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Announcements

• Read Chapters 8 and 9

• Homework 6 is due on Tuesday Nov 21

• Homework 7 should be done before the second exam

• As noted in the syllabus, the second exam is on Thursday Nov 30, 2023

– On campus students will take it during class (80 minutes) whereas distance learning 

students should contact Sanjana.

– The exam is comprehensive, but emphasizes the material since the first exam; it will 

be of similar form to the first exam

– Two 8.5 by 11 inch hand written note sheets are allowed, front and back, as are 

calculators

 1



Seminar on Friday at 11:30 a.m. by Dr Sijia Geng
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Measurement-Based Modal Analysis

• There are a number of different approaches

• The idea of all techniques is to approximate a signal, yorg(t), by the sum of other, 

simpler signals (basis functions)

– Basis functions are usually exponentials, with linear and quadratic functions used to detrend 

the signal

– Properties of the original signal can be quantified from basis function properties 

• Examples are frequency and damping

– Signal is considered over time with t=0 as the start

• Approaches sample the original signal yorg(t)
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Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled points from yorg(t) at a 

sampling value of DT, starting with t=0, with values yj for j=1…m

– Times are then tj= (j-1)DT

– At each time point j, the approximation of yj is 
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Measurement-Based Modal Analysis

• Error (residual) value at each point j is

• The closeness of the fit can be quantified using the Euclidean norm of the 

residuals

• Hence we need to determine  and b
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Sampling Rate and Aliasing

• The Nyquist-Shannon sampling theory requires sampling at twice the 

highest desired frequency

– For example, to see a 5 Hz frequency we need to sample the signal at a rate of at 

least 10 Hz

• Sampling shifts the frequency spectrum by 1/T (where T is the sample 

time), which causes frequency overlap

• This is known as aliasing, which 

can cause a high frequency 

signal to appear to be a lower 

frequency signal

– Aliasing can be reduced by fast sampling and/or low

pass filters   
Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png 6



One Solution Approach: The Matrix Pencil Method

• There are several algorithms for finding the modes.  We’ll use the Matrix 

Pencil Method

– This is a newer technique for determining modes from noisy signals (from about 

1990,  introduced to power system problems in 2005); it is an alternative to the 

Prony Method

– The Matrix Pencil Method is useful when there is signal noise 

• Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that 

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 

501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.
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Algorithm Details, cont.

• Then calculate Y’s singular values using an economy singular value 

decomposition (SVD)

 

• The ratio of each singular value is then 

compared to the largest singular value sc; 

retain the ones with a ratio > than a threshold

– This determines the modal order, M

– Assuming V is ordered by singular 

values (highest to lowest), let Vp be 

then matrix with the first M columns of V

= T
Y UΣV

The computational

complexity increases

with the cube of the number of 

measurements!

This threshold is a value that 

can be changed; decrease it 

to get more modes.
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Aside: Matrix Singular Value Decomposition (SVD) 

• The SVD is a factorization of a matrix that generalizes the eigendecomposition to any 

m by n matrix to produce

where S is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can be used to indicate the 

major components of a matrix (the gist is they provide a way to decrease the rank of a 

matrix)

= T
Y UΣV

The original concept is more than 100 years 

old, but has found lots of recent applications
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Aside: SVD Image Compression Example

Image Source: 

www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Images can be represented with

matrices.  When an SVD is 

applied and only the largest 

singular values are retained

the image is compressed.   
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Matrix Pencil Algorithm Details, cont.

• Then form the matrices V1 and V2 such that

– V1 is the matrix consisting of all but the last row of Vp 

– V2 is the matrix consisting of all but the first row of Vp 

• Discrete-time poles are found as the generalized eigenvalues of the pair 
(V2

TV1, V1
TV1) = (A,B)

• These eigenvalues are the 
discrete-time poles, zi with the 
modal eigenvalues then 
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If B is nonsingular (the situation here) 
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the eigenvalues of B
-1

A
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Matrix Pencil Method with Many Signals

• The Matrix Pencil approach can be used with one signal or with 

multiple signals

• Multiple signals are handled by forming a Yk matrix for each signal k 

using the measurements for that signal and then combining the matrices
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Matrix Pencil Method with Many Signals

• However, when dealing with many signals, usually the signals are 

somewhat correlated, so vary few of the signals are actually need to be 

included to determine the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system modes) while the b 

vector is signal specific (i.e., how the modes manifest in that signal)
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Quickly Determining the b Vectors

• A key insight is from an approach known as the Variable 

Projection Method (from Borden, 2013) that for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium, 

Manhattan, KS, Sept. 2013
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Matrix Pencil Method with Many Signals

• However, when dealing with many signals, usually the signals are 

somewhat correlated, so vary few of the signals are actually need to be 

included to determine the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system modes) while the b 

vector is signal specific (i.e., how the modes manifest in that signal)
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Quickly Determining the b Vectors

