1

X=0.2

Bus 2

GENCLS Bus4 [PEB>>>>>>>> > W3 . . o

X=0.1
@)g 523

11.59 Deg
1.0946 pu

6.59 Deg
1.046 pu

=0,

Bus 3

4.46 Deg

1.029 pu

,

0.00 Deg
1.000 pu

* To get the SMIB for bus 4, first calculate Z,,

)Ibus :j

=25

0
10
10

0

1
0
0

10
0
—-15
0

10
0
0

~13.33 |

> Z,, = j0.1269

Z 44 18 Z 4, 1n parallel
with jX'; 4 (Which 1s
10.3) so Z, 15 j0.22

T
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Small SMIB Example

* The infinite bus voltage 1s then calculated so as to match the bus 1
terminal voltage and current

— While this was demonstrated
V..=V.-Z1
" ) on an extremely small system
P+ jO. — for clarity, the approach works
where | —=—| =1, :
, l the same for any size system

* In the example we have
P+jo,) [ 1+j0.572
v, 1.072+ j0.220
Ve =(1.072+ j0.220)—(j0.22) (1~ j0.328)
V.. =1.0

m

j =1-j0.328

T
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Calculating the A Matrix

 The SMIB model A matrix can then be calculated either analytically or
numerically
— The equivalent line's impedance can be embedded in the generator model so the
infinite bus looks like the "terminal"
* This matrix is calculated in PowerWorld by selecting Transient
Stability, SMIB Eigenvalues
— Select Run SMIB to perform an SMIB analysis for all the generators in a case

— Right click on a generator on the SMIB form and select Show SMIB to see the
Generator SMIB FEigenvalue Dialog

— These two bus equivalent networks can also be saved, which can be quite useful
for understanding the behavior of individual generators

T
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Example: Bus 4 SMIB Dialog

T

On the SMIB dialog, the General Information tab shows information
about the two bus equivalent

Generator SMIB Eigenvalue Information

Bus Mumber £ - %
Bus Mame  Bus 4 -
w1

Ein_er_a_tgr_ln_fomaﬁnn {on Generator MVA Base)
General Info | A Matrix | Eigenvaluesl

Find By Mumber Status

s Ope (@) Closad
| Find By Name | i e

Find < | Area Name Home (1)

Generator MVA Base  100.000
Infinite Bus Voltage Magnitude {pu)  1.0000
Terminal Current Magnitude (pu) 1.0525

Terminal Voltage Magnitude {pu) 10946
Metwork Impedance on Generator MVA Base

Infinite Bus Angle {deg) -0.0000
Terminal Current Angle {deg) -18,193
Terminal Voltage Angle {deg) 115542

Metwork Impedance on System MVA Base

Metwork R {Gen Base) 0.00000 Metwork R (System Base) 0.00000
Metwork X {Gen Base) 0.22000 Metwork X (System Base) 0.22000
I \/ oK | | Save | I x Cancel | ‘ ? Help I [ Print

PowerWorld
case B4 SMIB
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Example: Bus 4 SMIB Dialog

AlF
* On the SMIB dialog, the A Matrix tab shows the A matrix for the
SMIB generator

Q Generator SMIB Eigenvalue Information P = D
Bus Mumber 4 = [ Find By Mumber Status
Bus Mame  Bus 4 + | Find By Name | Open 2] Closed

D i Find <., | Area Mame Home (1)

Generator Information {on Generator MVA Basze)

Generz;i-l-n_go_-; A Matrix E_-I_E-i-gmvalues

% A %58 92 | B ?&D Records = Setr Columns = " “.E" "gE* v E‘:’Ev fl‘%%; flxg -~ EH - |
Raw MName Machine Angle ‘Mad‘nine Speed ‘ [
w
1Machine Angle 0,0000 376,9911
2 |Machine Speed w -0.3753 0.0000

* In this example A,, 1s showing

OA —OP, _
Dt.pu — 1 E4 | = —(ij ( ! j(—].2812 cos(23.94°))
00, 2H,\ 00, 6 0.3+0.22

=—0.3753
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Example: Bus 4 with GENROU

* The eigenvalues can be calculated for any set of generator models

* This example replaces the bus 4 generator classical machine with a
GENROU model

