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Abstract—This paper presents an approach to scenario se-
lection with the goal of improving the accuracy of power flow
simulations, particularly with vast datasets involving load and
weather variables. With large power systems and large amounts
of available data, it is computationally expensive to choose
important scenarios with a higher impact on the operation,
considering load and weather for renewable generation output.
Using the K-Means method for clustering, representative points
are strategically chosen to simulate various solar, wind, and
load conditions. The two selected representative points include
an average and an outlier. Choosing these two points allows
for baseline data analysis as well as anomalies, which can cause
stress in the grid. The method is then demonstrated in this paper
to show its functionality and how it captures the diversity of a
dataset. The resulting clusters help finding interesting scenarios
by addressing the variability that is inherent in power systems.
This leads to improving grid reliability by preparing for a range
of scenarios.

Index Terms—Power flow studies, scenario selection, K-means
clustering, Weather data, load data, FERC-714, electric grid
resilience

I. INTRODUCTION

When conducting planning studies on the electrical grid,
both load and renewable generation vary throughout the year.
Typically, the grid witnesses its peak demand for load during
the summer, with winter ranking second in terms of high
demand. On the other hand, load is typically the lowest in the
spring. The traditional approach to scenario usage involves
utilizing the peak load scenarios in summer and winter, along
with the low load scenarios in spring. However, this paper
departs from the traditional approach by introducing a novel
method for identifying scenarios to be examined in planning
studies, moving away from the conventional focus on specific
operating points.

it is essential to align the level of realism with the specific
objectives of the planning study when running power flow
simulations. In the past, weather has only been modeled im-
plicitly. This includes modeled load values, real and reactive
power output, transmission line limits, transformer limits, and
more.

Weather has long been affecting the grid and although the
implicit methods were adequate in the past, weather data now
needs to be modeled explicitly. The two primary reasons for
this shift is a large increase in amount of renewable generators
(specifically wind and solar) with the continued expansion of
their capacity and the occurrence of extreme weather events
with the need to plan for worst-case scenarios [1].

Incorporating weather data into power flow simulations
is just one characteristic of the evolving landscape in grid
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modeling. Equally important is the inclusion of realistic load
values and trends, reflecting the dynamic nature of power
demand in various regions. The demand for electrical power
exhibits fluctuations influenced by a multitude of factors. One
of these is the significant impact that weather has on the load
in an electrical grid [2]. For example, during the summer
in southern areas of the United States, there is a surge in
electricity due to air conditioning usage. On the other hand
during the same season in more northern areas, there is less
of a surge because it stays relatively cooler. Another factor is
the economic or commercial operations in an area. Industrial
hubs exhibit distinct load profiles compared to residential
areas. Understanding these nuances is vital to understanding
the infrastructure [3].

Another crucial consideration is the utilization of actual
data in these simulations. For the most authentic and reliable
outcomes, it is imperative to employ genuine, real-world data.
The research in [4] also uses publicly available data to create
synthetic time series of load at buses in a synthetic system.
Additionally, [5] also develops scenarios by determining
generation and load characteristics. Similar to these papers,
this paper also uses publicly available data to create scenarios;
the difference here is that a clustering method is used to
reduce the amount of scenarios to be tested.

The research in [6] highlights the importance of clustering
in reducing the amount of scenarios to aid with computational
complexity. The research in [7] and [8] also mention the
benefits in the context energy and power, with the both
considering unit commitment and the second highlighting the
wind generation scenarios. [9] compares several methods to
reduce the amount of tested scenarios and does a case study
on a 24-bus case.

The work in this paper presents a new method of
three-dimensional clustering to study wind generation, solar
generation, and load demand and choose the scenarios for
testing. This is different from other clustering methods, as it
will choose the central scenario as well as the outlier. There
is a great need to study outliers because those scenarios are
when the grid is under stress (the importance of outlying data
in [10]). The scenario selection method will be demonstrated
using Texas data for its renewable generation capacity and
its unique grid situation. This method is aimed at enhancing
the resiliency of the power grid by offering scenarios for
testing in order to plan and prepare for all possible events.



II. SOURCES OF DATA
A. Weather Data

Rather than relying on the output from renewable genera-
tors, as is commonly practiced in the literature, incorporating
raw weather data directly into operational problems, such
as Optimal Power Flow (OPF) as mentioned in [11], can
enhance the precision of renewable generation estimates,
track sudden weather changes, and provide more detailed in-
sights. The proposed approach for directly integrating weather
data into OPF employs conventional methods like Newton-
Raphson, without significantly increasing the computational
complexity.

This paper integrates detailed weather measurements, such
as temperature, wind velocity and direction, humidity through
dew point, solar radiation, and cloud cover, into the as-
sessment of wind and solar generation capacities on an
hourly basis, following the strategy mentioned in [11]. It
harnesses weather data from 1973 to 2022 obtained from
various weather stations across the continental United States,
mapping this data to the generators based on geographic
proximity. In instances of missing weather data, the paper
claborates on the use of Delaunay Triangulation for inter-
polating the adoption of data from the nearest station with
complete records.

