
ECEN 667
Power System Stability

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

Lecture 21: Oscillations, 
Measurement-Based Modal Analysis 



Announcements

• Read Chapter 8

• Homework 6 is due on Tuesday Nov 21
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Small Signal Stability Analysis

• Small signal stability is the ability of the power system to maintain 
synchronism following a small disturbance
– System is continually subject to small disturbances, such as changes in the load

• The operating equilibrium point (EP) obviously must be stable

• Small system stability analysis (SSA) is studied to get a feel for how close 
the system is to losing stability and to get additional insight into the 
system response
– There must be positive damping
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Model Based SSA

• Assume the power system is modeled in our standard form as

• The system can be linearized about an equilibrium point

• Eliminating Dy gives 

 ,x f x y

0 = g(x, y)



Δx = AΔx BΔy

0 = CΔx + DΔy



  -1
sysΔx = A BD C Δx A Δx

If there are just classical generator 
models then D is the power flow 
Jacobian; otherwise it also includes 
the stator algebraic equations
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Modal Analysis - Comments

• The matrix Asys can be calculated doing a partial factorization, just like what 
is done with Kron reduction in creating power system equivalents

• SSA is done by looking at the eigenvalues (and other properties) of Asys

• Modal analysis (analysis of small signal stability through eigenvalue 
analysis) is at the core of SSA software

• In Modal Analysis one looks at:
– Eigenvalues, Eigenvectors (left or right)

– Participation factors

– Mode shape

• Power System Stabilizer (PSS) design in a multi-machine context can be 
done using the modal analysis method.

Goal is to determine how the 
various parameters affect the 
response of the system
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Eigenvalues, Right Eigenvectors

• For an n by n matrix A the eigenvalues of A are the roots of the 
characteristic equation:

• Assume l1…ln as distinct (no repeated eigenvalues).

• For each eigenvalue li there exists an eigenvector    such that:

• vi is called a right eigenvector

• If li is complex, then vi has complex entries

det[ ] 0l l   A I A I

i i ilAv v
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Left Eigenvectors, Eigenvector Properties

• For each eigenvalue li there exists a left eigenvector wi such that:

• Equivalently, the left eigenvector is the right eigenvector of AT; that is, 

• The right and left eigenvectors are orthogonal i.e.

• We can normalize the eigenvectors so that: 

t t
i i ilw A w

t
i i ilA w w

, ( )t t
i i i j0 0 i j  w v w v

, ( )t t
i i i j1 0 i j  w v w v
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Eigenvector Example

2
2

1,2

11 11 21 11
1 1 1

21 11 21 21

2 2

1 4 1 4
, 0 0

3 2 3 2

3 (3) 4(10) 3 49
3 10 0 5, 2

2 2

4 5
5

3 2 5

,

4
2

3

v v v v

v v v v

Similarly

l
l

l

l l l

l

 
       

  
       

  
       

 
      

A A I

Av v v

v

21 11

1

choose 1 1

1

1

  

 
  
 

v v

v

Right Eigenvectors 51 l
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Eigenvector Example

• Left eigenvectors
51 l 1 1 11 21 11 21

11 21 11
21 11

11 21 21

1 2 2

1 2 1 2

1 1 2 2 2 1 1 2

1 4
5 [ ] 5[ ]

3 2

3 5
4, 3

4 2 5

3 1
2

4 1

1 4 3 1

1 3 4 1

7 , 7 , 0 , 0

t t

t t t t

w w w w

w w w
Let w then w

w w w

Verify

l

 
   

 
 

  
 

   
          
       

                  
   

w A w

w w

v v w w

w v w v w v w v

We would like to make

This can be done in many ways.
1.t

i iw v 
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Eigenvector Example

• It can be verified that WT=V-1 . 
• The left and right eigenvectors are used in 

computing the participation factor matrix.

