ECEN 667
Power System Stability

Lecture 22: Measurement-Based Modal Analysis

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A&M University
overbye@tamu.edu

:‘-FVI TEXAS A&M

UNIVERSITY


mailto:overbye@tamu.edu

Announcements

Al

* Read Chapters 8 and 9
 Homework 6 Is due on Tuesday Nov 21
« Homework 7 should be done before the second exam

As noted In the syllabus, the second exam is on Thursday Nov 30, 2023

— On campus students will take it during class (80 minutes) whereas distance learning
students should contact Sanjana.

— The exam is comprehensive, but emphasizes the material since the first exam; it will
be of similar form to the first exam

- Two 8.5 by 11 inch hand written note sheets are allowed, front and back, as are
calculators




Seminar on Friday at 11:30 a.m. by Dr Sijia Geng

Friday, November 17, 2023 | 11:30 - 12:30 p.m. CST

Location: Zachry 244

Dynamics and Stability of Large-Scale Power Systems with Inverter-
Based Resources

Abstract

Future power systems that are dominated by renewable and inverter-based resources (IBRs) will face significant fluctuations in
operating conditions, a lack of transparency in control implementations, and unprecedented complexity in dynamic behavior. The
first part of the talk focuses on the modeling and control design of IBRs in large-scale power systems. A novel inverter control
scheme that unifies grid-forming and following controllers is presented. The proposed controller incorporates both a phase-locked
loop (PLL) for voltage synchronization and power frequency droop for load sharing. It possesses important practical features such
as black-start, low voltage ride-through. and autonomous islanding/reconnecting of microgrids. Both small- and large-disturbance
performance are demonstrated, and improved robustness is achieved along with favorable interoperability between various
inverters and synchronous generators. In the second part of the talk, we will focus on power system voltage stability. The problem
is related to finding the singular solution space boundary (S5B) of power flow equations. We propose a method rooted in
differential geometry to approximate the SSB of power systems under high variability of renewable generation. Conventional
methods mostly rely on either expensive numerical continuation at specified directions or numerical optimization. Instead, the
proposed approach constructs the Christoffe] symbaols of the second kind from the Riemannian metric tensors to characterize the
complete local geometry which is then extended to the proximity of the SSB with efficient computations. As a result, this approach

is suitable to handle high-dimensional variability in operating points.

Sijia Geng, Ph.D.
Assistant Professor at John Hopkins Universitv, Whiting School of Engineering

Sijia Geng is an Assistant Professor in the Department of Electrical and Computer Engineering at

Johns Hopkins University. Before joining JHU, she was a Postdoctoral Associate at the Laboratory

for Information & Decision Systems (LIDS) at MIT. She received her Ph.D. in Electrical and

Computer Engineering from the University of Michigan, Ann Arbor, where she also received the

M.S. in Mathematics and M.S. in ECE. Her research interests include dynamics, control and

stability of inverter-based smart grids and optimization of electrified transportation systems. She is

the recipient of a Best Paper Award at the MIT/Harvard Applied Energy Symposium in 2022 and

was named a Barbour Scholar and Rising Star in EECS (MIT) in 2021. 2




Measurement-Based Modal Analysis

Al
« There are a number of different approaches

* The idea of all techniques Is to approximate a signal, y,(t), by the sum of other,
simpler signals (basis functions)
— Basis functions are usually exponentials, with linear and quadratic functions used to detrend
the signal
— Properties of the original signal can be quantified from basis function properties
Examples are frequency and damping
— Signal is considered over time with t=0 as the start

» Approaches sample the original signal y,(t)



Measurement-Based Modal Analysis

Al
* Vector y consists of m uniformly sampled points from y,(t) at a
sampling value of AT, starting with t=0, with values y; for j=1...m

- Times are then t= (J-1)AT
— Ateach timne point J, the approximation of y; is
yi(t; )= lebﬂﬁi(t,-,a)
where a IS Iavector with the real and imaginary eigenvalue components,
with ¢ (t;,a) = e for o corresponding to a real eigenvalue, and
& (t;,0) =e"cos(a,,t.) and ¢, (a) =e“sin(a;,,t ;)

for a complex eigenvector value



Measurement-Based Modal Analysis

Al

* Error (residual) value at each point j is
K, a)=y; -y, a)

* The closeness of the fit can be quantified using the Euclidean norm of the
residuals

1 & . 1
20 9,0) = J @),
)=
« Hence we need to determine oo and b

7,00 = Y B, a)



Sampling Rate and Aliasing
HI
« The Nyquist-Shannon sampling theory requires sampling at twice the
highest desired frequency
— For example, to see a 5 Hz frequency we need to sample the signal at a rate of at
least 10 Hz
« Sampling shifts the frequency spectrum by 1/T (where T is the sample
time), which causes frequency overlap

« This is known as aliasing, which
can cause a high frequency
signal to appear to be a lower IR/RRTRIRA QDA
frequency signal 01 2 3 456 7 8 9 10

— Aliasing can be reduced by fast sampling and/or low
pass filters

Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png



One Solution Approach: The Matrix Pencil Method
Ali

* There are several algorithms for finding the modes. We’ll use the Matrix
Pencil Method

— This is a newer technique for determining modes from noisy signals (from about
1990, introduced to power system problems in 2005); it is an alternative to the

Prony Method
— The Matrix Pencil Method is useful when there is signal noise
« Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that

) . y1 y2 ce yL+1—
This not a sparse matrix
y=| 2 e
_ym—L Y-t Y |

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp.
501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005. 7



Algorithm Detalls, cont.