Historical weather data, is collected at an hourly gran-
ularity from various sources worldwide. [12], [13] The
International Civil Aviation Organization (ICAO) and the
World Meteorological Organization (WMO) serve as pri-
mary providers of meteorological data, which encompasses
thousands of weather stations across the globe. Additionally,
electric utilities may supplement this dataset. For instance,
real-time weather data from weather stations, identified via
ICAO codes, is accessible at [14].

Public datasets from the U.S. Energy Information Ad-
ministration (EIA-860) [15] offer extensive details on the
United States’ power generators, including fuel type, capacity,
precise locations, and specific attributes for wind and solar
generators. These datasets enable the categorization of wind
turbines and solar cells with similar features into power plants
grouped by location.

For assessing weather impacts on renewable generators,
six distinct models were developed. The first model estimates
wind power plant output using variables such as local wind
speed and turbine power curves, referencing [16], [17], and
[18]. Models two through four, drawing on [19], are variations
of the first, tailored to different wind turbine types. The fifth
model projects solar PV output using local solar data and
the configurations mentioned in [16], while the sixth model,
informed by [20], predicts thermal generator output changes
due to temperature variations. The output values of renewable
resources based on this method are validated in [21].

For this study, the raw weather data was input into
PowerWorld software [22] and thus the power output for
each hour was calculated. From here, it was organized into
solar and wind generation output for each state. This allows
for studying the renewable generation at any given hour
going back to 1973 separated by state.

B. Load Data

The Federal Energy Regulatory Commission (FERC) col-
lects comprehensive data on the wholesale electric market.

One of these datasets is FERC Form No. 714 [23], which is
required for every electric utility with a planning area having
an annual peak demand for power 200 MW or more. The
form contains a section which reports the each planning area’s
hourly demand for each day of the year.

There are several ways that this data can be studied. The
first way is to study each value directly with the MW value
(this is ideal when only studying a certain area). Another
way to is take all the data and normalize the value based
on the maximum. This will give each datapoint a value
between 0 and 1, with 1 being the peak load demand that
area experienced in the year and each other value in the
dataset is a ratio of the maximum. This method is more useful
when doing studies across different areas. For example, if a
researcher wants to compare the load demand in an area with
high population (such as the SPP or MISO footprint) and want
to compare the patterns in load usage to a smaller area (such
as FRCC or WAPA), one can do this because all the values
are between 0 and 1 instead of the actual MW values.

The following images show an example why this is helpful.
For figure 1, one can see from the legend in figure 3 that
SERC in grey, FRCC in orange, and the Northwest in purple
are experiencing a high load demand, while CAISO in blue
is not near its peak. Figure 2 has fairly average load demands
in most areas, while FRCC in orange is experiencing a much
higher demand comparatively. These comparisons would be
difficult to make without normalizing the data between 0 and
1, as the areas all have a difference magnitude of load demand
without their region.
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Fig. 1: Load trends for July 28, 2022 in different US areas
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Fig. 2: Load trends for October 31, 2022 in different US
areas
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Fig. 3: Legend

III. THE PROBLEM

A common challenge faced with such vast datasets is that
there is an abundance of information, but difficulty in finding
meaningful representation of what is presented. For instance,
studying a single year on an hourly basis yields 8,760
data points. When encompassing multiple factors for study,
the number of potential scenarios grows exponentially. To
illustrate, the combination of a year’s worth studying hourly
of two dimensional data leads to 80 million permutations for
analysis. This complexity is compounded by the inclusion of
decades-long datasets, dating back to 1972 for weather data
and the early 2000s for load data.

This sheer magnitude of data points presents a challenge,
due to computational limitations and resource constraints
(time, amount of people working, available computers, etc.).
The need for a discerning approach in data point selection
arises from the practical need to optimize the testing process
and work efficiently, ensuring a focused and meaningful
analysis within the constraints of available resources.

In the past, the load values at the summer peak are often
used when running these simulations, as well as scenarios in
the winter or the spring for lows. Although it is important
to plan for demand that would cause the grid stress, it
is necessary to consider weather, as the dependency on
renewable generation grows. This approach also couples wind
and solar weather data with the load to get accurate, realistic
scenarios to run as operating points.

IV. THE PROPOSED SOLUTION

K-Means Clustering, as explained in [24], is a popular
unsupervised machine learning algorithm that aims to group
data points together based on their characteristics. The solu-
tion proposed here uses this K-Means clustering method in
three dimensions to aid in data point selection. This method
uses three characteristics:

1) Calculated Output of Solar Generation

2) Calculated Output of Wind Generation

3) Total Load

For every n-clusters, there will be 2n-scenarios for testing.
This is because two points will be chosen from each cluster
- the point closest to the centroid and the point furthest away
from the centroid (’closeness’ refers to the Euclidian distance
in three dimensions). This allows for both average data to be
studied as well as the outlying data.