— There are now six eigenvalues, with the dominate response coming from the
electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

Generator Information {on Generator MVA Base)

General Info A Matrix  Eigenvalues

= ORT, 0 . 24 = ] AL [ B EORT .
BHH "'||" _.;.3 +':'_3 R ?&D Records * 5Set~ Columns = " E' "&E* . o %* Lt g @ Options =

Real Part Imag Part ‘ Magnitude Damping Ratio | Damped Freq |Damped Period |Undamped Freq
{Hz) [Seq) Hz)

1 -21.2472 0.0000 21.2472 1.0000 00000 3.3816
2 -0.3040 11.5563 11.5842 00654 1.8392 0.5437 1.8437
3 -0.8040 -11.5563 11,5842 00694 -1.8392 -0,5437 1.8437
4 -14,2256 0.0000 14,2256 1.0000 0.0000 2.2641
5 -3, 7087 00000 3.7087 1.0000 00000 0.5903
& 04248 0.0000 04242 10000 0.0000 0.06TE

PowerWorld case B4 GENROU_Sat SMIB

AP
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Example: Bus 4 with GENROU Model and Exciter

Al
* Adding an relatively slow EXST1 exciter adds additional states (with
K,=200, T,=0.2)

— As the initial reactive power output of the generator is decreased, the system becomes
unstable (below example is with a generator reactive power output of 0 Mvar)

General Info A Matrix  Eigenvalues

% Ale 40 00 f&n Recards = Set~ Columns = * H.E* H&E* T %* i%?g; fig - B Options =
Real Part W Imag Part Magnitude Damping Ratic | Damped Freq | Damped Period [Undamped Freq | Mz
‘ [Hz) [5eq] [Hz)

1 0.2704 -9.5336 9.5374 -0.0283 -1.5173 -0.65591 1.5179
2 0.2704 9.5336 8.5374 0.0283 1.5173 0.6591 1.5179
3 -1.0000 0.0000 1.0000 1.0000 0.0000 0.1592
4 -3.0137 0.0000 3.0137 1.0000 0.0000 0.4796
] -3.6849 -6.4281 7.4054 0.4973 -1.0231 0.9775 1.1792
] -3.6845 &.4281 74084 0.4573 1.0231 0.9775 1.1782
v -14.4234 0.0000 14.4234 1.0000 0.0000 2.2956
i -21.65978 0.0000 21.6973 1.0000 0.0000 3.4533

PowerWorld case B4 GENROU Sat SMIB QZero 38




Example: Bus 4 with

GENROU Model and Exciter

The below 1mage shows the system response to a brief bus 4 self-

clearing fault

90
88;
se—f
84;
82;
so—f
78;
76;
74%
72—f
7o—f

66
641
62

68]

60

VRN
| || .
U
MaAARARARA
= ForA cm o ]

T
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Example: Bus 4 with GENROU Model and Exciter

factors for the various states in the modes

The remainder of the Eigenvalues page shows the participation

Generator SMIB Eigenvalue Information — O b o
Bus Number (4 - Find By Number Status
BusMame |(Bus 4 e Find By Name Cpen =
D (1 Find ... Area Name |Home (1)
Generator Information (on Generator MVA Base)
General Info A Matrix  Eigenvalues
T By Ak %0 % @R #8 Records~ set~ Columns~ By B LE-
Real Part W Imag Part Magnitude Damping Ratio | Damped Freq | Damped Pericd |Undamped Freq | Machine Angle | Machine Speed | Machine Eqp Machine PsiDp |Machine PsiQpp | Machine Edp Exciter EField Exciter VF
[Hz) [5ec] H w before limit
1 0.2704 -9.5336 9.5374 -0.0283 -1.5173 -0.6591 1.5179 0.6920 0.6810 0.1642 0.0250 0.0137 0.0139 0.1714 0.0000
2 0.2704 9.5336 9.5374 -0.0283 1.5173 0.6591 1.5179 0.6920 0.6810 01642 0.0250 0.0137 0.0139 01714 0.0000
o -1,0000 0.0000 1.0000 1.0000 0.0000 0.1592 0.0000 0.0000 0.0000 0.0000 0.0000| 0.0000 0.0000 1.0000
4 -3.0137 0.0000 3.0137 1.0000 0.0000 0.4756 0.0071 0.0098 0.0573 0.0011 0.1263 0.9865 0.0865 0.0000
5 -3.6849 -6.4281 7.4054 04973 -1.0231 -0.9775 11792 01643 01764 0.6454 0.0534 0.0350 0.0964 0.7120 0.0000
6 -3.684% 64281 7.4054 04973 1.0231 0.9775 1.1792 01643 0.1764 06494 0.0534 0.0350 0.0964 0.7120 0.0000
7 -14.4234 0.0000 14.4234 1.0000 0.0000 2.2856 0.0054 0.0043 0.0219 0.9995 0.0013 0.0028 0.0226 0.0000
8 -21.6978 0.0000 21.6978 1.0000 0.0000 3.4533 0.0030 0.0037 0.0009 0.0006 0.9971 0.0762 0.0011 0.0000
\/ O Save x Cancel ? Help Print