Al

* Then calculate Y’s singular values using an economy singular value

decomposition (SVD)
Y =UxV'

* The ratio of each singular value is then
compared to the largest singular value c;
retain the ones with a ratio > than a threshold
— This determines the modal order, M

— Assuming V is ordered by singular
values (highest to lowest), let V, be
then matrix with the first M columns of VV

The computational

complexity increases

with the cube of the number of
measurements!

This threshold is a value that
can be changed; decrease it
to get more modes.



Aside: Matrix Singular Value Decomposition (SVD)
A

The SVD Is a factorization of a matrix that generalizes the eigendecomposition to any
m by n matrix to produce

_ T The original concept is more than 100 years
Y =UxV old, but has found lots of recent applications

where X Is a diagonal matrix of the singular values

The singular values are non-negative, real numbers that can be used to indicate the

major components of a matrix (the gist is they provide a way to decrease the rank of a
matrix)



Aside: SVD Image Compression Example

Al

Images can be represented with
matrices. When an SVD is
applied and only the largest
singular values are retained

V@E | 4 by 'tM " the image 1s compressed.
AN

Image Source:
www.math.utah.edu/~goller/F15 M2270/BradyMathews SVDImage.pdf

/Plrate

Figure 3.1: Image size 250x236 - modes used
{{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image}} 10



http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf
http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Matrix Pencil Algorithm Detalls, cont.

Al

* Then form the matrices V, and V, such that
-V, Is the matrix consisting of all but the last row of V,
-V, Is the matrix consisting of all but the first row of V

« Discrete-time poles are found as the generalized eigenvalues of the pair
(V,'Vy, V,'V)) = (AB)

* These eigenvalues are the If B is nonsingular (the situation here)
discrete-time poles, z; with the then the generalized eigenvalues are
modal eigenvalues then the eigenvalues of B™A

In(z,) The log of a complex
AT number z=r~0 is In(r) + jO

11



Matrix Pencil Method with Many Signals

Al

The Matrix Pencil approach can be used with one signal or with
multiple signals

Multiple signals are handled by forming a Y, matrix for each signal k
using the measurements for that signal and then combining the matrices

I Y1k
Y, = y2:,k

_Yl
Y =| :

_YN_

Yok
Yax

_ym—L,k ym—L+1,k

yL+1,k

yL+2,k

ym,k

The required computation
scales linearly with the
number of signals

12



Matrix Pencil Method with Many Signals
Al

* However, when dealing with many signals, usually the signals are
somewhat correlated, so vary few of the signals are actually need to be

Included to determine the desired modes
« Ultimately we are finding

yj(tj1a) :ibiﬂ(tj’a)

* The a I1s common to all the signals (i.e., the system modes) while the b
vector is signal specific (i.e., how the modes manifest in that signal)

13



Quickly Determining the b Vectors
Al

« A key insight iIs from an approach known as the Variable
Projection Method (from Borden, 2013) that for any signal k

Y = (I)((l)bk
And then the residual is minimized by selecting b, =®(a)"y,  Where m is the

where ®(a) is the m by n matrix with values number of
aty i 5 o | measurements
@ (o) =™ if o; corresponds to a real eigenvalue, and n is the
and @ ; () =e“" cos(a,.t;) and @ ;, (@) =™ sin(a,qt;) number of modes

for a complex eigenvalue; t, =(j—1)AT

Finally, ®(a)™ is the pseudoinverse of ®(a)

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium,
Manhattan, KS, Sept. 2013 14



Matrix Pencil Method with Many Signals
Al

* However, when dealing with many signals, usually the signals are
somewhat correlated, so vary few of the signals are actually need to be

Included to determine the desired modes
« Ultimately we are finding

yj(tj1a) :ibiﬂ(tj’a)

* The a I1s common to all the signals (i.e., the system modes) while the b
vector is signal specific (i.e., how the modes manifest in that signal)

15



Quickly Determining the b Vectors
Al

« A key insight is from an approach known as the Variable Projection
Method (from Borden, 2013) that for any signal k
Y, = ®(a)b, .
And then the residual is minimized by selecting b, = ®(a)"y, Where m Is the

| T number of
where ®(a) I1s the m by n matrix with values measurements

@ (o) =™ if o corresponds to a real eigenvalue, and n is the

at at - number of modes
and @ (a) =e“" cos(e; ;t;) and @, (&) =e“" sin(a; ,t)

for a complex eigenvalue; t, = (j—1)AT

Finally, ®(a)" is the pseudoinverse of ®(a)

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013
North American Power Symposium, Manhattan, KS, Sept. 2013

16



Aside: Pseudoinverse of a Matrix

Al

* The pseudoinverse of a matrix generalizes concept of a matrix inverse to
an m by n matrix, in whichm >=n
— Specifically this is a Moore-Penrose Matrix Inverse

* Notation for the pseudoinverse of A'is A*
« Satisfies AA*A=A
* If Alisasquare matrix, then A* = A

« Quite useful for solving the least squares problem since the least squares
solutionof Ax=bisx=A*Db

» Can be calculated using an SVD A=UXV'
A" =VZI'U'
17



Least Squares Matrix Pseudoinverse Example

1 1
2 1

6 1.

m
b

1

SO A=

o N

Assume we wish to fix a line (mx + b = y) to three data points:
(1,1), (2,4), (6,4)

Two unknowns, m and b; hence x = [m b]"
Setup in form of AXx =D

e N

Al

18



Least Squares Matrix Pseudoinverse Example, cont.