3 11

4 17

3 4 1 4 1 01

1 1 1 3 0 17

T

Let

Then

Verify

 
   



     
           

W

W V I
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Modal Matrices

• The deviation away from an equilibrium point can be defined as

• From this equation it is difficult to determine how parameters in A affect a 
particular x because of the variable coupling

• To decouple the problem first define the matrices of the right and left 
eigenvectors (the modal matrices)

Δx AΔx

1 2 1 2[ , ..... ] & [ , , ..... ]

when ( )
n n

iDiag l
 

 

V v v v W w w w

AV VΛ Λ
V represents the right 
eigenvectors
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Modal Matrices

• It follows that

• To decouple the variables define z so

• Then

• Since  is diagonal, the equations 
are now uncoupled with

• So 

D   D   x Vz x Vz AΔx AVz 

1 V AV Λ

1  z V AVz W AVz Λz

( ) ( )t tD x Vz

i i iz zl

1 4

3 2

1 4

1 3

5 0

0 2

 
  
 
 

   
 

   
-1

A

V

V AV

Example
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Modal Matrices

• Thus the response can be written in terms of the individual eigenvalues 
and right eigenvectors as

• Furthermore with

• So z(t) can be written as using the left eigenvectors as

( ) ( ) i

n
t

i i
i 1

t z 0 e l



D  x v

1 T  Δ x= V Z z V x W x

( )

( ) ( ) [ .... ]

( )

1
t t

1 2 n

n

x t

t t

x t

 
    
  

z W x w w w 

Note, we are requiring 
that the eigenvalues be 
distinct!
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Modal Matrices

• We can then write the response x(t) in terms of the modes of the system

• So ci is a scalar that represents the magnitude of excitation of the ith mode 
from the initial conditions

( ) ( )

( ) ( )

so   ( )

E x p an d in g ( ) ...

i

n1 2

t
i i

t
i i i

n
t

i i
i 1

tt t
i i 1 1 i 2 2 in n

z t w x t

z 0 w x 0 c

t c e

x t v c e v c e v c e

l

ll l





 D



D   

x v
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Numerical example

, ( )

Eigenvalues are ,

Eigenvectors are ,

Modal matrix

. .
Normalize so 

. .

1 1

2 2

1 2

1 2

x x0 1 1
0

x x8 2 4

4 2

1 1

4 2

1 1

4 2

0 2425 0 4472

0 9701 0 8944

l l

D D      
 D       D D       

  

   
       
 

   
 

   

x

v v

V

V





Left eigenvector matrix is:

. .

. .
1

1 1

2 2

1 3745 0 6872

1 4908 0 3727

z z4 0

z z0 2

  
   

 

    
    
    

T

T

W V

z = W AVz




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Numerical example (contd)

, ( ) ( )

( ) .
,

( )

.
( ) ( ) ; ( ) ( ) , ( )

( ) ( )

( ) ( )

. .
( )

. .

1
1 1

1
2 2

2

4t 2t T
1 1 2 2

1 1

2 2

1 1 2

z 4z 0 V 0

z 0 4 123
z 2z

z 0 0

4 123
z t z 0 e z t z 0 e 0

0

x t z t1 1

x t z t4 2

0 2425 0 4472
c z t c

0 9701 0 8944





  

   
    

  
 

     
 

    
        

 
   

z x

C W x

x = Vz





( ) ( ) i

2
t

2 i i i
i 1

z t c z 0 el



 
 

 
 v

Because of the initial condition, 
the 2nd mode does not get excited
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Mode Shape, Sensitivity and Participation Factors 

• So we have 

• x(t) are the original state variables, z(t) are the transformed 
variables so that each variable is associated with only one mode.

• From the first equation the right eigenvector gives the “mode 
shape” i.e. relative activity of state variables when a particular 
mode is excited.

• For example the degree of activity of the state variable xk in the vi

mode is given by the element Vki of the right eigenvector matrix V

) ( ), ( ) ( )tt t t t x( Vz z W x
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Mode Shape, Sensitivity and Participation Factors

• The magnitude of elements of vi give the extent of activities of n state 
variables in  the ith mode and angles of elements (if complex) give phase 
displacements of the state variables with regard to the mode.

• The left eigenvector wi identifies which combination of original state 
variables display only the ith mode.
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Eigenvalue Parameter Sensitivity

• To derive the sensitivity of the eigenvalues to the parameters recall Avi = 
livi; take the partial derivative with respect to Akj by using the chain rule

Multiply by

[ ]

i i
i i i

kj kj kj kj

t
i

t t t ti i
i i i i i i i

kj kj kj kj

t t ti i
i i i i i i

kj kj kj

A A A

A A A

A A A

l l

l l

ll

 
  

   

 
  

   

 
  

  

i

i

vvA
v A v

A

w

vvA
w v w A w v w

A

vA
w v w A I w v
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Eigenvalue Parameter Sensitivity