A|M

®

40




SMIB Eigenvalues for TSGC_2000 Case

A|M

®

All the SMIB eigenvalues can be calculated quickly even for
relatively large grids

Transient Stability Analysis

Simlation Status [Inibisized

Run Transient Stability

For Contingency:

Find | Tornado

Select Step M "
Simulation
Options Run SMIB Eigen Analysis Re-Tnitialize Eigenvalue Analysis Last Run: \ 11/8/2021 4:58:07 PM ‘
Result Storage: e o i
Plots & Bl 2% 0% Records » Set~ Columns > Wh W P B % - B Options -
Result Analyzer - Damping Number of Bus | Mameof Bus | 1D | MvABase | AreaNameof |  Machine Exciter Governor Stabilizer |Calculate] Number of |Number of Zero| Min Eigenvalue | Max Eigenvalue | Swing Equation| Swing Equation|Swing Equation] ~
Rl B RAM Eigenvalues | Eigervalues Freq. (H2) Damping D Equivalent
L, 1 1004 O DONNELLT1 1 253.2 Far West VES 9 0 02258 28,833 0.0000 0.0000 0.0000 -
st Gontrel 2 1006 BIG SPRING 51 1 41.2 Far West VES 9 0 01842 49,9543 0,0000 0.0000 0.0000 -
2 3 1009 IRAAN 2 1 1 99.0 Far West ¥ES 9 0 0.2436 49,5203 0.0000 0.0000 0.0000 -
ettt 4] 1011 PRESIDIO 11 1 12.0 Far West YES 0 0 0.0000 0.0000 0.0000 0.0000 0.0000
1+ SMIB Eigenvalues 5 1021 BIG SPRING 11 1 239.4 Far West VES 9 0 0.2693 43,8987 0.0000 £,0000 0.0000 -
-Modal Analysis 5 1023 O DONMELL2 1 1 216.0 Far West VES 9 0 02793 49,8853 0,0000 0.0000 0.0000 -
Dynamic Simulator Options 7 1026 BIG SPRINGS 1 1 143.0 Far West O VES 9 0 0.2736 43,5928 0.0000 0.0000 0.0000 -
8 1033 MCCAMEY 11 1 3336 FarWest VES 9 0 -0.2110 49,5407 0.0000 0,0000 0.0000 <
9 1035 BIG SPRING 41 1 108.0 Far West VES 9 0 0.2462 43,3185 0.0000 £,0000 0.0000 -
10 1039 FORT STOCKTOI 177.0 Far West VES 9 0 -0.2692 49,5992 0.0000 0.0000 0.0000 -
12| 1043 FORSAN 2 1 70.6 Far West VES 9 0 -0.2235 49,3335 0.0000 0,0000 0.0000 <
15| 1050 MONAHANS 13 1 107.3 Far West YES 20 1 20,0015 77,1569 18102 0.0643 8.4396
i 1051 MONAHANS 14 1 1073 Far West ¥ES 2 1 0.0818 768490 0.9537 00733 13,6859 0
17 1052 MONAHANS 15 1 1073 Far West VES 20 1 -0.0830 769891 1.1103 0.0620 13.8306 0
24 1066 BIG SPRING 31 1 1710 Far West YES 9 0 0.2728 43,5339 0.0000 0,0000 0.0000 ~
25 1070 IRAAN 11 1 1926 Far West VES 9 0 -0.2670 49,5965 0.0000 0,0000 0.0000 -
26 1072 ODESSAT1 1 2306 Far West GGOVT VES 20 1 01053 64,1893 06171 06281 69,8414 €
Fri 1073 ODESSA1Z 1 230.6 Far West G VES 20 1 -0.1350 -63.4621 85123 06088 799.2446 0
28 1074 ODESSA13 1 2306 Far West G VES 20 1 0.0812 48,4635 0.5445 0.7105 66,8468 €
23| 1075 ODESSA 14 1 230.6 Far west G VES 20 1 20,0478 73,8551 0.5988 0.7503 535653 0
30 1076 ODESSA15 1 230,6 Far West G VES 20 1 20,0315 54,6018 13,1315 04923 942,291 €
3 1077 ODESSA16 1 230.6 Far West GGoV1 VES 20 1 01454 56,7124 0.8590 05193 616237 0
37 1078 ODESSA1T 1 114.6 Far West GGOV1 VES 20 1 -0.0932 -53.9516 06988 06303 99.7896 0
EE] 1079 ODESSA1E 1 11456 Far West G VES 23 1 -0,0081 728229 18024 03274 577561 0
G
55) 1081 ODESSA 110 1 3438 Far West ES 20 1 -0.2000 77,2607 9.2208 05061 8159991 ¢
35 1082 FORT STOCKTOI | 180.0 Far West VES 9 [ -0.2453 499189 0.0000 £.0000 0.0000 -
e 57 1084 BIG SPRING 20 1 1386 Far West VES 9 0 01882 43,3505 0.0000 £,0000 0.0000 -
2 38 1088 MCCAMEY20 1 90.0 Far West VES 9 0 -0.2307 49,9269 0.0000 0.0000 0.0000 -
(® One Contngency at a time 20l 100N CAINCAITHA 1 1830 Earlfact vEC a n n 82 40 0700 nnonn nannn nnnan
(O Multiple Contingendies < >
Save Al Settings To Load All Settings From Show Transient Contour Toobar | | AutoInsert.., | | Critical Clearing Tme Calculator... Help Close
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Saving a Two Bus Equivalent

