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Abstract—This paper presents an approach for modeling 
weather and other environmental inputs (ENIs) in the power flow 
and related tools with a focus on electric grid transmission 
planning. Such work is needed because of the rapidly growing 
dependence of electric grids on the weather and the need to 
consider the impact of more severe resiliency events. The paper 
presents a modeling approach, and then demonstrates it using 
several large-scale electric grids. Validation is also considered. A 
key contribution is to show that environmental inputs can be 
directly integrated into existing power flow and related tools such 
as contingency analysis and optimal power flow.     

I. INTRODUCTION  
The purpose of this paper to present an approach for 

modeling weather and other hazards in the power flow, with a 
particular focus on providing readily implementable solutions 
for electric grid transmission planning. As defined by the North 
American Electric Reliability Corporation (NERC) [ 1 ], 
Transmission planning (Planning Assessment) for large-scale 
electric grids is, the “Documented evaluation of future 
transmission system performance and corrective action plans to 
remedy identified deficiencies.” This planning considers 
timeframes ranging from near real-time to decades [2].  

While transmission planning has always been challenging, 
it is easiest when integrated with the design of new controllable 
generation and when the anticipated load can reasonably be 
estimated [3]. It is much more challenging under the conditions 
that now exist in many locations where new generation is not 
directly planned, and large amounts of wind and solar 
generation are making the grid much more weather dependent. 
Further challenging planning is the growing desire to enhance 
the resilience of electric grids to a variety of potentially 
disruptive events [4]. The most important planning tools are the 
power flow, and related applications such as optimal power 
flow (OPF) and contingency analysis. The goal of this paper is 
to improve planning by expanding these tools to more directly 
model the impacts of weather and other resiliency hazards.  

The power flow is a steady-state analysis tool that assumes 
an electric grid is operating at a constant frequency. The tools 
used in transmission planning usually assume a perfectly 
balanced three-phase grid and uniformly transposed 
transmission lines, allowing for the solution of a simpler 
positive sequence model. In its simplest form the key power 
flow input variables are 1) the real power values for the 
generators, 2) the generator setpoint voltage magnitudes, 3) the 
real and reactive power values for the loads, and 4) the 
transmission line and transformer (branch) statuses. The power 
flow then calculates all the bus voltage magnitudes and angles, 
allowing for the power flows on all the branches to be 
calculated. With assumed branch limits, the percentage loads 
can be determined. The OPF extends the power flow by 

allowing some of these inputs to vary, such as the generator real 
power values, to do an optimization, usually minimizing 
generator cost subject to variety of constraints including the 
branch flow limits. 

The electric grid, and by extension the power flow, can be 
directly impacted by weather and other resiliency hazards such 
as earthquakes, wildfires, geomagnetic disturbances (GMDs) or 
volcanic events. Here these external events are referred to as 
environmental inputs (ENIs). Direct power flow modeling of 
ENIs requires making some of its parameters functions of one 
or more ENIs.  

Which ENIs should be included is problem dependent. 
However, some are much more generically applicable than 
others. For example, with many grids now having large 
amounts of wind and solar generation, whose outputs are 
inherently ENI dependent, at least some weather information 
(e.g., wind speed, insolation, cloud cover, temperature) should 
usually be included. To deal with other weather-related events, 
such as hurricanes, ice storms, or derechos, this information 
could be expanded to include wind gusts, and precipitation. 
Other events such as earthquakes, wildfires, geomagnetic 
disturbances (GMDs) or volcanic events would require 
additional ENI datasets. This paper presents a general approach 
for handling a wide variety of ENIs, with more specific 
coverage of weather-related events.  

As is the case with any engineering analysis tool, directly 
modeling ENIs in the power flow involves tradeoffs between 
factors including accuracy, complexity, problem scope, and 
model parameter availability. This is recognized in the well-
known quote, “Remember that all models are wrong; the 
practical question is how wrong do they have to be to not be 
useful” [5]. Such tradeoffs are just an extension of what has 
already been done for decades with power flow design. For 
example, while three-phase power flow formulations are well-
known [ 6], the simplicity benefits of the positive sequence 
approach usually outweigh any potential three-phase benefits. 
Similar tradeoffs exist with ENI modeling. For example, how 
much accuracy is needed with weather inputs such as wind 
speed or insolation, or how much detail is needed to model the 
impact of an eclipse on solar generation [7]. These issues are 
considered later in the paper, with a specific focus on the 
requirements for transmission planning. 