Al

* Doing an economy SVD

-0.182 —0.765
) 6559 0 [-0.976 -0.219
A=UZV' =|-0.331 -0.543
0 0988 0219 -0976
~0.926 0.345

e Computing the pseudoinverse

(0976 0.219 ][0.152 0O }{—0.182 —0.331 —0.926}

A'=VX'U =
-0.219 -0.976|| 0 1.012]| -0.765 -0.543 0.345

A VT - -0.143 -0.071 0.214
- 710762 0548 -0.310

In an economy SVD the X matrix has dimensionsof mby mifm<nornbynifn<m ¥



Least Squares Matrix Pseudoinverse Example, cont.

Al

« Computing X = [m b]" gives

A ~0.143 -0.071 0.214 [0.429
0.762 0.548 —0.310 | 171

A

« With the pseudoinverse approach we immediately see the sensitivity of
the elements of x to the elements of b
- New values of m and b can be readily calculated if y changes

« Computationally the SVD is order mn2+n3 (with n <m)

— In this example it means it scales linearly with the number of points; matrices with
m >>n are common

20



Computational Considerations

When there Is just one signal, the procedure scales with the cube of the
number of measurements

— This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for
200 measurements

If multiple signals are included, it scales linearly with the number of
signals

However, a key Insight is once a has been determined, each b, can be
determined with a matrix multiply of a matrix with dimensions of the
number of modes and number of measurements

Y, = ®(a)b, > b, =®(a)’y, We can quickly determine how well
®(a)" is the pseudoinverse of ®(a) a. matches each signal

Al

21



Modal Analysis in PowerWorld

* Goal is to make modal analysis easy to use, and easy to visualize the
results

* Provided tool can be used with either transient stability results or
actual system signals (e.g., from PMUs)

« Three ways to access in PowerWorld
— From the Modal Analysis button (in Add-Ons)

— On the Transient Stability Analysis form left menu, Modal Analysis (right
below SMIB Eigenvalues)

- By right-clicking on a transient stability or plot case information display, and
selecting Modal Analysis Selected Columns or Modal Analysis All
Columns

Al

22



Modal Analysis: Three Generator Example

Al

« A short fault at t=0 gets the below three generator case oscillating with
multiple modes (mostly clearly visible for the red and the green curve)

(\

1.0100}

GENCLS Bus 03 BUS 2 Gencs {\ n ﬂ A ﬂ ” A /\

1.0080}

1.0070}

1.0060

10050
10040
10030
1.oozo—f
1.001

000000

23



Modal Analysis: Three Generator Example

* Open the case B3 CLS UnDamped

— This system has three classical generators without damping; the default event is
a self clearing fault at bus 1

* Run the transient stability for 5 seconds
« To do modal analysis, on the Transient Stability page select Results
from RAM, view just the generator speed fields, right-click and select

Modal Analysis All Columns
— This display the Modal Analysis Form

Al

24



Modal Analysis Form

First click on Do Modal Analysis to run the modal analysis

Maodal Analysis Form

Right-click on signal
to view its dialog

Signals to
Include

Key results are shown in the upper-right of the
form. There are two main modes, one at 2.23Hz
and one at 1.51; both have very little damping.

= O X
Results
Modal Analysis Status |Solved at 11/9/2021 10:02:26 AM | . i
: Mumber of Complex and Real Modes Indude Detrend in Reproduced Signals
D5t: SDU';TEtTYDE O Fle, Comtrade CFG glculatlon Method [subtract Reproduced from Actual
Sl BE JeOirare Matrix Pencil {Onice) Lowest Percent Damping : )
(O File, WECC CSV 2 (®) None, Existing Data BT Update Reproduced Signals
OFile, Js1s Farmat OFile, CSV (Data Starts Line 2) . - Real and Complex Modes - Editable to Change Initial Guesses
(CJFile, Comtrade CFF (O Dynamic Mode Decomposition
Frequency (Hz)| Damping (%) Largest Mame of Signa Average Ratio Average Largest Mame o
Data Source Inputs from Plots or Files Do Modal Analysis Component in |with Largest |Componentin| tolargest |Componentin|with Lar
¥ Mode, Component in Mode, Component in| Mode, Scaled |Compor
Gen_Speed N Unscaled |Mode, Unscaled Mode, Mode, 5
= Save in J5IS Format | Save to CSV | Unscaled UnScaled
= 1 0.001 0.00642 GenBus1#15 0.00314 0.4900 1.404 Gen Bus
2 -0.011 0.00063 GenBus2#15 0.00043 0.6833 0.615 Gen 3 #
Start Time End Time
Maximum Hz Update Sampled Data Store Results in PWE File
[ always Reload Signals from Source < >
Input Data, Actual Sampled Input Data Signals  Options  Reproduced Data  Iterative Matrix Pencl Tteration Details
Type MName Latitude |Longitude [ Description | Units Include Include Exclude from |Alwdls include Dretrend Detrend Post-Detrend | Post-Detrend Solved Averi
Reproduced |lterative Matrix|in |teftive Parameter A Parameter B |Number Zeros Standard Ur
Pencil [IMF} Matri i Deviation
(IMP)
1]5en 5 YES YES o] NO 1.0024 0.0004 0 0.00457 YES
2|Gen 5 YES YES o] NO 1.0024 0.0003 0 0.00147 YES
3|Gen 5 YES YES NO 1.0025 0.0003 0 0.00082 YES
< >
j"L Close ? Help i