Al
PowerWorld makes it easy to save a two bus equivalent from the SMIB
Eigenvalues page

~ Right-click and select Save Two Bus Equivalent

As the name 1mplies, the two bus equivalent 1s the generator connected to
an infinite bus through its driving point impedance

Two bus equivalents provide a convenient way to track down at least some
causes of instability 1ssues
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Small Signal Analysis and
Measurement-Based Modal Analysis

Small signal analysis has been used for decades to determine power
system frequency response

— It is a model-based approach that considers the properties of a power system,
linearized about an operating point

Measurement-based modal analysis determines the observed dynamic
properties of a system

— Input can either be measurements from devices (such as PMUSs) or dynamic
simulation results

~ The same approach can be used regardless of the measurement source

Focus in this section 1s on the measurement-based approach

T

43




Ring-down Modal Analysis

Ring-down analysis seeks to determine the frequency and damping
of key power system modes following some disturbance

There are several different techniques, with the Prony approach the
oldest (from 1795); introduced into power in 1990 by Hauer,
Demeure and Scharf

Regardless of technique, the goal 1s to represent the response of a
sampled signal as a set of exponentially damped sinusoidals (modes)

q
() = Z Aieait COS (Cf),f +9 ) Damping (%) = % 100
i=1 N AR

AP
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Goal: Extracting Modes from the Signals

Al
* The goal is to gain information about the electric grid by extracting
modal information from its signals

— The frequency and damping of the modes 1s key
* The premise is we’ll be able to reproduce a complex signal, over a
period of time, as a set a of sinusoidal modes

— We’ll also allow for linear

detrending
0.1t + cos(2m2t)
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Example: Summation of Two Damped Exponentials