An implicit assumption in this approach is the availability 
of geographic coordinates for all the electric grid components 
of interest. While this information had not been historically 
included with many power flow models, now it is either directly 
available, or fairly easily obtainable at least at the electric 
substation level. Examples of planning model manuals 
specifying the need for substation latitude and longitude include 
[8] and [9]. 
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The paper results are demonstrated using three large electric 
grids. The first is a 6717 bus (7K), 345/138/69 kV synthetic grid 
covering most of the US state of Texas [10], [11]. Its oneline is 
shown in Figure 1. The second is a synthetic 23,643 bus (24K) 
grid covering much of the central part of the US [12]. The third 
is a series of copper plate [13] grids developed using US Energy 
Information Administration Form 860 (EIA-860) [14] data that 
provides information on all generators in the US larger than 1 
MW, including their geographic location [7]. Figure 2 
visualizes the wind and solar generation from the EIA-860 grid 
developed using installed generation at the end of March 2024 
using the geographic data view (GDV) approach [15]. In the 
figure the green ovals show the wind and the yellow ovals the 
solar generation, with the oval size proportional to the installed 
capacity. All of these grids are publicly available at [16].  

 

 

Figure 1: Texas 7K Synthetic Grid Oneline 

 

Figure 2: EIA-860 Case Wind and Solar Maximum Capacity (Q1, 2024) 

The remainder of the paper is organized as follows. The next 
section presents the approach integrated into a discussion of 
prior work in the area. Then Section 3 addresses how the 
approach can be validated. The following section provides 
some specific examples, while Section 5 provides some future 
directions. All calculations and visualizations are done with 
PowerWorld Simulator Version 23.    

II. APPROACH 
Incorporation of ENIs into the power flow requires 

consideration of two main issues. First, additional models are 
required to represent the impact of the ENIs on the power flow 
component models. Second, the ENIs need to be adequately 
represented over the electric grid footprint of interest including 
each impacted device. This section addresses each of these 
issues. The approach presented here builds on the large amount 
of prior work in the pertinent domains, with the paper’s 
particular focus being providing an approach that can, and to 
some extent already has been, implemented in commercial 
transmission planning software.  

For the first issue, the modeling methodology presented 
here builds on the prototype approach from [17]. That is, to 
imitate the electric grid stability modeling approach in which a 
variety of model types are used to represent different system 
devices (e.g., load models, machine models, governors, line 
relays, etc.). When digital stability programs first appeared 
around 1960 the number of available models was quite small, 
all associated with the synchronous generators [18], and then 
over the years the number grew and became more standardized. 
Now stability software vendors support many 100’s of different 
models covering an expanded number of electric grid object 
classes (e.g., synchronous generators, renewable generators, 
loads, HVDC lines, relays, etc.). In a similar manner the initial 
set of models needed to represent the electric grid impacts of 
ENIs in the power flow would start small and grow as the needs 
expand.  

Using the naming from [17], these new models are referred 
to as PFW Models (“power flow weather” or more broadly 
“power flow whatever” models). The PFW models can be quite 
simple, such as setting a wind generator’s maximum power 
output based on its hub height wind speed and its wind power 
curve (WPC), or solar PV output based on the Global 
Horizontal Irradiance (GHI) and Direct Horizontal Irradiance 
[ 19 ]. They could be of medium complexity, such as 
transmission line ambient-adjusted ratings [ 20 ], dynamic 
transmission line ratings [ 21 ], or the variation of thermal 
generator’s power output based on their ambient output 
temperature [18]. Or they could also be more complex, such as 
setting a transmission line’s limit based on weather along its 
right-of-way including potentially different limiting devices. 