• This is simplified by noting that
by the definition of wi being a left eigenvector 

• Therefore

• Since all elements of          are zero, except the kth row, jth column is 1

• Thus

( )t
i i 0l w A I

t i
i i

kj kjA A

l


 
A

w v

kjA




A

i
ki ji

kj

W V
A

l



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Sensitivity Example

• In the previous example we had

• Then the sensitivity of l1 and l2 to changes in A are

• For example with

• Or if 

1,2

1 4 1 4 3 11
, 5, 2, ,

3 2 1 3 4 17
l

     
               

A V W

1 2
3 3 4 31 1

,
4 4 4 37 7

i
ki ji

kj

W V
A

l l l      
           A A

1,2

1 4ˆ ˆ, 5.057, 1.957
3 2.1

l
 

   
 

A

1,2

1 4ˆ ˆ, 5.61, 1.61,
3 3

l
 

   
 

A
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Participation Factors

• The participation factors, Pki, are used to determine how much the kth state 
variable participates in the ith mode 

• The sum of the participation factors for any mode or any variable sum to 1

• The participation factors are quite useful in relating the eigenvalues to 
portions of a model

• For the previous example with Pki = VkiWik and

ki ki kiP V W

1 4 1 4 3 11
, ,

3 2 1 3 4 17

     
             

A V W
3 41

4 37

 
  

 
P
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SSA Two Generator Example

• Consider the two bus, two classical generator system from lectures 18 
and 20 with Xd1'=0.3, H1=3.0, Xd2'=0.2, H2=6.0 

• Essentially everything needed to calculate the A, B, C and D matrices 
was covered in lecture 15

GENCLS

slack

GENCLS

X=0.22

Bus 1
Bus 2

  0.00 Deg 11.59 Deg
 1.000 pu 1.095 pu
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SSA Two Generator Example

• The A matrix is calculated differentiating f(x,y) with respect to x
(where x is d1, Dw1, d2, Dw2)   

 

 

.

,
.

.

,
.

1
1 pu s

1 pu
M 1 E1 1 1 pu

1

2
2 pu s

2 pu
M 2 E 2 2 1 pu

2

d

dt
d 1

P P D
dt 2H

d

dt
d 1

P P D
dt 2H

d w w

w
w

d w w

w
w

 D

D
   D

 D

D
   D

     P 2 2
Ei Di Di Di i Qi Qi Qi i Di Qi Qi Di iE E V G E E V G E V E V B     

 cos sinDi Qi i i iE jE E jd d   23



SSA Two Generator Example

• Giving

• B, C and D are as calculated previously for the implicit integration, 
except the elements in B are not multiplied by Dt/2  

.

.

.

.

0 376 99 0 0

0 761 0 0 0

0 0 0 376 99

0 0 0 389 0

 
  
 
  

A

. .

. .

0 0 0 0

0 2889 0 6505 0 0

0 0 0 0

0 0 0 0833 0 3893

 
  
 
 
 

B
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SSA Two Generator Example

• The C and D matrices are

• Giving 

. . .

. . .
,

. . .

. . .

3 903 0 0 0 0 7 88 0 4 54

1 733 0 0 0 7 88 0 4 54 0

0 0 4 671 0 0 4 54 0 9 54

0 0 1 0 0 4 54 0 9 54 0

    
        
    
      

C D

.

. .

.

. .

sys

0 376 99 0 0

0 229 0 0 229 0

0 0 0 376 99

0 114 0 0 114 0

 
   
 
  

-1A A - BD C
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SSA Two Generator

• Calculating the eigenvalues gives a complex pair and two zero 
eigenvalues

• The complex pair, with values of +/- j11.39 corresponds to the 
generators oscillating against each other at 1.81 Hz

• One of the zero eigenvalues corresponds to the lack of an angle 
reference 
– Could be rectified by redefining angles to be with respect to a reference angle (see 

book 226) or we just live with the zero

• Other zero is associated with lack of speed dependence in the generator 
torques
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SSA Two Generator Speeds

• The two generator system response is shown below for a small 
disturbance

Speed, Gen Bus 1 #1gfedcb Speed, Gen Bus 2 #1gfedcb

54.543.532.521.510.50

60.5

60.45

60.4

60.35

60.3

60.25

60.2

60.15

60.1

60.05

60

59.95

59.9

59.85

59.8

59.75

59.7

59.65

59.6

59.55

59.5

Notice the actual 
response closely matches 
the calculated frequency
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SSA Three Generator Example