Al
* This example was created
by going from the modes to

P—— R T
plot %% ¥ cos(10x)+e 1% cos(8.5 X + g)

a signal or
* We’ll be going in the
opposite direction (1.e., 10 H .
. ‘ 1 |
from a measured signal to ' Hl N "| n
0548 | ' R
the modes) H A || .1' "| | A \ho
| \ | f\ | ||| ‘rl\ AWANAVARAW,
| . ‘.1 444 | l:..l.l f 1 \ $ LA \
1 ‘ ‘ b \ | { L " |Jn§ [\ |f F1IRY, ‘U' '-J'J "v-lll‘L;' l",'r 1‘.‘”‘“! |
IRARNIAAEAR RS A
" [ | l' | l\,I' U
1.0 | || | l‘ v
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Some Reasonable Expectations

* Verifiable to show how well the modes match the
original signal(s)
—- We’ll show this

* Flexible to handle between one and many signals

—- We’ll go up to simultaneously considering 40,000 signals

e Fast

— What is presented will be, with a discussion of the
computational scaling

* Easy to use

— This 1s software implementation specific; results shown here
were done using the modal analysis tool integrated into
PowerWorld Simulator (version 22)

T
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Example: One Signal

This could be any signal; image shows the result of the original

signal (blue) and the reproduced signal (red) —

X
StartTime Used End Time Used  Time Window |e=alls==s gl |
3.000000 10.000000
| | | | Contingency |My Transient Contingency |
Object [Gen 'Bus1_16.50''1 |
Field |T‘55peed |
Statistics  Modes and Damping | Ohject Fields
Undamped Modes A (constant) B ({linear) C (quadratic)
0 Trend | 1oo| | o.0000617| | 0.0]
= % At 00 3y ?&n Records v Set v Columns * ' %’E' "&:‘,’E' o fg v B options ~
Modes f\.:ur Selected .Slgnal Lip 1.0012
Mode Magnitude|Magnitude| Angle Rank Mode |Mode Mode 1.001
Include End Frequency |Damping Lambda :
Reproduce| 1.0008
1 0.00166 0.0000643 111.15 4113 0171 39.67 -0.465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0006
3| YES 0.00097 0.0000488 69.05 240 1.364 4,83 -0.427 10004
4[YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 2
5 o~ 0.0000223 3000000445 -59.64 0.553 2.017 6.99 -0.888 1.0002
1
0.9958
0.9996
0.5554
3 4 5 & 7 8 9 10

|¥ — Raw Signal ¥ == Reproduced Signal

OK Cancel

A|M

®
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Verification: Linear Tren

d Line Only

Result Analysis Signal

O X
StartTime Used  End Time Used  Time Window |Gen Speed 3- 10 |
| 3'000000| | R Contingency |My Transient Contingency |
Object |Gen Bus1_16.50''1 |
Field |T‘SSpeed |
Statistics  Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)
0 Trend | 1oo||  0.0000817] | 0.0]
BT % A D 0| g ?&n Records + Set v Columns « ' '%“E' '}%’ﬁl’;v g~ B Options +
-Modes f\.:ur Selected .Signal Update 10012
Mode Magnitude|Magnitude| Angle Rank Mode [Mode Maode 1,001
Include End Frequency |Damping Lambda :
Reproduce| 1.0008
i o~ 000166 0.0000643 111.15 41,13 0171 39.67 -0.465
2 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0006
3 0.00097 0.0000438 69.05 24.01 1364 4,98 -0.427 1.0004
4 0.0000167  0.000243 -180.00 6.02 0.000 -100.00 0.383 :
5 0,0000223 000000445 -59.64 0,553 2,017 699  -0.888 1.0002
1
0.9998
0.9996
0.99%4
4 5 & 7
¥ — Raw Signal [¥ == Reproduced Signal
Cancel

A|M

®
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Verification: Linear Tren

d Line + One Mode

Result Analysis Signal

StartTime Used  End Time Used  Time Window |Gen Speed 3- 10

| s.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen Bus1_16.50''1

Field |T‘SSpeed

Statistics  Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)
0 Trend | 1oo||  0.0000817] | 0.0]
_j = % ‘>||" fg'g ;0_8 tit‘fg ?&n Records * Set r Columns = ' '%“E' '}%’jﬁ;v
Modes for Selected Signal

iy ~ ﬁ Options ~

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode [Mode Maode 1,001
Include End Frequency |Damping Lambda :

