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Abstract—This paper proposes a strategy to solve a fast,
learning-based and computationally feasible unit commitment
(UC) with ac optimal power flow (OPF) and direct inclusion
of weather measurements for large grids. Through the proposed
approach, we determine the on/off status of generating units and
their dispatch. One of the main challenges is that UC with ac OPF
is computationally intractable for large grids over long periods.
The other challenge is that the status of all units are related
and not independent. We leverage multi-label machine learning
classifiers to predict the status of each generator. The proposed
strategy considers load and weather changes at different times
of the year and the availability of the resources in addition to
weather changes. The results show the UC is predicted with high
classification performance metrics and feasible ac OPF results are
achieved. The code for this work is publicly available 1.

Index Terms—Multi-label classification, Unit Commitment,
Optimal Power Flow, Machine Learning

I. INTRODUCTION

Large optimization problems need to be regularly solved
for operation/planning and the analysis of power systems and
electricity markets. Unit commitment (UC) is the process of
determining which generating units to dispatch and when to
dispatch these units. UC must also meet electricity demand at
the lowest cost while satisfying operational constraints such
as the available capacities, consideration of transmission con-
straints, and minimum on/off time constraints. Conventional
UC is proposed and widely used in the literature for dc
optimal power flow (OPF) by including binary variables for
the on/off status of generating units [1] and is considered a
mixed-integer linear programming (MILP). Wood et al. [2]
provides an overview of basic principles of power system
economics, reliability, and dispatch, as well as the technical
details of UC and formulation of a conventional UC with
binary variables. This approach creates challenges such as
increased computation costs for large cases due to the non-
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linear growth of the optimization problem with the size of
variables [3].

In order to have a more detailed model and consider reactive
power limitations, it is necessary to solve ac OPF, which
is non-linear and non-convex and makes the problem even
further computationally expensive. Castillo et al. [4] propose
an approach based on the outer approximation method that
co-optimizes real and reactive power scheduling and dispatch.
Authors of [5] employ a Benders decomposition approach to
determine if a secure ac power flow (PF) solution can be
achieved; in case of network violations, corresponding Benders
cuts are generated and integrated into the master problem
iteratively until ac violations are resolved. Reference [6]
proposes a decomposition method using conic approximations
of the ac equations. Reference [7] utilizes a data-driven linear
ac PF approach that approximates the UC.

Since the size of industry grids are usually in the scale of
thousands of buses and the problem includes nonlinear volt-
age/reactive power control settings, including binary variables
to the ac OPF optimization problem will make the required
problem NP-Hard [8], [9] and much more computationally
expensive. Therefore, performing UC on industry-size grids in
a timely manner using existing methods is not computationally
feasible. It will be impossible to solve such problems with
conventional approaches if the grid being tested is too large
and the studied time horizon is long, as the calculations would
not be solvable in the required time. Therefore, models must
be modified to make the cases solvable in the required time.

Also, the ongoing and continuous increase in the penetration
of renewable energy resources (RES) makes the UC more
computationally expensive. Reference [10] reviews recent
approaches to UC in the context of intermittent renewable
energy resources. The review highlights the need for further
research in the area of UC with intermittent RES, particularly
in developing more accurate and efficient models that can
handle the growing complexity of power systems with high
levels of RES penetration.

Reference [11] disuses the challenges related to the compu-
tational complexity of UC in large electric grids, suggesting
a problem reformulation to improve accuracy and efficiency,
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with a focus on addressing ac UC instead of dc UC, while
emphasizing the potential benefits of ML. Reference [12]
reviews applications of ML techniques for optimizing PF and
economic dispatch. Reference [13] suggests ML models such
as random forest to achieve a fast solution for the UC. Deep
learning-based approaches have also been applied to the area
of ac OPF. Reference [14] investigated augmenting training
data for more representative samples to improve the general-
ization of the model to new data. Graph neural networks were
also used to reduce the number of constraints [15]. A training
strategy using concepts of reinforcement learning [16] helped
with adding additional versatility to the deep neural network.
However, none of these references are solving ac OPF with
UC.