A|M

P

25



Three Generator Example: Signal Dialog

« The Signal Dialog provides details about each signal, including its
modal components and a comparison between the original and

reproduced signals (example for gen 3)

Maodal Analysis Signal Dialog

Name Gen 3 #1 5peed Data Detrend Parameters
Type Gen Detrend Model = A +B*{t-t0) + C*(t-t0)*2 Used Detrend Madel

Urits l:l Use Case Default Detrend Model Parameter A 10025

Desaription Signal Spedific Detrend Model Parameter B 0.0003
@ Mone O Linear

Indude in Modal Analysis Parameter C 0.0000

Constant uadratic
[] Always Exclude Signal During IMP o Oe Standard Deviation (SD) | 0.0008
[ always Indude Signal During IMP

Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison

Time [Seconds) | Qriginal Value Reproduced Value Difference |

1 0.050] 1.002 1.002 0.000

2 0.058 1.002 1.002 0.000

3 0.067 1.002 1.002 0.000

4 0.075 1.002 1.002 0.000

5 0.083 1.002 1.002 0.000

& 0.092 1.002 1.002 0.000

7 0.100 1.002 1.002 0.000

8 0.108 1.002 1.002 0.000

9 0.117 1.002 1.003 0.000

10 0.125 1.003 1.003 0.000
11 0.133 1.003 1.003 0.000
12 0.142 1.003 1.003 0.000
13 0.150 1.003 1.003 0.000
14 0.158 1.003 1.003 0.000
15 0.167 1.003 1.003 0.000
16 0.175 1.003 1.003 0.000
17 0.183 1.003 1.003 0.000
18 0.192 1.003 1.003 0.000
19 0.200 1.003 1.003 0.000
20 0.208 1.003 1.003 0.000
1 0.217 1.003 1.003 0.000

? Help Print

Output Summary

Average Error, Scaled by 5D 0.0000
Average Error, Unscaled 0.0000
Cost Function Value, Scaled 0.0068

Indude Detrend in Reproduced Signal

Update Reproduced

Values

Plotting the original and reproduced
signals shows a near exact match

PWDVectorGrid Variables

1.0052 ]

1.005
1.0048 ]
1.0046 -]
1.0044 ]
1.0042 ]

1.004
1.0038 ]
1.0036
1.0034 ]
1.0032

1.003
1.0028
1.0026 ]
1.0024 ]
1.0022 ]

1.002
1.0018
1.0016
1.0014 ]

T T
0 100 200 300 400

«= QOriginal Value == ReproducedVaIueI

A|M

P
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Caution: Setting Time Range Incorrectly Can Result

In Unexpected Results!

« Assume the system is run with no disturbance for two seconds, and then

Al

the fault Is applied and the system is run for a total of seven seconds (five

seconds post-fault)

— The incorrect approach would be to try to match the entire signal; rather just match

from after the fault

— Trying to match the full
signal between 0 and 7 seconds
required eleven modes!

— By default the Modal Analysis Form
sets thedefault start time to
Immediately after the last event

PWDVectorGrid Variables

i

"

ﬁ

I

27



GENROU Example with Damping

models, adding damping

Al

* Open the case B3_ GENROU, which changes the GENCLS to GENROU

— Also each has an EXST1 exciter and a TGOV1 governor

— The simulation runs for seven seconds, with the fault occurring at two seconds;
modal analysis is done from the time the fault is cleared until the end of the

simulation.

The image shows the generator
speeds. The initial rise in the speed
Is caused by the load dropping
during the fault, causing a power
mismatch; this is corrected by the
governors. Note the system now
has damping; modal analysis tells
us how much.

28



GENROU Example with Damping

Madal Analysis Form

Modal Analysis Status |Solved at 1192021 10:07:41 AM

Data Source Type

() From Plot () File, Comtrade CFG

(OFile, WECC CSV 2 (®) None, Existing Data

(File, 1515 Format (OIFile, C5V (Data Starts Line 2)
()File, Comtrade CFF

Data Source Inputs from Plots or Files
Gen_Speed w

rows:

M

Start Time

Maximum Hz 5,000 = Update Sampled Data

Input Data, A

Calculation Method

(®) Matrix Pendil (Once)

(D) Iterative Matrix Pencil

O Dynamic Mode Decomposition

Do Modal Analysis

Save in J5IS Format Save to CSV

Store Reslts in PWE File
] Always Reload Sianals from Source

Sampled Input Data Signals  Options  Reproduced Data  Iterative Matrix Pendil Tteration Details

MName Latitude |Longitude | Description | Units Include

— O X

Results

Number of Complex and Real Modes Indude Detrend in Reproduced Signals

Subtract Reproduced from Actual

4,022
Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Lowest Percent Damping

Frequency (Hz}| Damping [3&) Largest Mame of Signa Average Ratio Aver
Component in |with Largest |Componentin| to Large

Maode, Component in Maode, Componer

Unscaled Muode, Unscaled Mode,

Unscaled UnScale

1 11.353 0.00352 Gen 3 #1 Speet 0.00231 0.¢
2 19.638 0.00452 GenBus2#15 0.00292 0.t
3 65427 0.00662 Gen Bus2#15 0.00640 0.
4 -34.022 0.00088 GenBus1#15 0.00084 0.