Reproduce| 1.0008

TPVES o~ 000166 0.0000643 111.15 41,13 0171 39.67 -0.465

2 0.00114 0.0000256 0.00 28.28 0000 10000  -0543 Ll

J| MO 0.00097 0.0000438 69.05 24.01 1364 4,98 -0.427 1.0004
41N 0.0000167  0.000243 -180.00 6.02 0.000 -100.00 0.383 ’

5|NC 0.0000223 X000000445 -59.64 0,553 2017 68,99 -0.888 1.0002

1

0.9958

0.99%6

0.9994

4 5 6 7 3 9 10

¥ — Raw Signal [¥ == Reproduced Signal

OK Cancel

A|M

®
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Verification: Linear Trend Line + T

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10

| 3.000000] | 10.000000

Contingency |My Transient Contingency

Object [Gen 'Bus1_16.50''1

Field |T‘55peed

Statistics  Modes and Damping | Ohject Fields

Undamped Modes A (constant) B ({linear) C (quadratic)

Trend | 1oo| | o.0000617| |

0.0]

0 3% | % ?&n Records v Set = Columns v

Al
o e

Modes for Selected Signal Uipdat Auto
Mode Magnitude|Magnitude| Angle Rank Mode |Mode Mode
Include End Frequency |Damping Lambda
Reproduce|

0.00166 0.0000643 111.15 4113 0171 39.67 -0.465

o 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543

O 0.00097 0.0000488 69.05 240 1.364 4,83 -0.427
0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383

0.0000223 000000445 -59.64 0.553 2.017 6.99 -0.888

fix) ~ ﬁ Options *

1.0012

1.001

1.0008

1.0006

1.0004

E & 7

|¥ — Raw Signal ¥ == Reproduced Signal

Cancel

A|M

®
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Verification: Linear

Trend Line + Three Modes

Result Analysis Signal

StartTime Used  End Time Used  Time Window |Gen Speed 3- 10

| s.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen Bus1_16.50''1

Field |T‘SSpeed

Statistics  Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)
0 Trend | 1oo||  0.0000817] | 0.0
= = % ‘>||" fg'g ;0_8 uit‘ﬁg ?&n Records * Set  Columns * | '%“E' '}%’jﬁ;v
Modes for Selected Signal

Mode Magnitude|Magnitude| Angle Rank Mode [Mode

- f;%ﬁ g~ B Options +

Include End Frequency |Damping
Reproduce|
0.00166 0.0000643 111.15 41,13 0171 39.67
0.00114 0.0000256 0.00 28.28 0.000 100.00
0.00097 0.0000488 69.05 240 1364 4,93
ol 0.0000167 0.000243 -180.00 6.02 0.000 -100.00
0.0000223 000000445 -59.64 0.553 207 6,99

Mauto o012
Maode
1.001
Lambda

1.0008

-0.465
_0.543 1.0006

-0.427
0.383 1.0004
0.888 1.0002
1
0.9998
0.9896
0.9884

3 4 5 6 7 3 9 10

¥ — Raw Signal [¥ == Reproduced Signal

OK Cancel

A|M

®
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Verification: Linear Tren

dLine+F

our Modes

Result Analysis Signal = O bt
StartTime Used  End Time Used  Time Window |Gen Speed 3- 10 |
| 3'000000| | R Contingency |My Transient Contingency |
Object |Gen Bus1_16.50''1 |
Field |T‘SSpeed |
Statistics  Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)
0 Trend | 1oo||  0.0000817] | 0.0]
[ _j = % s [ T ?&n Records * Set v Columns v [Bsf~ '%“E' '}%’ﬁl’;v g~ B Options +
Modes f\.:ur Selected .Slgnal 10012
Mode Magnitude|Magnitude| Angle Rank Mode [Mode Maode 1,001
Include End Frequency |Damping Lambda :
Reproduce| 1,0008
1|YES 0.00166 0.0000643 111.15 41,13 0171 39.67 -0.465
2|ves 0.00114 0.0000256 0.00 28.28 0.000 100,00 -0.543 1.0008
SYES 0.00097 0.0000438 69.05 24.01 1364 4,98 -0.427 1.0004
4| YES 0.0000167  0.000243 -180.00 6.02 0.000 -100.00 0.383 x
5|NC 0.0000223 X000000445 -59.64 0,553 2017 68,99 -0.888 1.0002
1
0.9998
0.9996
0.99%4
4 5 & 7 8 9 10
¥ — Raw Signal [¥ == Reproduced Signal
OK Cancel