These models could also be stochastic. For example, 
modeling the likelihood that electric load at a bus would be lost 
due to a variety of different weather or other ENIs, the failure 
of substation equipment or transmission lines due to an 
earthquake, the availability of virtual power plants (VPPs), the 
restoration time for devices, or the increasing likelihood of 
generator failures during cold temperatures [22], [23]. For both 
deterministic and stochastic classes many such models do 
already exist in the literature, with others still needing to be 
developed. For example, [24] discusses failure probabilities of 
power system assets. Validation, covered in the next section, is 
also important. 

A consideration in the development of the PFWs is the 
availability of potential parameters versus the required 
accuracy. For example, in the US the Energy Information 



 

Administration Form 860 (EIA-860) [14] provides information 
on all generators larger than 1 MW, including their geographic 
location. For the wind generators the EIA-860 also gives their 
turbine manufacturer and model, hub height, wind quality class 
(ranging from Class 1 for high wind to Class 4 for very low 
wind), and the design wind speed. In developing the wind 
generator PFW models the availability of this information has 
been considered by including generic models for each of the 
wind quality classes using data from [ 25 ], and then also 
including a PFW model in which the individual points on the 
WPC can be specified. Detailed WPCs for all of the EIA-860 
wind turbines (2020 data) is available at [26]. Figure 3 shows 
the WPCs for the four generic types, while Figure 4 compares 
the detailed WPC for a large wind turbine (EIA 860 Plant ID 
60619) with its generic Wind Class 2 model. While not 
considered here, more advanced PFW models could be defined 
that include other inputs such as temperature dependence in the 
WPC [27].    

 

 
Figure 3: Wind Turbine Class PFW Models [25] 

 

Figure 4: Comparison of Detailed and Class 2 Wind Turbine PFW Models  

For solar cell models, the main parameters include the 
installed capacity of real power, the type of solar PV tracking 
(fixed, single-axis, dual-axis), the azimuth, the tilt angle, and an 
assumed sky diffuse).  The solar model estimates PV generation 
using local solar radiation, or the standard equations for 
insolation based on location and time of day including cloud 
cover which is combined with the solar power point tracking 
model to determine the sun's tilt and azimuth angles [19]. The 
input of the inverter loading ratio [28] is also included. This 
ratio models that the DC power output of a solar PV is often 
larger than the AC power due to system losses, conversion 
losses, power factor and inverter clipping [29, 30]. A high DC-

AC ratio means the solar panel's DC capacity is significantly 
larger than the inverter's maximum AC output capacity. When 
the DC output from the solar panels exceeds the inverter's AC 
output capacity, the excess energy is not converted to AC. 

The second main issue associated with ENI modeling in the 
power flow is ensuring it is adequately represented over the 
electric grid footprint of interest. How much detail is required 
depends on the particular ENI, and how much accuracy is 
needed or even possible in determining the power grid inputs. 
From a power flow perspective, the ENIs can be grouped into 
two major classes: 1) those that inherently interact with the 
electric grid and hence require additional modeling, and 2) 
those that do not. Examples of the first include modeling the 
impact of the quasi-dc geomagnetically induced currents 
(GICs) caused by either a geomagnetic disturbance (GMD) 
[31], [32], or a high altitude electromagnetic pulse (HEMP) 
[33], [34], and the modeling of temperature induced changes to 
the branch resistance in which the change depends not only on 
the ambient weather but also the branch flow [35]. Most ENIs 
are in the second group, such as weather, earthquakes, wildfires, 
and volcanic events. That is, these are events that can impact 
the electric grid, but the electric grid doesn’t particularly 
influence them. 