• The two generator system is extended to three generators with 
the third generator having H3 of 8 and Xd3'=0.3

GENCLS

slack

GENCLS X=0.2

X=0.2 X=0.2

GENCLS

Bus 1 Bus 2

  0.00 Deg  3.53 Deg
1.0000 pu1.0500 pu

 -3.53 Deg
 1.050 pu

 200 MW
   0 Mvar

Bus 3
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SSA Three Generator Example

• Using SSA, two frequencies are identified: one at 2.02 Hz and 
one at 1.51 Hz 

Shortly we’ll discuss modal analysis 
to determine the contribution of each 
mode  to each signal

54.543.532.521.510.50

1.0018

1.0016

1.0014

1.0012

1.0010

1.0008

1.0006

1.0004

1.0002

1.0000

0.9998

0.9996

0.9994

Speed_Gen Bus 1 #1gfedcb Speed_Gen Bus 2 #1gfedcb Speed_Gen 3 #1gfedcb

PowerWorld case 
B2_CLS_3Gen_SSA

The oscillation is started with 
a short, self-clearing fault
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Large System Studies

• The challenge with large systems, which could have more than 100,000 
states, is the shear size
– Most eigenvalues are associated with the local plants

– Computing all the eigenvalues is computationally challenging, order n3

• Specialized approaches can be used to calculate particular eigenvalues of 
large matrices
– See Kundur, Section 12.8 and associated references
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Single Machine Infinite Bus

• A quite useful analysis technique is to consider the small signal stability 
associated with a single generator connected to the rest of the system 
through an equivalent transmission line

• Driving point impedance looking into the system is used to calculate the 
equivalent line's impedance
– The Zii value can be calculated quite quickly using sparse vector methods 

• Rest of the system is assumed to be an infinite bus with its voltage set to 
match the generator's real and reactive power injection and voltage
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Small SMIB Example

• As a small example, consider the 4 bus system shown below, in 
which bus 2 really is an infinite bus

• To get the SMIB for bus 4, first calculate Z44

Infinite Bus

slack

GENCLS
X=0.2

X=0.1 X=0.2

X=0.1

Bus 1 Bus 2

Bus 3

  0.00 Deg  6.59 Deg

Bus 4

 11.59 Deg

  4.46 Deg
 1.000 pu 1.029 pu 1.046 pu

1.0946 pu

.

.

bus 44

25 0 10 10

0 1 0 0
Y j Z j0 1269

10 0 15 0

10 0 0 13 33

 
 
   
 
  

Z44 is Zth in parallel 
with jX'd,4 (which is 
j0.3) so Zth is j0.22

32



Small SMIB Example

• The infinite bus voltage is then calculated so as to match the bus i 
terminal voltage and current

• In the example we have 

inf

*

where 

i i i

i i
i

i

V V Z I

P jQ
I

V

 

 
 

 

   

* *

inf

inf

.
.

. .

. . ( . ) .

.

4 4

4

P jQ 1 j0 572
1 j0 328

V 1 072 j0 220

V 1 072 j0 220 j0 22 1 j0 328

V 1 0

    
       

   



While this was demonstrated
on an extremely small system
for clarity, the approach works
the same for any size system
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Calculating the A Matrix

• The SMIB model A matrix can then be calculated either analytically or 
numerically
– The equivalent line's impedance can be embedded in the generator model so the 

infinite bus looks like the "terminal"

• This matrix is calculated in PowerWorld by selecting Transient 
Stability, SMIB Eigenvalues
– Select Run SMIB to perform an SMIB analysis for all the generators in a case

– Right click on a generator on the SMIB form and select Show SMIB to see the 
Generator SMIB Eigenvalue Dialog

– These two bus equivalent networks can also be saved, which can be quite useful 
for understanding the behavior of individual generators
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Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab shows information 
about the two bus equivalent

PowerWorld 
case B4_SMIB
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Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the Asys matrix for the 
SMIB generator

• In this example A21 is showing

  , , . cos .
. .

.