< >
Include Exclude from [Always inNude Detrend Detrend Post-Detrend | Post-D
Reproduced |lterative Matrix|in [terative Parameter A Parameter B | Number Zeros Stam
Pencil {IMF) Matrix Penci Deviz

-

IL se ? Help

“ = Mode frequency, damping, and
_ largest contribution of each mode In

Start time
default value

the signals. The slower mode Is
associated with the governors.

A|M

P
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GENROU Example with Damping

Values

Left image show how well the speed for generator 1 is

ap

PWDVectorGrid Variables

proximated by the modes

Time (Seconds)

== Original Value == Reproduced VaIueI

Reproduced Value

More signal details

A|M

P

Modal Analysis Signal Dialog

MNarne
Type

Uinits

Gen Bus 1 #1 Speed

Gen

[ ]

Description _Speed

Indude in Modal Analysis

Data Detrend Parameters

Detrend Model = A& +B*(t-t0) + C¥(t-t0)~2 Used Detrend Model

Use Case Default Detrend Model

Signal Specific Detrend Model

@ Mone O Linear

() Constant () Quadratic

Parameter A
Parameter B
Parameter C

Standard Deviation (5D)

Output Sw

Linear Average E

10037 Average B

-0.0014 Cost Funcl

0.0000 Indude

0.0013 Upda

Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison

Damping (%) Frequency (Hz) Magnitude

Scaled by 5D

Magnitude,
Unscaled

Angle (Deg)

Lambda

Include in
Reproduced
Signal

-

11.353

[

o]

e

0.0028
0.0026
0.0024
0.0022
0.002
0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006 -
0.0004
0.0002
SE
-0.0002 ]
-0.0004 ]
-0.0006
-0.0008
-0.001
-0.0012]
-0.0014]
-0.0016]
-0.0018]
-0.002]

19.633
65.427
-34.022

2.053 2,300
1.649 2,038
0.236 4,757
0.098 0.689

Reproduced Value

0.003
0.003
0.006
0.001

13.82
1046
-91.36
135.64

oA

200 300

— Reproduced Value

400

-1.474 YES
-2.075 YES
-1.283 YES
0.222 YES

Just the 2.05
Hz mode
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Dealing with Multiple Signals

* When there are many signals, usually they are at least somewhat

corre
calcu

ated, so we do not need to include all the signals in the
ation of a.

e Baser

on the previous quick calculation of b,, we can determine

how well the signals match the a.

« A natural algorithm for improving Is to include the signals that
do not match o well. That Is, have high residuals.

« This gave rise to what Is called the Iterative Matrix Pencil

algori

thm.

Al
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lterative Matrix Pencil Method

Al

* When there are a large number of signals the iterative matrix pencil
method works by
— Selecting an initial signal to calculate the a vector

— Quickly calculating the b vectors for all the signals, and getting a cost function for
how closely the reconstructed signals match their sampled values

— Selecting a signal that has a high cost function, and repeating the above adding this
signal to the algorithm to get an updated a

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. Overbye, "lIterative
Matrix Pencil Method for Power System Modal Analysis," Proc. 52nd Hawalii International
Conference on System Sciences, Wailea, HI, January 2019; available at
scholarspace.manoa.hawaii.edu/handle/10125/59803

32



Texas 2000 Bus Synthetic Grid Example
Alw

* For this example we’ll again use the Texas 2000 bus grid,
saved as TSGC 2000 GenDrop

e We'll use the Iterative Matrix Pencil Method to examine its

I
Grid Data research project and contains no CEIl. To reference 80
the model development approach, use:
AB. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.J. 5993 I h e I I IeaS u re I I le ntS
/_’\,m Overbye, "Grid Structural Characteristics as Validation
g;/, p Criteria for Synthetic Networks," IEEE Transact tions on 55 96
gy O Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017. -
Foum 3 For more information, contact abirchfield @tamu.edu. 559 94
P ] Wi e tnhe
i pA Note: this grid is fictitious and doesn't 59.92
— N represent the real Texas grid "":I‘- 559
& -
o E
k. N e = oo frequenues at all
»f, & = ST Bus Nur a BD.86 ]
6078 T 59.84
6079 % 5982
o S USES
e AL
ES.TS
8131 g
ES.TE
o
5974
5ED.T2
BO.7
5965
55.66

::l I2 I4 :c": IS 1ID 1I2 1I4 1I5 1I8 ZID
Simulation Time (Seconds)
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2000 Bus System Example, Initially Just One Signal

Initially our goal is to understand the modal frequencies and their damping

First we’ll consider just one of the 2000 signals; arbitrarily I selected bus

8126 (Mount Pleasant)