This paper proposes a novel strategy to solve a fast,
learning-based and computationally feasible UC with ac OPF
with direct inclusion of weather measurements for large grids
to determine the on/off status of generating units and their
dispatch. The main benefit of this strategy is when UC is
needed for power system analysis of large grids over long
periods with ac OPF that is computationally intractable. The
main challenge for a leaning strategy is that the status of all
units are related and not independent. The proposed strategy
considers load and weather changes at different times of
the year and the availability of the resources changes with
the weather. The proposed learning strategy is a multi-label
classification to determine the on/off status of the generators
and also consider potential relationships among the generators.

II. PREPARING TRAINING DATA WITH DIRECTLY
INCLUDING WEATHER MEASUREMENTS

The problem for the training data is to determine the on/off
status of units with the goal of minimizing the operation cost
subject to the related constraints that need to be satisfied,
which is minimum on/off times. The output power and com-
mitment of RES such as wind turbines and solar power plants
and their commitment are directly related to the weather mea-
surements. We proposed a strategy in our previous work [17]
for direct inclusion of weather measurements such as wind
speed, wind direction, temperatures, and cloud coverage, in
the OPF. The renewable generators are mapped to the closest
weather stations and their power models determine the power
output and commitment based on the availability of their
resources. Since renewable generators have usually negative
cost offer curves and use free resources, it is beneficial for
the environment and economy to generate power with their
available capacity so we assume that the outputs of renewable
resources are their available capacities at time point and they
are commited if they can generate power.

Also, because of the significant cost associated with the
startup and shutdown, and creation of nuclear power plants,
these units are assumed to remain continuously connected
to the electrical grid, throughout their operational lifespan
and are only disconnected for maintenance in predetermined
schedules, ensuring their reliability and safety. Therefore, the
commitment of nuclear units is predetermined.

The main inputs for the training data creation include the
load at each time point, the fuel type of generators, cost
curves of generators, weather-related available capacities of
generators at each time, and electric grid data. The proposed
UC is mainly based on the energy prices, time-aware gen-
eration capacity and load in a way that the cheapest units
become on until enough generation capacity is available to
satisfy the load and losses in each time step and each area
considering a percentage of load for reserves. To make the
UC more computationally feasible, we ignore the minimum
on/off constraints initially and sort the generators based on
their cost offer values at each point. The algorithm starts by
turning on the cheapest generation until the demand, reserve,
and loss requirements are met. After the initial commitment
is determined, we add a counter and update the on/off status
of units if minimum on/off constraints are not satisfied.

III. PROPOSED MULTI-LABEL LEARNING STRATEGY

The processed data from Section II will be used as an input
to the ML models in order to predict the on/off status of the
generators based on the weather, demand and cost offer curves
of generators. The input to the ML model will be “features”
or information about the electric grid at given time points
such as the load, weather-informed capacity of generators, the
generator constraints such as minimum on/off time limits and
their cost offer curves to satisfy demand. Therefore, the total
number of features depends on the grid size (and the number
of corresponding generators and load entities) and the number
of samples depends on the number of time steps and the study
horizon. The output of the model will be the on/off status of
the generators with the given input features.

Formally, given samples or time points for the generator
with d number of features (e.g., weather-informed generation
capacities, hourly demand) X ∈ Rd and outputs representing
the on/off status of m generators, Y ∈ Rm, the goal of the
multi-output is to find a function, f , that maps the model’s
input and output, f : X → Y . The function (f ) is learned
using the training data and used to predict new, unseen data.
There are five relevant features used per generator: generation
capacity, generator type, minimum on/off time, generator cost,
and overall load at each hour. The number of input features,
d, can be calculated by multiplying the number of generators
(g) by five and adding features for the load, resulting in the
total number of features increasing as the grid size (and the
number of corresponding generators) increases. The labels or
UC results are determined based on these features.