A|M

®
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Verification: Linear Trend Line + Five Modes

different signals

Result Analysis Signal O X
StartTime Used  End Time Used  Time Window |Gen Speed 3- 10 |
| 3'000000| | R Contingency |My Transient Contingency |
Object |Gen Bus1_16.50''1 |
Field |T‘SSpeed |
Statistics  Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)
0 Trend | 1oo||  0.0000817] | 0.0]
E T Bk %8 5% | #% 8 Records~ Set+ Columns~ [Ex~ %@~ W8, BH fi - B Options -
Modes for Selected Signal 10012
Mode Magnitude|Magnitude| Angle Rank Mode [Mode Maode 1,001
Include End Frequency |Damping Lambda :
Reproduce| 1,0008
1|¥ES 0.00166 0.0000643 111.15 41.13 0171 39,67 0465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
3|vES 0.00097 0.0000433 £9.05 24.m 1.364 493 0427 -
4VES 0.0000167 0000243  -1B0.00 6.02 0.000  -100.00 0.383 o
o 0.0000223 J000000445 -59.64 0.553 2007 6,99 0,888 1.0002
1
09998
0.99%5
. .
It 1s hard to tell a difference
3 5 [ 7 10
. . .
on this one, illustrating that P Rew e e RS
. . o
modes manifest differently in =

A|M

®
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A Larger Example We’'ll Finish With

Applying the developed techniques to the response of all 43,400 substation
frequencies from an 110,000 bus electric grid(20 million plus values)

Frequency (Hz)

£5.95
59 95
5997
52,95
5995
5994
£5.53
59,92
£0.81
550 ]
£5.59
E8.55

£8.57

£0.36 ]

5085 -

;.5 1I{:l 1I5 EI{}I
Simulation Time (Seconds)

25

30

T

55




Measurement-Based Modal Analysis

T

* The idea of all techniques 1s to approximate a signal, y,.(t), by the sum of
other, stmpler signals (basis functions)

* There are a number of different approaches

— Basis functions are usually exponentials, with linear and quadratic functions used to
detrend the signal

— Properties of the original signal can be quantified from basis function properties

Examples are frequency and damping

— Signal is considered over time with t=0 as the start

* Approaches sample the original signal y,.(t)
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Measurement-Based Modal Analysis

Al
* Vectory consists of m uniformly sampled points from y,.(t) at a

sampling value ot AT, starting with t=0, with values y; for j=1...m

- Times are then t;= (J-1)AT

— At each time point j, the approximation of y; is

J;j(tjﬂa) = Zbi@(tjaa)

i=1
where a 1s a vector with the real and imaginary eigenvalue components,
with ¢,(¢,,a) = e”" for a. corresponding to a real eigenvalue, and

o, _at;
9,(t;,0)=e "cos(a,t;)and ¢, (a) = e "sin(a,, t )

for a complex eigenvector value

57




Measurement-Based Modal Analysis

T

Error (residual) value at each point j 1s

ri(t,0)=y,—y(,a)

The closeness of the fit can be quantified using the Euclidean norm of the
residuals

1 & R 1 2
Ezl(y] _yj(tjaa))z = EHF(G)Hz
=
Hence we need to determine oo and b
)?j(tj?a) = Zbi@(tjﬁa)
i=1
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Sampling Rate and Aliasing

Al
The Nyquist-Shannon sampling theory requires sampling at twice the
highest desired frequency

— For example, to see a 5 Hz frequency we need to sample the signal at a rate of at
least 10 Hz

Sampling shifts the frequency spectrum by 1/T (where T 1s the sample
time), which causes frequency overlap

This 1s known as aliasing, which
can cause a high frequency
signal to appear to be a lower
frequency signal