Bus Frequency (Hz)

59.98 |
59.96 |
59.94
59.92 |

59.9 |
59.88
59.86 |
59.84 |
59.82

59.8 |
50.78 L

2 a4 6 8 10 12 14 1 18 20
Simulation Time (Seconds)

— Frequency, Bus 2127 (MIAMI 0) — Frequency, Bus 1079 (ODESSA1 8)
IV — Frequency, Bus 7042 (VICTORIA2 0) ¥ — Frequency, Bus 5260 (GLEN ROSE 1 0)
IV — Frequency, Bus 8082 (FRANKLIN 0) ¥ — Frequency, Bus 7159 (HOUSTON 5 0)
v

v

v — Frequency, Bus 4195 (OILTON 0) v e Frequency, Bus 8126 (MOUNT PLEASANT 1 0)

IV — Frequency, Bus 4192 (BROWNSVILLE 1 0)

v

v

Al
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Some Initial Considerations

Al

The Input Is a dynamics study running using a %z cycle time step; data was
saved every 3 steps, so at 40 Hz

— The contingency was applied at time = 2 seconds

We need to pick the portion of the signal to consider and the sampling
frequency

— Because of the underlying SVD, the algorithm scales with the cube of the number of
time points (in a single signal)

| selected between 2 and 17 seconds
| sampled at ten times per second (so a total of 150 samples)
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2000 Bus System Example, One Signal

 The results from the Matrix Pencil Method are

Number of Complex and Real Modes IZI Indude Detrend in Reproduced Signals
[ ] subtract Reproduced from Actual

W i 10.137
Lowest Percent Damping IUpdate Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Calculated
mode

Frequency (Hz)| Damping (*z) |Largest ¥ |Mame of Signa Largest Mame of Signa Lambda Include in 3 A
! o7 Ping 4 Cur?'lpnnent with Largegc Cnmpngnent in [with Largegc Reproduced |nf0rmat| On
Mode, Component in | Mode, Scaled |Component in Signal
Unscaled hMode, Mode, Scaled
Unscaled
1 0,38 32.011 0.44275 Bus 1073 [ODE: 12,224 Bus 7310 (WHA
2 O&70 24,191 0.38466 Bus 2120 [PARIZ 11.54% Bus 8078 [MT. E
3 0,665 10,705 0.23093 Bus 2115 [PARI® 6801 Bus 2115 [PARI®
4 0312 14,397 0.16911 Bus 1073 [ODE: 4,954 Bus 7310 (WHA
5 0.971 10,137 0.08179 Bus 1051 [MON 2.551 Bus 6147 [SAM .
b 0,052 41,828 0.04603 Bus 1074 [ODE: 1063 Bus 3035 [CHEF

PWDVectorGrid Variables

Verification of
results

Values

T T T T T T T T
2 4 6 8 10 12 14 16
Time (Seconds)

== Original Value == Reproduced Value.




Some Observations

Al

* These results are based on the consideration of just one signal
« The start time should be at or after the event!

If it isn’t then. .. The results show the algorithm trying to match the
first two flat seconds; this should not be done!!

60-
59.99 Results
59.98

5007 ] Mmber of Comyder and Real Modes Indude Detrend in Reproduced Signals
59.96; [ ] subtract Reproduced from Actual
E W i -100,000

gg'gig Lowest Percent Damping |Ipdate Reproduced Signals

59.937 Real and Complex Modes - Editable to Change Initial Guesses

59.92

50.91 Frequency (Hz)| Damping (%) |Largest W |Mame of Signa Largest Mame of Signa Lambda |
® 599 Component |with Largest [Component in (with Largest R
T;; 5989—; Mode, Component in | Mode, Scaled |Component in

59'88§ Unscaled Maode, Mode, Scaled

50.87 ] Unscaled

59:86§ 1 0,000 100,000 0.93636 Bus 1073 [ODE® 14,030 Bus 1077 [ODES -1.6801 YE!

59.855 2 0,240 44,396 0.82180 Bus 1073 [ODE® 12,073 Bus 1077 [ODE: -0.7473 YE!

59'845 3 2 24,809 0.43068 Bus 4026 (CHRI 2,463 Bus 4026 [CHRI -0, 247RgVE!

59_83,5 4 408 4,729 0.10932 Bus 1073 [ODE® 1,587 Bus 1073 [ODE: 01213 YE!

59_82§ 5 £45 6111 0.09142 Bus 2115 [PARI® 1.694 Bus 2115 [PARI: -0.2432 YE!

50.81 & 751 6110 0.05556 Bus 4192 [BROA 1.042 Bus 4192 [BRON -0,2837 YE!

59.8,2 7 0,954 3484 0.02405 Bus 1051 [MON 0,397 Bus 6147 [SAM. -0,2089 YE!