• A key insight is from an approach known as the Variable Projection 

Method (from Borden, 2013) that for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 

North American Power Symposium, Manhattan, KS, Sept. 2013

i

1

( )    

And then the residual is minimized by selecting ( )

where ( ) is the m by n matrix with values

( )  if  corresponds to a real eigenvalue,

and ( ) cos( ) and 

i j

i j

k k

k k

t

ji

t

ji i j ji

e

e t









+

+

=

=

 =

 = 

y Φ α b

b Φ α y

Φ α

α

α

( )

1 1( ) sin( )

for a complex eigenvalue; 1

Finally, ( )  is the pseudoinverse of ( )

i jt

i j

j

e t

t j T


+ +

+

=

= − D

α

Φ α Φ α

Where m is the 

number of 

measurements

and n is the 

number of modes  

16



Aside: Pseudoinverse of a Matrix

• The pseudoinverse of a matrix generalizes concept of a matrix inverse to 

an m by n matrix, in which m >= n

– Specifically this is a Moore-Penrose Matrix Inverse

• Notation for the pseudoinverse of A is A+

• Satisfies AA+A = A

• If A is a square matrix, then A+ = A-1

• Quite useful for solving the least squares problem since the least squares 

solution of Ax = b is x = A+ b

• Can be calculated using an SVD
T

T+ +

=

=

A UΣV

A VΣ U
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Least Squares Matrix Pseudoinverse Example

• Assume we wish to fix a line (mx + b = y) to three data points: 

(1,1), (2,4), (6,4)

• Two unknowns, m and b; hence x = [m  b]T

• Setup in form of Ax = b
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Least Squares Matrix Pseudoinverse Example, cont.

• Doing an economy SVD

• Computing the pseudoinverse
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In an economy SVD the S matrix has dimensions of m by m if m < n or n by n if n < m
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Least Squares Matrix Pseudoinverse Example, cont.

• Computing x = [m b]T gives

• With the pseudoinverse approach we immediately see the sensitivity of 

the elements of x to the elements of b

– New values of m and b can be readily calculated if y changes

• Computationally the SVD is order mn2+n3 (with n < m)

– In this example it means it scales linearly with the number of points; matrices with 

m >> n are common

1
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Computational Considerations

• When there is just one signal, the procedure scales with the cube of the 

number of measurements

– This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for 

200 measurements

• If multiple signals are included, it scales linearly with the number of 

signals

• However, a key insight is once  has been determined, each bk can be 

determined with a matrix multiply of a matrix with dimensions of the 

number of modes and number of measurements 

( ) ( )
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k k k k
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= → =y Φ α b b Φ α y
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We can quickly determine how well

 matches each signal
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Modal Analysis in PowerWorld

• Goal is to make modal analysis easy to use, and easy to visualize the 

results

• Provided tool can be used with either transient stability results or 

actual system signals (e.g., from PMUs)

• Three ways to access in PowerWorld 

– From the Modal Analysis button (in Add-Ons)

– On the Transient Stability Analysis form left menu, Modal Analysis (right 

below SMIB Eigenvalues)

– By right-clicking on a transient stability or plot case information display, and 

selecting Modal Analysis Selected Columns or Modal Analysis All 

Columns
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Modal Analysis: Three Generator Example 

• A short fault at t=0 gets the below three generator case oscillating with 

multiple modes (mostly clearly visible for the red and the green curve)
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Modal Analysis: Three Generator Example 

• Open the case B3_CLS_UnDamped

– This system has three classical generators without damping; the default event is 

a self clearing fault at bus 1

• Run the transient stability for 5 seconds

• To do modal analysis, on the Transient Stability page select Results 

from RAM, view just the generator speed fields, right-click and select 

Modal Analysis All Columns

– This display the Modal Analysis Form 
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Modal Analysis Form

Key results are shown in the upper-right of the 

form.  There are two main modes, one at 2.23Hz 

and one at 1.51; both have very little damping.  

First click on Do Modal Analysis to run the modal analysis 

Right-click on signal 

to view its dialog
Signals to 

include
25



Three Generator Example: Signal Dialog

• The Signal Dialog provides details about each signal, including its 

modal components and a comparison between the original and 

reproduced signals (example for gen 3)
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Plotting the original and reproduced 

signals shows a near exact match
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Caution: Setting Time Range Incorrectly Can Result 
in Unexpected Results!

• Assume the system is run with no disturbance for two seconds, and then 

the fault is applied and the system is run for a total of seven seconds (five 

seconds post-fault)

– The incorrect approach would be to try to match the entire signal; rather just match 

from after the fault

– Trying to match the full

signal between 0 and 7 seconds 

required eleven modes!