4 pu E 4

4 4 4

P1 1 1
1 2812 23 94

2H 6 0 3 0 22

0 3753

w
d d

D                         
 
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Example: Bus 4 with GENROU

• The eigenvalues can be calculated for any set of generator models

• This example replaces the bus 4 generator classical machine with a 
GENROU model
– There are now six eigenvalues, with the dominate response coming from the 

electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

PowerWorld case B4_GENROU_Sat_SMIB
37



Example: Bus 4 with GENROU Model and Exciter

• Adding an relatively slow EXST1 exciter adds additional states (with 
KA=200, TA=0.2)
– As the initial reactive power output of the generator is decreased, the system becomes 

unstable (below example is with a generator reactive power output of 0 Mvar)

PowerWorld case B4_GENROU_Sat_SMIB_QZero 38



Example: Bus 4 with 
GENROU Model and Exciter

• The below image shows the system response to a brief bus 4 self-
clearing fault 
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Example: Bus 4 with GENROU Model and Exciter

• The remainder of the Eigenvalues page shows the participation 
factors for the various states in the modes
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SMIB Eigenvalues for TSGC_2000 Case

• All the SMIB eigenvalues can be calculated quickly even for 
relatively large grids 
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Saving a Two Bus Equivalent

• PowerWorld makes it easy to save a two bus equivalent from the SMIB 
Eigenvalues page
– Right-click and select Save Two Bus Equivalent

• As the name implies, the two bus equivalent is the generator connected to 
an infinite bus through its driving point impedance

• Two bus equivalents provide a convenient way to track down at least some 
causes of instability issues
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Small Signal Analysis and 
Measurement-Based Modal Analysis
• Small signal analysis has been used for decades to determine power 

system frequency response
– It is a model-based approach that considers the properties of a power system, 

linearized about an operating point

• Measurement-based modal analysis determines the observed dynamic 
properties of a system
– Input can either be measurements from devices (such as PMUs) or dynamic 

simulation results

– The same approach can be used regardless of the measurement source

• Focus in this section is on the measurement-based approach
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Ring-down Modal Analysis

• Ring-down analysis seeks to determine the frequency and damping 
of key power system modes following some disturbance

• There are several different techniques, with the Prony approach the 
oldest (from 1795); introduced into power in 1990 by Hauer, 
Demeure and Scharf

• Regardless of technique, the goal is to represent the response of a 
sampled signal as a set of exponentially damped sinusoidals (modes)
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Goal: Extracting Modes from the Signals 

• The goal is to gain information about the electric grid by extracting 
modal information from its signals
– The frequency and damping of the modes is key

• The premise is we’ll be able to reproduce a complex signal, over a 
period of time, as a set a of sinusoidal modes
– We’ll also allow for linear 

detrending
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Example: Summation of Two Damped Exponentials

• This example was created 
by going from the modes to 
a signal

• We’ll be going in the 
opposite direction (i.e., 
from a measured signal to 
the modes) 
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Some Reasonable Expectations

• Verifiable to show how well the modes match the 
original signal(s)
– We’ll show this

• Flexible to handle between one and many signals
– We’ll go up to simultaneously considering 40,000 signals

• Fast
– What is presented will be, with a discussion of the 

computational scaling

• Easy to use
– This is software implementation specific; results shown here 

were done using the modal analysis tool integrated into 
PowerWorld Simulator (version 22) 47



Example: One Signal

This could be any signal; image shows the result of the original 
signal (blue) and the reproduced signal (red) 
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Verification: Linear Trend Line Only
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Verification: Linear Trend Line + One Mode
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Verification: Linear Trend Line + Two Modes
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Verification: Linear Trend Line + Three Modes
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Verification: Linear Trend Line + Four Modes
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Verification: Linear Trend Line + Five Modes

It is hard to tell a difference
on this one, illustrating that 
modes manifest differently in 
different signals
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A Larger Example We’ll Finish With

Applying the developed techniques to the response of all 43,400 substation 
frequencies from an 110,000 bus electric grid(20 million plus values)
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Measurement-Based Modal Analysis

• There are a number of different approaches

• The idea of all techniques is to approximate a signal, yorg(t), by the sum of 
other, simpler signals (basis functions)
– Basis functions are usually exponentials, with linear and quadratic functions used to 

detrend the signal

– Properties of the original signal can be quantified from basis function properties 
• Examples are frequency and damping

– Signal is considered over time with t=0 as the start

• Approaches sample the original signal yorg(t)
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Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled points from yorg(t) at a 
sampling value of DT, starting with t=0, with values yj for j=1…m
– Times are then tj= (j-1)DT