The PFW approach can be used with both classes, though 
the focus in this paper is on the second, with a particular 
emphasis on weather. Still, before going further it is useful to 
briefly consider the integration GMDs into the power flow as a 
case study of what this paper advocates can be done with many 
ENIs. GMDs have been known to impact electric grids by 
causing GICs since the 1940’s, with research grade software 
integrating GMDs into the power flow presented about 40 years 
later [31]. Over the next 30 years to the extent GICs were 
included in the power flow it was done through external 
calculations [36]. Then with concentrated industry focus [32] 
GMDs began to be integrated into commercial power flow 
software [37]. Now, at least in North America, all of the major 
power flow vendors have GMD add-ons that take the GMD 
ENIs (i.e., an electric field with temporal and spatial variation), 
calculate the associated GICs, and then use models to determine 
the power system impact. This has helped in the development 
of standards for GMD assessment [38]. 

Currently most other ENIs are being considered in the 
power flow either at the research level or through external 
calculations, such as to determine wind generator power outputs 
or the iterative approach of [24], with the results then imported 
into the power flow. The premise here is that much of this can 
be done in a straightforward manner within power flow 
packages. Key to this is having an easy ability for the power 
flow to access a spatial-temporal model of the ENIs. The 
approach used here is to leverage what is already done with 
GMD analysis and use a single file format for loading the ENIs. 
This format, known as PWW (“PoWer Weather,” or “PoWer 
Whatever”) files, allows easy modeling of any number of time 
and spatially varying ENI quantities in a public format [39] 
(with the latest documentation at [40]).   

For example, to model the weather impacts on the grid (e.g., 
wind and solar generation or transmission line limits) the PWW 



 

file contains values such as temperature, dew point, wind speed 
and direction, wind gusts, cloud cover percentage, and if 
available solar irradiation values. As noted in [41] there are a 
number of weather datasets available that could be used for 
planning, with the main desired attributes being 1) including the 
necessary variables, 2) covering multiple decades with ongoing 
extension, 3) coincident and physically consistent, 4) validated, 
5) documented, 6) physically refreshed and 7) available and 
accessible. Example datasets include The European Centre for 
Medium-Range Weather Forecasts (ECMWF) Re-Analysis 
fifth generation ERA5 [ 42 ], the National Aeronautics and 
Space Administration’s Modern-Era Retrospective Analysis for 
Research and Applications (MERRA) (or MERRA-2 which is 
an update of MERRA) [43], the High-Resolution Rapid Refresh 
Model (HRRR) [44], and more specialized products such as the 
WIND Toolkit [ 45 ]. All of these have their strengths and 
weaknesses [46], and their data could be modeled using the 
PWW file approach. This paper’s purpose isn’t to advocate for 
a particular format, rather just to indicate wide availability. 
Forecast data could also be used, either near-term forecasts 
(e.g., from [47]) or longer-term data [48]. The weather results 
presented in the remainder of the paper are done using ERA5 
data, which has a spatial resolution of 0.25 degrees (roughly 31 
km), with values for most of North America going back to 1940 
in the PWW format available at [40]. The wind generation 
examples presented here use ERA5 10m and 100m wind speed 
to estimate the hub height speed. The impact of spatial 
resolution on planning is considered in the next section. 

  Other ENIs including earthquakes, wildfires and volcanic 
eruptions could also be considered using this approach. For 
example, with earthquakes useful background modeling is 
presented in [49] and [50], and one likely useful earthquake 
dataset is at [51]. For events in which there is a coupling of 
more than one ENIs separate PWWs could be used to represent 
each separate event with their results combined. For example, 
considering the impact of hypothetical wildfire smoke on solar 
generation coupled with historical irradiation values, with the 
conclusion of [52] is that “wildfires can significantly attenuate 
the solar radiation at both short downwind distances as well as 
far from emissions sources.” By creating PWWs that represent 
the spatial and temporal variation in the smoke from either past 
or hypothesized future events, planners could consider wildfire 
smoke risk in their designs. A purpose of this paper is to help 
the transfer of such research results into planning practice. 

An example of such modeling that has already occurred is 
the representation of the October 14, 2023, annular eclipse and 
the April 8, 2024, total solar eclipse on the US solar generation. 
Both events were modeled a priori with the PFW approach by 
combining solar irradiation data (both clear sky and using 
assumed cloud cover) with a representation of eclipse. Figure 5 
shows a visualization of the April event in which a color contour 
is used to show the normalized irradiation during the event (here 
assuming clear skies) with GDVs used to show the solar 
generation; a movie of the event with a one-minute resolution 
is available at [53]. 