59.79 8 0,000 -100,000 0.01406 Bus 4026 [CHRI 0,276 Bus 4026 [CHRI 0.0565 YE!

o 5 1 5

Time (Seconds)

== Original Value == Reproduced VaIueI
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2000 Bus System Example, One Signal Included,
Cost for All T

« Using the previously discussed pseudoinverse approach, for a given set of
modes (a) the b, vectors for all the signals can be quickly calculated

b, = (I)(a)+Yk

— The dimensions of the pseudoinverse are the number of modes by the number of
sample points for one signal

 This allows each cost function to be calculated

« The Iterative Matrix Pencil approach sequentially adds the signals with the
worst match (i.e., the highest cost function)
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2000 Bus System Example, Worst Match (Bus 7061)

Values

60-
59.99
59.98
59.97
59.96
59.95 1
59.94
59.93
59.92
59.91 ]

59.9
59.89
59.88 ]
59.87 ]
59.86
59.85 1
59.84
59.83
59.82
59.81 ]

59.8

PWDVectorGrid Variables

N

6 8 10
Time (Seconds)

== QOriginal Value == Reproduced Value

Al
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With two signals

2000 Bus System Example, Two Signals

Number of Complex and Real Modes IZ' Indude Detrend in Reproduced Signals
(] 5ubtract Reproduced from Actual

Lowest Percent Damping 7.359

Real and Complex Modes - Editable to Change Initial Guesses

Update Reproduced Signals

Frequency (Hz}| Damping (3% Largest Name of Signa Largest Name of Signa Lambi
Component in |with Largest |Component in|with Largest
Mode, Component in| Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 2.2 17.168 0.04028 Bus 7329 (NEW 1.730 Bus 7307 (WHA -2
2 1. 21.844 0.10763 Bus 4030 (FANMK 4,475 Bus 4030 [FANM -1
3 0. 7.359 0.04666 Bus 6147 (SAN . 1.801 Bus 6147 [SAN . -
4 0. 11.705 0.21220 Bus 1051 (MON 5.762 Bus 8077 [MT. E -0
5 0. 13.361 0.20903 Bus 2120 (PARI! £.350 Bus 4192 (BROV -0
B 0. 36.405 0.44679 Bus 1051 (MON 13.024 Bus 7311 (WHA -0
7 0. 14.403 0,19570 Bus 1073 (ODE! 5.372 Bus 7311 (WHA -
8 0. 100.000 0.09305 Bus 1051 (MON 1.767 Bus 1051 [MON -0
9 0. 36.756 0.02993 [Bus 1073 [ODE 1.182 Bus 7307 (WHA -0
Number of Complex and Real Modes l:l Indude Detrend in Reproduced Signals
[ subtract Reproduced from Actual
STEES A EERISAT AT Update Reproduced Signals
Real and Complex Modes - Editable to Change Initial Guesses
Frequency (Hz}| Damping (%z) |Largest ¥ |Name of Signa Largest MName of Signa Lambc
Component  |[with Largest |Component in|with Largest
Mode, Component in | Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 32.01 0.44275 Bus 1073 (ODE® 12.224 Bus 7310 (WHA -0
2 2419 0.38466 Bus 2120 [PARI® 11.545 Bus 8078 (MT. E -1
3 10.705 0.23093 Bus 2115 [PARI® £.801 Bus 2115 [PARI! -0
4 14.397 0.16911 Bus 1073 (ODE® 4,954 Bus 7310 (WHA -0
5 10137 0.0817% Bus 1051 (MON 2.551 Bus 6147 [SAN . -0
] 41.323 0.04503 Bus 1074 [(ODE! 1.063 Bus 3035 (CHEF -0

The new match on the bus that was
previously worst (Bus 7061) is now

quite good!

60
59.99
59.98
59.97
59.96
59.95
59.94
59.93
59.92
59.91

59.9
59.89
59.88
59.87
59.86
59.85
59.84
59.83
59.82
59.81

Values

PWDVectorGrid Variables

6 8 10 12 14 16
Time (Seconds)

== Qriginal Value == Reproduced VaIueI

A|M

P
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2000 Bus System Example, Iterative Matrix Pencil

number Is met
— Doing ten iterations takes about four seconds

Mumber of Complex and Real Modes |11

Lowest Percent Damping

6.082

Indude Detrend in Reproduced Signals
[ ]Subtract Reproduced from Actual

Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

The Iterative Matrix Pencil intelligently adds signals until a specified

Frequency (Hz)|Damping (% & Largest Mame of Signa Largest Mame of Signa Lambda Include in
Component in (with Largest  |Component in |with Largest Reproduced
Mode, Component in | Mode, Scaled (Component in Signal
Unscaled Mode, Mode, Scaled
Unscaled
1 631 6,082 0,10313 Bus BROWMNSVI 3.292 Bus BROWNSVI 2415 YES
2 0.959 T.068 0.0438597 Bus SAN ANTOI 1.8580 Bus SAN ANTOI 4269 YES
3 1.364 T.246 0,03730 Bus ODESSA 1. 1.420 Bus CHRISTIME B228 YES
4 0,593 T.897 0,.07205 Bus BROWMNSVI 2,300 Bus BROWMNSVI 0.2549 YES
5 1.602 8.562 0,04387 Bus FANMNIM 2 F 2,032 Bus FANMIN 2 F 0.8650 YES
B 732 11.936 0.21348 Bus MOMNAHAN 4,054 Bus MOMNAHAMN -0.552%9 YES
7 324 14.207 0,19506 Bus ODESSA 1. 5.268 Bus WHARTOMN 0.2917 YES
3 324 39.346 0.55936 Bus MOMNAHANM 12,994 Bus WHARTORN 0.8722 YES
O B 39.972 0,03815 Bus ODESSA 1. 1.196 Bus POINT COM 01645 YES
10 S 57.683 0.61264 Bus ODESSA 1. 18.504 Bus POINT COR 4. 2760 YES
11 L] 0.0 M.59R50 Rus COINFSS4 10 14.434 Rus WHARTIM 2. 5257 ¥FS

