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Abstract—This paper presents a comparative analysis of
renewable energy power output using forecast weather with
different margins and historical weather data as benchmarks
for selected days. The analysis evaluates the accuracy and
performance trends of solar and wind forecasts against historical
data, focusing on uncertainties at various forecast horizons. The
benchmark hourly power generation data is used to compute
relative errors, providing insights into temporal variations. Vi-
sualizations highlight the alignment between forecast trends and
historical patterns, qualitatively assessing weather impacts on
generation. The results for wind generation indicate that a seven-
day forecast can achieve an accuracy of 80 percent, while a five-
day forecast can reach an accuracy of approximately 90 percent.
However, forecasts beyond ten days are only about 50 percent or
less accurate compared to actual data. In contrast, the results for
solar generation show comparable levels of accuracy throughout
the entire forecast date but with higher average error values.
This information is useful for grid operation, planning, electricity
market, reliability and resilience studies and energy management.

Index Terms—Renewable energy, historical and forecast
Weather data, prediction, synthetic power grids

I. INTRODUCTION

The rising global demand for energy-intensive technologies,
such as data centers, cryptocurrency mining, and EV charging
stations, is driving a continuous increase in energy needs.
To meet this demand, renewable energy sources have been
increasingly utilized due to their benefits, including economic
and environmental advantages. However, renewables are in-
herently dependent on weather conditions, which pose several
challenges for their use as a reliable and consistent energy
supply. Variability in weather patterns, seasonal changes, and
geographical differences impact the effectiveness of renewable
energy, creating obstacles to adapting these sources for high-
energy-demand systems. Therefore, understanding the direct
impact of weather and forecasts on power systems, as well as
long-term renewable energy forecasting, has become crucial
for efficient integration.

Accurately simulating weather conditions is crucial for
improving forecasts of demand and power generation. This
topic has garnered significant attention, particularly for solar
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energy production [1], [2] and wind energy [3]–[5]. Ini-
tial studies were made in 1991 [6], emphasizing the need
to include weather variables in power system assessments,
particularly for evaluating contingencies and outages during
extreme weather. Recent studies, such as [7], underscore the
role of weather in assessing the resilience of power system
infrastructure.

The growing interest in integrating weather data into power
system planning and operations led to tools like ”Renew-
ables.ninja” [8], [9] that provide estimates of global renewable
energy output based on weather data for 2019 as a sample
year. Similarly, the PLUSWIND database [10] offers hourly
wind speeds and estimated generation data for nearly all U.S.
wind plants from 2018 to 2021, enabling detailed analysis of
wind generation’s geographic and temporal variations. later,
a more general study [11], suggested a strategy for directly
including weather data to optimal power flow problems based
on renewable and thermal weather-dependent power outputs
that can use any available historical or forecast weather
resources.

The long-term forecast of renewable power generation with
the idea of possible uncertainties can significantly improve
planning studies, grid stability analysis, and meeting the
demand for renewable energy. Having weather forecast data
and their impact on the grid allows operators to proactively
prepare for potentially critical weather conditions, helping to
prevent outages.

Many studies have focused on forecasting renewable energy
generation output. Reference [12] utilizes Numerical Weather
Prediction (NWP) data to forecast wind power generation at a
wind farm located in northwest China. They employ a training
model based on actual data to predict wind power output for
the following seven days. The results of the study highlight
the influence of wind turbine type and wind direction on the
accuracy of the forecasts.

The authors in [13] developed multiple machine learning
models for long-term forecasting, which were trained using
historical load and weather data. This study analyzes the
contributions of specific weather and temporal features to
enhance the model’s accuracy.

The study referenced in [14] utilized wind turbine char-
acteristic curves and power system simulation tools, such as



TABLE I: Historical and forecast solar power generation simulation results

Date Time California (Historical) California(Forecast) Florida (Historical) Florida (Forecast) Texas (Historical) Texas (Forecast)
7/15/2024 10:00:00 AM 2688.1 6364.4 1323.0 791.5 2876.6 3445.6
7/15/2024 11:00:00 AM 4247.9 6179.1 2075.2 1260.0 3968.3 3906.0
7/15/2024 12:00:00 PM 6612.7 7396.3 4003.4 2734.4 5489.8 4922.7
7/15/2024 1:00:00 PM 9348.5 9030.1 4616.5 3294.3 7493.8 6521.2
7/15/2024 2:00:00 PM 12771.0 11518.3 3086.1 1846.3 7030.8 5245.8
7/15/2024 3:00:00 PM 11057.6 10138.0 2046.9 1138.1 5173.3 3291.2
7/15/2024 4:00:00 PM 9787.8 8539.7 1485.0 882.2 3579.7 2120.0
7/15/2024 5:00:00 PM 6347.7 5761.9 1045.7 720.6 2464.8 1595.8
7/15/2024 6:00:00 PM 4189.4 3903.5 750.5 538.3 2291.8 1756.4

PSS E and DigiSilent PowerFactory. It applied short-term
Numerical Weather Prediction (NWP) forecasts to generate
wind generation forecasts for short intervals of five minutes,
achieving an error rate as low as 15%.