III. VALIDATION 
Before presenting additional examples, it is important to 

address the issue of validation. From a modeling and simulation 
(M&S) perspective, validation is used to determine the degree 
to which the M&S accurately represents the real world from the 
perspective of the intended users. Here the users are assumed to 
be planners of large-scale electric grids, whose focus is (as 
noted earlier) to ensure future transmission system performance 
and corrective action plans to remedy identified deficiencies.  

Given that planning is forward-looking, validation is 
focused on ensuring future ENIs are adequately modeled, and 
that the PFWs models adequately represent the impact of the 
ENIs on future grids. Except in rare situations like eclipses, 
future ENIs are not precisely known. Of course, historical 
information can be quite helpful in determining potential events 
to consider, as can M&S be applied to hypothesized ENIs. Still 
there is substantial uncertainty in the ENIs, so planners often 
need to consider a host of scenarios.  

 
Figure 5: Impact of the April 8, 2024, Eclipse on US Solar Generation  

From the perspective of this paper validation is focused on 
1) determining the accuracy of PFW Models to represent the 
impact of the ENIs on the electric grid, and 2) ensuring the ENIs 
are being adequately represented at the location of the grid 
equipment. Out of scope here is the accuracy of the actual ENIs. 
So, for a wind generator validation here considers whether the 
PFW model adequately represents its wind power curve, and 
whether the wind speed source (e.g., ERA5 with its 0.25 degree 
resolution) adequately represents the wind speed across the 
wind farm. Not considered is the accuracy of the ERA5 data 
itself. Or for an earthquake the ENIs might be peak ground 
acceleration and then the PFW model implements an asset 
fragility such as used in [50].  

The amount and type of validation will be ENI and PFW 
model dependent. In some cases, such as with wind generation, 
the PFW is fairly well defined, though temperature dependence 
might need to be considered [27]. However, there could still be 
errors because, as noted in [41], hub height wind speed over the 
wind farm can be quite localized, with variations well below the 
accuracy of many weather datasets such as ERA5 (a potential 
at least approximate correction for this is covered in the 
following example). For other ENIs, such as earthquakes and 
ice storms, there is currently a large amount of uncertainty 
associated with potential PFW models and/or the impact of the 
ENIs at the component location. As is the case with stability 
models, in which validation has been an ongoing effort for 



 

many decades, validation will be an ongoing activity, albeit 
hopefully with gradually improving models. 

As an example of how validation can be used to improve the 
PFW models and their parameters, consider the common 
situation of determining wind generator maximum outputs 
based on wind data. Since wind generation is usually operated 
at maximum power, ideally validation would compare the 
generators’ actual output with the calculated values. While 
actual output information might be available to power grid 
planners, it is seldom publicly available. However, some 
information is available, including 2017 individual plant 
capacity factors (CFs) [54]. This allows for comparison, which 
is done in Table 1 for ten large wind generators across the 
contiguous US (CONUS).  

In the table Column 2 shows the actual reported value. 
Column 3 then shows the CFs from 2017 in [26], which uses 
the meteorological data described in [55] with 0.25 degree 
resolution. Column 6 then shows the calculated CFs using this 
paper’s CF with ERA5 data (0.25 degree, 31 km resolution) and 
the WPCs from [26]. Here the Column 6 CFs are calculated by 
using the hourly weather for 2017, applying it at each 
generator’s location using its WPC, summing the 8760 hourly 
values to get its estimated energy output for the year, and 
normalizing the result by dividing this sum by its power 
capacity times 8760 hours.   
Table 1: Comparison of Actual vs Calculated Capacity Factors (CFs) (2017) 

Plant 
Code 

Name State Actual 
CF [54] 