The inclusion of both average data points and outlying
data points is crucial for obtaining a comprehensive under-
standing of the underlying patterns and dynamics within a
dataset. Analyzing average points allows for grasping central
tendencies and typical behaviors exhibited by the features
studied in the power grid, therefore providing a baseline
understanding of the general trends. On the other hand, the
examination of outlying points is equally essential, as these

instances often carry valuable information about anomalous
conditions. The study of outliers aids in identifying potential
scenarios when the grid faces periods of stress. Typically if
a grid can withstand the troublesome times, it can withstand
baseline operations. Thus, the dual exploration of averages
and outliers enhances the robustness of this analysis, offering
a more complete perspective.

When choosing the amount of scenarios that should be
studied, it is important to also consider the data properties.
As explained in [25], the elbow method is a way to determine
the minimum number of clusters a dataset should have. When
calculating the variance that is preserved for an increasing
number of clusters, there is a point in the curve, known as an
“elbow’ or ’knee’ that is a leveling off-point. The integer that
corresponds to this change is often considered the minimum
number of clusters that is ideal for a dataset. It is important to
note that the ’elbow’ point does not exclude the need to have
more clusters, as the amount that is chosen for each study
must reflect the necessary level of depth needed to understand
a situation.

Since this method gives a data point that is only a singular
time snapshot, it would also be beneficial to conduct studies
based on the entire day for the selected time point. This is
particularly helpful when trying to study how the grid morphs
or changes based on past and future conditions. This is only
something to keep in mind based on the studies that are being
performed.

V. CASE STUDY

To effectively demonstrate the method proposed in this
paper, a case study will be showcased utilizing Texas data.
The choice of Texas is particularly apt, given its distinctive
characteristics as both a self-contained grid with large renew-
able penetration and a singular state. This allows us to have
consistent data from one entity, which significantly reduces
the amount of discrepancies in the time-series data used.

For this case study, data from 2021 was used since that
is the latest publicly available load data provided by FERC.
Although for each study, this can be tailored as necessary,
even concatenating data sets that span multiple years or
decades. A single year is easier to demonstrate and visualize
for the purposes of this paper.

This raw load and generation data can be seen in Fig
4. Something to note is that solar generation is relatively
low compared the wind generation and total load, so pre-
processing has to be done on the raw data so that the
algorithm takes the solar generation input into account (such
an normalizing the data so that all variables are given equal
consideration in the clustering process). The different scales
of solar, wind, and load can be seen in Figure 7, as each box
and whisker plot shows the MW values from the dataset.

From here, the elbow method is used. The following result
can be seen in Figure 5, which leads to a selection of 4
clusters to capture the data, as that is the integer that has the
sharpest angle change.

As seen in Figure 6, the data is split into four base clusters.
The characteristics of these clusters can be generalized in
Table I.

It is important to mention that there is only one cluster for
the case of high solar generation independent of total load
and wind generation due to the fact that there is a relatively
low density of data points with high solar generation. This
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Fig. 5: Elbow Plot for Texas 2021 Data

is because solar has many points around zero because of the
nature of solar generation at night. Wind varies around much,
going from 0 MW to upwards of around 30,000 MW. Load
never dips below 25,000 MW for any time points, so this also
is represented in the clusters.

Finally looking at Figure 8, one can see X’s that mark
the data that is closest to the centroids of the clusters. On the
other hand, the diamonds that mark the points that are furthest
from their respective centroid. These furthest points are the
extremes of typical operating conditions that could potentially
affect the stability of the grid. These selected points reduce
the amount of data points that we we have to simulate, while
still having a diverse range of scenarios.

Although the centroid in the green cluster is close to the
pink cluster, it is still a scenario that merits testing, especially
since no other points in its proximity are being tested. Both
the pink and teal outlier point will merit interesting scenarios
that would not normally be tested when studying typical grid
operations.

Figure 9 shows a bar plot of the different scenarios, with
the centroid on top being directly compared to the outlier
in each cluster. This allows one to visualize and easily
understand what is being changed in each of the proposed
scenarios.

VI. CONCLUSION

This paper showed an initial approach for scenario selec-
tion using K-Means clustering. It used both average points

TABLE I: Cluster Characteristics

Color | Solar | Wind | Load

Green | Low | Low Low

Gray | Low | High | Low

Pink | Low | High | High

Teal | High | High | Varies
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Fig. 6: 3D Clustering of Data

of operation that is often seen as well as the outliers that
could potentially cause some stress in the grid. This method
was demonstrated and visualized using data from 2021 in the
state of Texas.

The results help finding interesting scenarios based on
using clusters discovered in the raw data. Future work
includes adding more dimensions into this study, such as
time itself, region, or more weather factors. Adding time as
a dimension for clustering could potentially help in finding
scenarios for different seasons, adding regions could help
in identifying areas of weakness in a grid, and adding
more weather measurements would make the model more
accurate. Validation could also be done by studying these
selected points in PowerWorld and seeing the effects these
scenarios have on the grid.
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