The problem grows exponentially as the number of outputs
increase (i.e., to predict the on/off status of the generators, the
number of solutions would be 2m where m is the number
of generators) since the status of these generators is not
independent of each other. Therefore, algorithms that can
work in a multi-label setting and scenario reductions based on
probabilities are needed. The training process for this model
is a supervised multi-label classification problem [18] that
involves multiple outputs as possible arrays of on/off values
for each generator (sample) as opposed to a single output



for binary or multi-class classification. Final status of units
are determined based on the highest probabilities of them
being on or off in the possible arrays. This work investigated
three models that can be adapted to the multi-label setting:
K-Nearest Neighbors (KNN), random forest, and multilayer
perceptron (MLP). After UC is determined, the ac OPF is
solved based on the input status of units.

IV. CASE STUDY

Due to restrictions on accessing critical energy infrastructure
information, the actual data on power grids are not available
for research. Therefore, synthetic grids [19], which are created
based on generation data from the U.S. Energy Information
Association [20] are used. More information on the creation
of these grids are available in [21]–[23] and these realistic
synthetic grids are validated based on the actual grids in [24]
and [25]. The electric grid used in this study is a synthetic
network geographically sited in Texas, U.S., and covers the
geographic footprint of ERCOT with 6717 buses. This grid’s
detailed data is available at [19].

To construct yearly hourly time series data representing the
load at individual bus levels, the authors employ a procedure
described in previous works [26], [27]. This method involves
utilizing the geographic coordinates of each bus to establish a
distinct electricity consumption pattern for it. Subsequently,
publicly accessible time series data pertaining to building
and facility-level loads are incrementally aggregated to form
a unified load representation at the bus level. The research
employs the proportion of residential, commercial, and in-
dustrial loads at each node in the network, in combination
with location-specific standard load patterns for buildings and
facilities. These elements are utilized to formulate time series
data for loads at the node level. After generating the load
data at the bus level, the total load within each geographical
area is computed and subjected to validation, as described in
references [26], [27]. The validation process relies on publicly
accessible hourly load data for various ERCOT areas, as
accessible from [28].

V. RESULTS

Common metrics to measure ML performance include pre-
cision, recall, F1 score, and average precision. These metrics
are adapted for the multi-label setting through two averaging
strategies such as macro (treats labels independently) and
micro (equal weight to each data point) [18]. These metrics
range from zero (worse) to one (best). We present results of
the UC scenario, in Table II. The initial data was divided
into 70% for training and 30% for testing. Five-fold cross
validation was performed using the training data to find the
optimal hyperparameter settings for three ML algorithms:
KNN, random forest, and MLP.

As noted in Table II, all of the models perform well across
the different metrics. Precision was the highest performing
metrics for all three models overall (except for the micro
average recall for the MLP model). This metrics captures that
the models were successful at achieving a low number of false

positives (i.e., predicting a generator was on, but the generator
was actually off). Major differences occur between the model
when observing the recall metric. Recall captures if the model
was affected by false negatives (i.e., predicting a generator
was off, but the generator was actually on). The MLP was
the most effective at reducing the false negative rate showing
that this model captured more the relationships between the
generator information (or features) and the corresponding
generator status. F1 score measures the harmonic mean of
precision and recall. Since the MLP model achieved a higher
recall, the corresponding F1 scores are higher for this model
in comparison to the KNN and RF models.