Ref 
[26] 
CF 

This 
Paper 

CF 

Wind 
Scalar 

56290 Maple Ridge NY 0.28 0.39 0.25 1.05 

56777 Fowler Ridge IN 0.25 0.28 0.25 1.0 

57195 Lower Snake 
River 

WA 0.24 0.21 0.15 1.22 

57449 Blue Creek OH 0.31 0.35 0.30 1.01 

57501 Rolling Hills IA 0.33 0.40 0.33 1.0 

57787 Flat Ridge 2 KS 0.43 0.47 0.43 1.0 

57983 Stephens 
Ranch 

TX 0.41 0.50 0.51 0.88 

58008 California 
Ridge 

IL 0.44 0.44 0.38 1.09 

58695 Grande 
Prairie 

NE 0.44 0.43 0.42  1.02 

58883 Highland IA 0.39 0.45 0.39 1.0 

Overall, the match is quite good. However, even if the WPC 
is correct an exact match would not be expected because of two 
opposite effects. First, since the actual CFs include the impact 
of some turbines not being available (e.g., on maintenance) and 
possible output curtailments due to transmission issues, the 
actual CF would be slightly lower than the calculated value. 
Second, given that with many weather datasets the wind speed 
would not be available at the wind farm, there will be the 
potential for error. Since wind farms are often built in locations 
with locally high winds (e.g., ridges or mountain passes), a 
weather measurement even just a few km distant would likely 
underestimate the wind speed. This is seen in the table data in 
which this paper’s results tend to underestimate the actual CF. 

One way in which the PFWs could be created to compensate 
for this difference is to include an additional “wind scalar” 
parameter, in which the calculated hub height speed is scaled to 
account for this terrain variation. While not a perfect solution, 
the improved results could be sufficient for transmission 
planning needs. The advantage of this “wind scalar” approach 
is the values need to only be calculated once, and then they can 
be used with all future studies. The calculated scalars for the 
table generators are given in its last column.     

IV. EXAMPLES 
This section provides three example applications of the 

paper’s approach. The first shows the impact of including 
weather with the power flow. Wind and solar power generation 
units often function at their maximum capacities, based on the 
weather-dependent availability of the input wind or irradiation 
resources. Of course, over a large electric grid they would 
seldom all be at their maximum outputs. By directly modeling 
weather, planners can start with a realistic dispatch for these 
generators in the power flow, and then adjust other generators 
to meet constraints such as on area interchange. Outlier 
conditions could also be considered, such as times in which 
renewable generation is at its maximum or minimum. Figure 6 
and 7 show and compare GDVs of all renewable generators 
larger than 20 MW in US at the times with high and low 
availability of renewable resources in the US based on EIA 860 
grid data in the first quarter of 2024. For consistency with solar, 
only noon (US Central Time) was considered from 1940 to 
2023.  

 
Figure 6: CONUS Wind and Solar at a Time of High Availability 

 
Figure 7: CONUS Wind and Solar at Time of Low Availability  



 

On a percentage basis 73% percent of the available 
resources could have been producing under high conditions, 
while on 15% would have been available under low conditions. 
The contours show the cloud cover percentage with the blue 
color referring to 0% total clouds and symbolizing the blue-sky 
conditions, while yellowish white refers to 100% clouds. Figure 
8 and Figure 9 duplicate this analysis except just focusing on 
wind generation for the previously mentioned 24K bus grid. In 
these figures the contour shows 100m wind speeds.  

 

 
Figure 8: 24K Grid Wind Generation Output for Low Load, High Wind 

 
Figure 9: 24K Grid Wind Generation Output for Low Load, High Wind 

The second example shows the impact of including weather 
on nodal electricity prices. Since renewable energy resources 
usually have zero or negative cost curves, the availability of 
these resources has a major impact on electricity prices and 
locational marginal prices (LMPs) [ 56]. Once PFW models 
have been setup for a grid, historical weather can be used to 
study how the grid would have responded, with a particular 
focus on more outlier conditions. The assumption with this type 

of analysis is future conditions could certainly be similar to 
what has occurred in the past. Using historical weather data of 
Texas (1940 to 2023), the two weather conditions that would 
have caused the highest and lowest renewable generation for the 
Texas 7K synthetic grid are found and an optimal power flow 
(OPF) with direct inclusion of weather measurements is solved 
under the same load for comparing the impact of these ENIs. 
Figure 10 shows data for the day and time with the highest 
values, and Figure 11 the one with the lowest. Both figures use 
GDVs to show the renewable generators larger than 10 MW 
with wind generation in green and solar in yellow while the 
sizes of the ovals are proportional to the available capacity of 
these units. Both figures also include a contour showing their 
bus LMPs [57]. 