– By default the Modal Analysis Form 

sets thedefault start time to

immediately after the last event
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GENROU Example with Damping

• Open the case B3_GENROU, which changes the GENCLS to GENROU 

models, adding damping

– Also each has an EXST1 exciter and a TGOV1 governor

– The simulation runs for seven seconds, with the fault occurring at two seconds; 

modal analysis is done from the time the fault is cleared until the end of the 

simulation.  
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The image shows the generator 

speeds.  The initial rise in the speed 

is caused by the load dropping 

during the fault, causing a power 

mismatch; this is corrected by the 

governors.  Note the system now 

has damping; modal analysis tells 

us how much.   
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GENROU Example with Damping

Start time 

default value

Mode frequency, damping, and 

largest contribution of each mode in 

the signals.  The slower mode is 

associated with the governors.
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GENROU Example with Damping

• Left image show how well the speed for generator 1 is  

approximated by the modes
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Dealing with Multiple Signals

• When there are many signals, usually they are at least somewhat 

correlated, so we do not need to include all the signals in the 

calculation of .  

• Based on the previous quick calculation of bk, we can determine 

how well the signals match the . 

• A natural algorithm for improving  is to include the signals that 

do not match  well.  That is, have high residuals.

• This gave rise to what is called the Iterative Matrix Pencil 

algorithm.  

31



Iterative Matrix Pencil Method

• When there are a large number of signals the iterative matrix pencil 

method works by

– Selecting an initial signal to calculate the  vector

– Quickly calculating the b vectors for all the signals, and getting a cost function for 

how closely the reconstructed signals match their sampled values

– Selecting a signal that has a high cost function, and repeating the above adding this 

signal to the algorithm to get an updated  

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. Overbye, "Iterative 

Matrix Pencil Method for Power System Modal Analysis," Proc. 52nd Hawaii International 

Conference on System Sciences, Wailea, HI, January 2019; available at 

scholarspace.manoa.hawaii.edu/handle/10125/59803 
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Texas 2000 Bus Synthetic Grid Example

• For this example we’ll again use the Texas 2000 bus grid, 

saved as TSGC_2000_GenDrop

• We’ll use the Iterative Matrix Pencil Method to examine its 

modes
– The contingency is the loss of two large generators (at bus 7098 and 7099)

This is a synthetic power system model that does NOT represent 
the actual grid. It was developed as part of the US ARPA-E 
Grid Data research project and contains no CEII. To reference 
the model development approach, use:

For more information, contact abirchfield@tamu.edu.

A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.J. 
    Overbye, "Grid Structural Characteristics as Validation 
    Criteria for Synthetic Networks," IEEE Transactions on
    Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

Potential Coal Plant Retirements
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2000 Bus System Example, Initially Just One Signal

• Initially our goal is to understand the modal frequencies and their damping 

• First we’ll consider just one of the 2000 signals; arbitrarily I selected bus 

8126 (Mount Pleasant)
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Some Initial Considerations

• The input is a dynamics study running using a ½ cycle time step; data was 

saved every 3 steps, so at 40 Hz

– The contingency was applied at time = 2 seconds

• We need to pick the portion of the signal to consider and the sampling 

frequency

– Because of the underlying SVD, the algorithm scales with the cube of the number of 

time points (in a single signal)

• I selected between 2 and 17 seconds 

• I sampled at ten times per second (so a total of 150 samples)
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2000 Bus System Example, One Signal

• The results from the Matrix Pencil Method are

Verification of 

results

Calculated 

mode 

information
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Some Observations

• These results are based on the consideration of just one signal

• The start time should be at or after the event!

PWDVectorGrid Variables
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The results show the algorithm trying to match the 

first two flat seconds; this should not be done!!
If it isn’t then…
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2000 Bus System Example, One Signal Included, 
Cost for All

• Using the previously discussed pseudoinverse approach, for a given set of 

modes () the bk vectors for all the signals can be quickly calculated

– The dimensions of the pseudoinverse are the number of modes by the number of 

sample points for one signal

• This allows each cost function to be calculated

• The Iterative Matrix Pencil approach sequentially adds the signals with the 

worst match (i.e., the highest cost function)

( )k k

+=b Φ α y

38



2000 Bus System Example, Worst Match (Bus 7061)

PWDVectorGrid Variables
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2000 Bus System Example, Two Signals

PWDVectorGrid Variables
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The new match on the bus that was 

previously worst (Bus 7061) is now 

quite good!