To provide more insight in the models’ performance, we
also investigate how the performance of the model is based
on fuel type. In Table I, the classification metrics for the
MLP model are shown. The model performs well on the
renewable generators (wind turbines and solar cells) since
with the direct inclusion of weather, the commitment of these
units directly depends on the weather measurements so with
reasonable weather forecasts there are no misclassifications
(metrics scores are 1 in case of using historical weather data).
Also, nuclear generators are usually on service and only get
offline for maintenance with scheduled times so their status
can be predicted easily. The ”other” fuel type mentioned in the
Table I refers to a variety of fuel types such as wood, biomass
and geothermal so have a wide range of fuel prices but since
it is mostly using cheap fuels, the performance measures of
this type is also high. Despite this success, the model does
struggle with some of the more expensive fuel types such as
coal, which have more UC changes. Our results show that
using ML to predict the status of the generators is feasible.
Figure 1 shows a visualization of Table I through the precision-
recall curves. Ideally, the curve should have high precision and
recall which is indicated if the curves starts at a precision of 1
and maintains a precision of 1 as the recall changes. We can
observe here that the MLP model performed well across the
different fuel types as captured in Table I and the precision-
recall curves shown in Figure 1. The generator type with the
worst performance was coal across the three models.

VI. CONCLUSION

This paper presents a novel approach to address the chal-
lenges of solving a UC with ac OPF in large power grids
over longer time horizons by incorporating weather conditions
that impact resource availability and demand. The proposed
strategy offers a fast, learning-based, and computationally
efficient solution that optimizes the on/off status and dispatch
of generating units considering economic factors. Based on
the interdependence of unit status, we proposed a multi-label
machine learning approach to consider possible commitment
arrays.

The annual UC results are used for training the supervised
multi-label ML algorithms to solve UC more efficiently. The
ML performance metrics include precision, recall, F1 score,
and average precision show the efficiency of the proposed
multi-label approach using KNN, RF, and MLP. After UC is



TABLE I:
CLASSIFICATION PERFORMANCE OF MLP ON TEXAS SYNTHETIC GRID BASED ON FUEL TYPE

Fuel Type Precision
(Macro)

Precision
(Micro)

Recall
(Macro)

Recall
(Micro)

F1 Score
(Macro)

F1 Score
(Micro)

Coal 0.825 0.885 0.800 0.886 0.806 0.886
Distillate Fuel Oil 0.920 0.922 0.951 0.953 0.935 0.937

Hydro 1.000 1.000 1.000 1.000 1.000 1.000
Natural Gas 0.960 0.977 0.960 0.981 0.960 0.979

Nuclear 1.000 1.000 1.000 1.000 1.000 1.000
Other 0.972 0.992 0.972 0.992 0.972 0.992
Solar 1.000 1.000 1.000 1.000 1.000 1.000
Wind 1.000 1.000 1.000 1.000 1.000 1.000

(a) KNN (b) RF (c) MLP

Fig. 1: Precision-Recall curves for KNN, RF, and MLP on the Texas synthetic grid based on fuel type are shown in Figures
1a - 1c respectively. The average precision (AP) score is shown for each curve. AP is between 0 (worst) and 1 (best). The
isocurves (gray lines) show the corresponding F1 scores computed from the precision and recall values.

TABLE II: PRECISION, RECALL, AND F1 SCORE ON
TEXAS SYNTHETIC GRID FOR EACH MODEL. THE MACRO-
AND MICRO-AVERAGES ARE REPORTED RESPECTIVELY FOR
EACH METRIC AND SEPARATED WITH A SLASH.

Model Precision Recall F1 Score
KNN 0.930/0.959 0.849/0.956 0.857/0.957
RF 0.918/0.960 0.852/0.957 0.855/0.958

MLP 0.968/0.983 0.967/0.985 0.967/0.984

determined, ac OPF is solved and the outputs were verified to
be feasible results. Future work on the machine learning as-
pects of the work includes developing novel training strategies
to improve the generalization of the methods to account for
changes in the grid. Additionally, new multi-label algorithms
can be developed to incorporate additional constraints such as
load requirements and cost curves of the ac OPF. The findings
underscore the potential benefits of coupling machine learning
techniques with power system optimization, paving the way
for faster, more environmentally conscious and economically
viable power grid operation.
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