– At each time point j, the approximation of yj is 
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Measurement-Based Modal Analysis

• Error (residual) value at each point j is

• The closeness of the fit can be quantified using the Euclidean norm of the 
residuals

• Hence we need to determine  and b
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Sampling Rate and Aliasing

• The Nyquist-Shannon sampling theory requires sampling at twice the 
highest desired frequency
– For example, to see a 5 Hz frequency we need to sample the signal at a rate of at 

least 10 Hz

• Sampling shifts the frequency spectrum by 1/T (where T is the sample 
time), which causes frequency overlap

• This is known as aliasing, which 
can cause a high frequency 
signal to appear to be a lower 
frequency signal
– Aliasing can be reduced by fast sampling and/or low

pass filters   
Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png 59



One Solution Approach: The Matrix Pencil Method

• There are several algorithms for finding the modes.  We’ll use the Matrix 
Pencil Method
– This is a newer technique for determining modes from noisy signals (from about 

1990,  introduced to power system problems in 2005); it is an alternative to the 
Prony Method

– The Matrix Pencil Method is useful when there is signal noise 

• Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that 

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 
501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.
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Algorithm Details, cont.

• Then calculate Y’s singular values using an economy singular value 
decomposition (SVD)

• The ratio of each singular value is then 
compared to the largest singular value c; 
retain the ones with a ratio > than a threshold
– This determines the modal order, M

– Assuming V is ordered by singular 
values (highest to lowest), let Vp be 
then matrix with the first M columns of V

 TY UΣV
The computational
complexity increases
with the cube of the number of 
measurements!

This threshold is a value that 
can be changed; decrease it 
to get more modes.
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Aside: The Matrix Singular Value Decomposition 
(SVD) 

• The SVD is a factorization of a matrix that generalizes the eigendecomposition
to any m by n matrix to produce

where S is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can be used to indicate 
the major components of a matrix (the gist is they provide a way to decrease the 
rank of a matrix)

 TY UΣV
The original concept is more than 100 years 
old, but has found lots of recent applications

62



Aside: SVD Image Compression Example

Image Source: 
www.math.utah.edu/~goller/F15_M2270/BradyMathews
_SVDImage.pdf

Images can be represented with
matrices.  When an SVD is 
applied and only the largest 
singular values are retained
the image is compressed.   
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Matrix Pencil Algorithm Details, cont.

• Then form the matrices V1 and V2 such that
– V1 is the matrix consisting of all but the last row of Vp

– V2 is the matrix consisting of all but the first row of Vp

• Discrete-time poles are found as the generalized eigenvalues of the pair 
(V2

TV1, V1
TV1) = (A,B)

• These eigenvalues are the 
discrete-time poles, zi with the 
modal eigenvalues then 

ln( )i
i

z

T
l 

D
The log of a complex
number z=r is ln(r) + j

If B is nonsingular (the situation here) 
then the generalized eigenvalues are 
the eigenvalues of B-1A
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Matrix Pencil Method with Many Signals

• The Matrix Pencil approach can be used with one signal or with 
multiple signals

• Multiple signals are handled by forming a Yk matrix for each signal k 
using the measurements for that signal and then combining the matrices
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number of signals
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Matrix Pencil Method with Many Signals

• However, when dealing with many signals, usually the signals are 
somewhat correlated, so vary few of the signals are actually need to be 
included to determine the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system modes) while the b
vector is signal specific (i.e., how the modes manifest in that signal)
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Quickly Determining the b Vectors

• A key insight is from an approach known as the Variable 
Projection Method (from Borden, 2013) that for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium, 
Manhattan, KS, Sept. 2013

i

1

( )    

And then the residual is minimized by selecting ( )

where ( ) is the m by n matrix with values

( )  if  corresponds to a real eigenvalue,

and ( ) cos( ) and 

i j

i j

k k

k k

t
ji

t
ji i j ji

e

e t

















 

  

y Φ α b

b Φ α y

Φ α

α

α

 
1 1( ) sin( )

for a complex eigenvalue; 1

Finally, ( )  is the pseudoinverse of ( )

i jt
i j

j

e t

t j T

  





  D

α

Φ α Φ α

Where m is the 
number of 
measurements
and n is the 
number of modes  
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