With two signals

With one signal
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2000 Bus System Example, Iterative Matrix Pencil

• The Iterative Matrix Pencil intelligently adds signals until a specified 

number is met

– Doing ten iterations takes about four seconds
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Takeaways So Far

• Modal analysis can be quickly done on a large number of signals

– Computationally is an O(N3) process for one signal, where N is the number of 

sample points; it varies linearly with the number of included signals

– The number of sample points can be automatically determined from the highest 

desired frequency (the Nyquist-Shannon sampling theory requires sampling at twice 

the highest desired frequency)

– Determining how all the signals are manifested in the modes is quite fast!!
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Visualizing the Modes

• If the grid has embedded geographic coordinates, the contributions for the 

mode to each signal can be readily visualized utilizing geographic data 

views (GDVs)

Image shows the magnitudes of 

the components for the 0.63 Hz 

mode; the display was pruned to 

only show some of the values
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Visualization of 0.76 Hz Mode

44



Large Grid Inter-Area Modes

• Analyzing the wide-area dynamic respond of electric grids using the 

concept of modes has been a helpful approach for many years

• In North America much of the work has been done in the WECC, with 

several identified distinct Inter-Area modes

• Less work has been done on the Eastern Interconnect (EI) and ERCOT, 

but there are still some identified modes

• Recent research has questioned the extent to which a few distinct modes 

exist particularly for the EI
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A Few North America Grid Oscillation Publications

• There is lots of prior work describing electric grid oscillations. A few examples 
for North American grid oscillations include 
– F.R. Schleif, J.H. White, “Damping for the Northwest – Southwest Tieline Oscillations – An Analog 

Study,” IEEE Trans. Power App. & Syst., vol. PAS-85, pp. 1239-1247, Dec. 1966. 

– Interconnection Oscillation Analysis, NERC, July 2019.
– J. Follum, T. Becejac, R. Huang, "Estimation of Electromechanical Modes of Oscillation in the Eastern 

Interconnection from Ambient PMU Data," 2021 IEEE Power & Energy Society Innovative Smart Grid 
Technologies Conference, Washington, DC, USA, Feb. 2021.  

– Modes of Inter-Area Oscillations in the Western Interconnection, Western Interconnection Modes 
Review Group, WECC, 2021.

– R.T. Elliott, D.A. Schoenwald, “Visualizing the Inter-Area Modes of the Western Interconnection,” 
IEEE PES 2022 General Meeting, Denver, CO, July 2022.  

– J. Follum, N. Nayak, J. Eto, “Online Tracking of Two Dominant Inter-Area Modes of Oscillation in the 
Eastern Interconnect,” 56th Hawaii International Conference on System Sciences, Lahaina, HI, Jan. 
2023.

– T.J. Overbye, S. Kunkolienkar, F. Safdarian, A. Birchfield, “On the Existence of Dominant Inter-Area 
Oscillation Modes in the North American Eastern Interconnect Stability Simulations”, 57th Hawaii 
International Conference on System Sciences, Honolulu, HI, January 2024.
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North America Grid Oscillation Modes

• In North American grids there are identified modes that have names, 

examples include

– WECC North-South A (NSA): Alberta vs System (0.20 to 0.30 Hz) (10 - 25% damping)

– WECC North-South B (NSB): Alberta vs BC+N US vs S US (0.35 to 0.45 Hz) (5-10%)

– WECC East-West A (EWA): Colorado + E. Wyoming vs System  (0.35 to 0.45 Hz)

– WECC British Columbia A (BCA): BC vs N. US vs S. US (0.50 to 0.72 Hz)

– WECC BCB W. edge vs System vs E. edge (0.60 to 0.72 Hz)

– Eastern Interconnect (EI) Northeast vs South (NE-S) (0.15 to 0.22 Hz) (10 – 25%)

– EI Northeast vs Midwest (NE-MW) (0.18 to 0.27 Hz) (10 – 25%)

• If they exist, at a particular operating point a mode will have a frequency, a 

damping and a shape, with these values changing some as the operating point 

changes 47



Do Distinct Inter-Area Modes Exist? 

• Since the modes have been observed under many different conditions they 

have quite a bit of variability in their values. There could be two 

explanations for this, both of which are consistent with the observed results

– One explanation: at a particular operating point the North American grids have a few 

well-defined modes, with each mode having a frequency, damping and shape. As long 

as a disturbance excites the mode, it should be observed. The goal is to find these 

modes

– An alternative explanation: at a particular operating point the North American grids do 

not have a few well-defined modes. They certainly have oscillation patterns, but the 

frequency, damping and especially the shapes of these oscillations are disturbance 

dependent.
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Electric Grids are Non-linear Systems

• Electric grids are non-linear systems, and are likely becoming more non-

linear with the rapid growth of inverter-based resources and other controls

– An increasing number of controls are either operated at limits, or will quickly reach 

a limit, meaning there might not be a valid linearization

– Deadbands and other nonlinear controls mean that the grid’s response to small 

perturbations can be quite different than its response to large disturbances

• Hence there is a need to question the degree to which linear analysis 

techniques can be used to explain the behavior of modern grids

• Even the linear system model has a number of modes that could be 

interacting

• This questioning is facilitated by recent developments in measurement-

based modal analysis
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