 

Figure 10: Time with the Largest Amount of Wind and Solar  

 

Figure 11: Time with the Least Amount of Wind and Solar  

The last example considers times with weather conditions 
that would result in extended periods of low availability of 
renewable resources especially at times when the load is high. 
These events are defined as renewable resource droughts (RRD) 
[58], with a number of papers focused on their identification 
including a few covering North America [59], [60], [55]. To 
date RRD identification has been done by researchers; the goal 
here is to show how the approach presented here can help make 
it part of transmission planning. 



 

What constitutes an RRD depends upon not just the weather 
conditions, but also on a number of other conditions. These 
include the available wind and solar plants, the load, the 
availability of other generation including hydro, and available 
transmission [55]. This information is often very system 
specific and would best be known by the transmission planners. 
So, the purpose of this example is to sketch out what a planner 
could do. In this example, to identify potential RRDs the ENI 
source is hourly weather data from 1940 to 2024, which is used 
to calculate the wind and solar generation output. Here it is 
based on the EIA-860 data for renewable generation units but 
could be generalized to an actual grid model. Specifically, the 
average generation output for each hour of each day across the 
entire dataset is calculated. This process involved aggregating 
hourly data for each day of the year and then averaging these 
values for each hour of a year over the 84-year period, resulting 
a graph that is shown in Figure 12. Renewable resource 
droughts in this work are identified according to the criteria 
outlined in [60], however these could easily be modified based 
on grid requirements. This figure provides a summary of the 
overall historical wind generation statistics at each hour over 
the years, displaying the average, minimum, and maximum, of 
historical data for each hour in Texas and shows drought 
threshold in dotted black curve.  

 

Figure 12: Historical Distribution of Wind Energy Assuming EIA-860 Units 
 
Therefore, the first step to analyzing the renewable energy 

status is to analyze the available historical renewable energy 
outputs based on weather data at each point in time (here hour) 
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and each zone under study. A starting point for drought zones 
is using states or provinces, or electric grid control areas but the 
RRD zones can be extended based on the impacted area under 
droughts at each time. So, graphs like Figure 12 should be 
created for each state or zone. After drought threshold is 
determined based on historical data statistics such as a specific 
percentage of average wind or solar generation at each hour of 
the year over all historical renewable power calculations, each 
point in the past, current or future is compared to the drought 
threshold. RRDs with long durations and large impacted areas 
can create serious problems for the grid. Also, the severity of 
the drought is based on the difference between the renewable 
output at the time of study and the defined drought threshold.  

This strategy helps simulate possible RRDs in the future to 
find their impact on the grid. After the problems such as 
generation shortage, line congestion or voltage and frequency 
issues are identified, preventive planning actions such as 
building new transmission lines, proposing new resources 
especially energy storage devices and adding reactive control 
devices such as switching shunts are considered.  

V. CONCLUSION AND FUTURE DIRECTIONS  
This paper has presented an improved approach for 

modeling the impact of weather and other electric grid 
resiliency events (ENIs) in the power flow with a focus on 
large-scale electric grid planning. Addressed issues include a 
modeling approach to represent the impact of ENIs on various 
electric grid components, considerations in adequately 
modeling the ENIs over the electric grid footprint of interest, 
and validation considerations. Several large-scaler examples 
have been presented with consideration of the visualization of 
the results.  There are many directions for future work including 
the development of many more PFW models, continuing work 
in validation, the sensitivity of the results to the models, 
determining the required detail and variables in the 
representation of the ENIs, application of machine learning 
techniques to search for outlier conditions to study, 
computational considerations in processing many different ENI 
scenarios, and potential convergence issues associated with the 
power flow.  
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