— Aliasing can be reduced by fast sampling and/or low

pass f:ﬂterS 59
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One Solution Approach: The Matrix Pencil Method
Al

* There are several algorithms for finding the modes. We’ll use the Matrix
Pencil Method

— This is a newer technique for determining modes from noisy signals (from about
1990, introduced to power system problems in 2005); it is an alternative to the
Prony Method

— The Matrix Pencil Method 1s useful when there is signal noise
* Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that

_ ) | Vi V> yL+]_
This not a sparse matrix
Y = V> V3 o Vi
_ym—L ym—L+I ym _

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp.
501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005. 60




Algorithm Details, cont.

Al
* Then calculate Y’s singular values using an economy singular value

decomposition (SVD)
The computational

Y =0UxV! complexity increases
with the cube of the number of
* The ratio of each singular value 1s then measurements!

compared to the largest singular value c;
retain the ones with a ratio > than a threshold

— This determines the modal order, M

This threshold 1s a value that
can be changed; decrease it

~ Assuming V is ordered by singular to get more modes.

values (highest to lowest), let V ; be
then matrix with the first M columns of V
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Aside: The Matrix Singular Value Decomposition
(SVD) T

 The SVD is a factorization of a matrix that generalizes the eigendecomposition
to any m by n matrix to produce

The original concept 1s more than 100 years
old, but has found lots of recent applications

Y =UxV!

where X 1s a diagonal matrix of the singular values

* The singular values are non-negative, real numbers that can be used to indicate
the major components of a matrix (the gist is they provide a way to decrease the
rank of a matrix)

62




Aside: SVD Image Compression Example

[
Images can be represented with

matrices. When an SVD is

applied and only the largest

singular values are retained

the image 1s compressed.

/ / ot Image Source:
Pirate Pirate Pirate www.math.utah.edu/~goller/F15_M2270/BradyMathews
Figure 3.1: Image size 250x236 - modes used _SVDImage.pdf

{£1,2,4,6),{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image}}
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Matrix Pencil Algorithm Details, cont.

* Then form the matrices V, and V, such that
-V, is the matrix consisting of all but the last row of V,
-V, is the matrix consisting of all but the first row of V|

* Discrete-time poles are found as the generalized eigenvalues of the pair

(VzTVb VITVI) =(A,B) : : L
If B is nonsingular (the situation here)

‘ These elg.envalues are th? then the generalized eigenvalues are
discrete-time poles, z. with the the eigenvalues of B'A

modal eigenvalues then

In(z,) The log of a complex
A4 = AT number z=rZ0 1s In(r) + ;0

T
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Matrix Pencil Method with Many Signals
A

* The Matrix Pencil approach can be used with one signal or with
multiple signals

* Multiple signals are handled by forming a Y, matrix for each signal k
using the measurements for that signal and then combining the matrices

Vi Yok oo Virrk
Y, Vie o Viox The required computation
Y, = ; ; ; scales linearly with the
number of signals
_ym—L,k ym—L—irl,k o ym,k i
Y
Y=| :
| Yy
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Matrix Pencil Method with Many Signals

* However, when dealing with many signals, usually the signals are
somewhat correlated, so vary few of the signals are actually need to be
included to determine the desired modes

e Ultimately we are finding
yj(tj?a) = Zbi@(tjﬁa)
i=l1

e The a is common to all the signals (i.e., the system modes) while the b
vector 1s signal specific (1.e., how the modes manifest in that signal)

T
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Quickly Determining the b Vectors

A key 1nsight 1s from an approach known as the Variable

Projection Method (from Borden, 2013) that for any signal k

Y = P(a)b,
And then the residual is minimized by selecting b, = ®(a)"y,
where ®(a) 1s the m by n matrix with values
al-t/- . .
O (a)=e" 1f ¢; corresponds to a real eigenvalue,

and @ ,(a) =™ cos(e,,t,) and  , (a) =™ sin(e,,t,)

+1

for a complex eigenvalue; ¢, = (j—1)AT

Finally, ®@(a)" is the pseudoinverse of ®(a)

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium,

Manhattan, KS, Sept. 2013

Where m 1s the
number of
measurements
and n 1s the
number of modes

T
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