Al
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Takeaways So Far

Al

« Modal analysis can be quickly done on a large number of signals

— Computationally is an O(N?) process for one signal, where N is the number of
sample points; it varies linearly with the number of included signals

— The number of sample points can be automatically determined from the highest
desired frequency (the Nyquist-Shannon sampling theory requires sampling at twice
the highest desired frequency)

— Determining how all the signals are manifested in the modes is quite fast!!
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Visualizing the Modes

Al

 |If the grid has embedded geographic coordinates, the contributions for the
mode to each signal can be readily visualized utilizing geographic data

views (GDVSs)

Image shows the magnitudes of

the components for the 0.63 Hz

mode; the display was pruned to
only show some of the values
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Visualization of 0.76 Hz Mode

Al
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Large Grid Inter-Area Modes

« Analyzing the wide-area dynamic respond of electric grids using the
concept of modes has been a helpful approach for many years

 In North America much of the work has been done in the WECC, with
several 1dentified distinct Inter-Area modes

e Less work has been done on the Eastern Interconnect (El) and ERCOT,
out there are still some identified modes

* Recent research has questioned the extent to which a few distinct modes
exist particularly for the EI

Al
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A Few North America Grid Oscillation Publications

T

 There is lots of prior work describing electric grid oscillations. A few examples
for North American grid oscillations include

F.R. Schleif, J.H. White, “Damping for the Northwest — Southwest Tieline Oscillations — An Analog
Study,” IEEE Trans. Power App. & Syst., vol. PAS-85, pp. 1239-1247, Dec. 1966.

Interconnection Oscillation Analysis, NERC, July 2019.

J. Follum, T. Becejac, R. Huang, "Estimation of Electromechanical Modes of Oscillation in the Eastern
Interconnection from Ambient PMU Data," 2021 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference, Washington, DC, USA, Feb. 2021.

Modes of Inter-Area Oscillations in the Western Interconnection, Western Interconnection Modes
Review Group, WECC, 2021.

R.T. Elliott, D.A. Schoenwald, “Visualizing the Inter-Area Modes of the Western Interconnection,”
IEEE PES 2022 General Meeting, Denver, CO, July 2022.

J. Follum, N. Nayak, J. Eto, “Online Tracking of Two Dominant Inter-Area Modes of Oscillation in the
Eastern Interconnect,” 56th Hawaii International Conference on System Sciences, Lahaina, HI, Jan.
2023.

T.J. Overbye, S. Kunkolienkar, F. Safdarian, A. Birchfield, “On the Existence of Dominant Inter-Area
Oscillation Modes in the North American Eastern Interconnect Stability Simulations”, 57th Hawalii
International Conference on System Sciences, Honolulu, HI, January 2024.
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North America Grid Oscillation Modes

Al

In North American grids there are identified modes that have names,
examples include

- WECC North-South A (NSA): Alberta vs System (0.20 to 0.30 Hz) (10 - 25% damping)
- WECC North-South B (NSB): Alberta vs BC+N US vs S US (0.35 to 0.45 Hz) (5-10%)
- WECC East-West A (EWA): Colorado + E. Wyoming vs System (0.35 to 0.45 Hz)

- WECC British Columbia A (BCA): BC vs N. US vs S. US (0.50 to 0.72 Hz)

- WECC BCB W. edge vs System vs E. edge (0.60 to 0.72 Hz)

— Eastern Interconnect (EI) Northeast vs South (NE-S) (0.15 to 0.22 Hz) (10 — 25%)

— EI Northeast vs Midwest (NE-MW) (0.18 to 0.27 Hz) (10 — 25%)

If they exist, at a particular operating point a mode will have a frequency, a
damping and a shape, with these values changing some as the operating point

changes 47



Do Distinct Inter-Area Modes EXxist?
Al
 Since the modes have been observed under many different conditions they

have quite a bit of variability in their values. There could be two
explanations for this, both of which are consistent with the observed results

— One explanation: at a particular operating point the North American grids have a few
well-defined modes, with each mode having a frequency, damping and shape. As long
as a disturbance excites the mode, it should be observed. The goal is to find these
modes

— An alternative explanation: at a particular operating point the North American grids do
not have a few well-defined modes. They certainly have oscillation patterns, but the
frequency, damping and especially the shapes of these oscillations are disturbance
dependent.
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Electric Grids are Non-linear Systems

Al

Electric grids are non-linear systems, and are likely becoming more non-
linear with the rapid growth of inverter-based resources and other controls

— An increasing number of controls are either operated at limits, or will quickly reach
a limit, meaning there might not be a valid linearization

— Deadbands and other nonlinear controls mean that the grid’s response to small
perturbations can be quite different than its response to large disturbances

Hence there Is a need to question the degree to which linear analysis
technigues can be used to explain the behavior of modern grids

Even the linear system model has a number of modes that could be
Interacting

This questioning is facilitated by recent developments in measurement-
based modal analysis 49
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