The study from [15] utilizes minute-by-minute solar genera-
tion data obtained from a solar station, along with weather data
that correlates with solar generation, to develop a Recurrent
Neural Network model. This model is then used to process
short-term forecasts of solar generation.

However, a common limitation in the literature is the lack
of metrics to validated weather forecast with different margins
from the study day. Additionally, some studies do not have
high resolution measurements and geographical coordinates,
which limits their ability to capture location-specific differ-
ences in weather conditions. Furthermore, some models lack
detailed information about each generator, such as the power
curves for wind or photovoltaic (PV) systems. Power curves
define the relationship between environmental conditions, such
as wind speed or solar irradiance, and electrical energy gen-
eration. Without properly incorporating these curves, forecast
weather models may fail to produce accurate predictions of
energy generation.

This paper aims to highlight the accuracy of power output
forecasts with different distance ahead from the study dates
for both solar and wind energy by comparing them with his-
torical benchmark data and find the expected uncertainties for
each forecast. The forecast datasets is from National Oceanic
and Atmospheric Administration (NOAA) that forecasts the
weather up to the next 16 days and we propose a metric to find
how the uncertainties of forecasts change as they get closer to
the study date. Generator data, their geographical coordinates,
types, classes and power curves of renewables are extracted
from [16]

The paper introduces the data and models used for the sim-
ulation (Section II), describes the methodology for comparing
forecast and historical data (Section III), presents simulation
results to describe the accuracy of each forecast data (Section
IV), and concludes with an introduction to future research
directions using this data (Section V).

II. DATA PREPARATION

A. Weather Data

NOAA publishes weather forecast datasets known as the
Operational Model Archive and Distribution System (NO-
MADS) in various geographic resolutions at [17]. The dataset

used in this paper has a resolution of 0.25 degrees, which is
approximately available at each 30 km. The data is updated
every 6 hours and includes parameters such as dew point,
temperature, and wind speed, radiation, and cloud coverage
at various levels, including 10 and 100 meters above ground.
The data includes weather forecasts for up to 16 days, with
hourly intervals for the first five days and three-hour intervals
thereafter.

The historical data used in this analysis comes from Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis Version 5 (ERA5) [18]. ERA5 includes weather
measurements found in weather forecast data and provides
data coverage for the entire world. The time range of the ERA5
dataset spans hourly data from 1940 to the present. According
to reference [19], ERA5 is particularly well-suited for ana-
lyzing historical wind and solar generation performance. The
ERA5 dataset includes wind data at 10 meters and 100 meters,
as well as irradiance data necessary for calculating solar and
wind power.

The NOAA data is in GRIB (Gribbed Binary) format, while
ERA5 is available in NetCDF (Network Common Data Form)
format. In order to use the weather data for the simulation,
files need to be converted to a format that is more efficient
and suitable for power system study. To achieve this the
PoWer Weather (PWW) file format is introduced at [20], which
reduces the file size to about one third of the original files by
storing the data more efficiently. Additionally, [21] provides
an in-depth explanation of processing the weather data into
the PWW file format.

B. Grid data

Please note that, because real power grid information is clas-
sified in the US as Critical Energy Infrastructure Information
(CEII), this study utilizes the copper plate model derived from
EIA-860 data to generate renewable energy outputs, which
are then mapped to synthetic generator locations [22]. Power
flow weather (PFW) models are employed to establish the
relationship between input weather measurements and output
power data [23]. These PFW models are developed using the
types and models of renewable resources detailed in EIA-
860 data. Furthermore, the data has been validated in [19] to
confirm that the PFW models accurately represent the weather-
induced effects on the power grid.



III. METHODOLOGY

Reference [11] outlines a methodology for directly incorpo-
rating weather measurements into optimal power flow models.
It utilizes power curves, renewable resource types, and the
geographical coordinates of generators, mapped to the nearest
weather data points.

For the study, a representative day from each season
—spring, summer, and winter—was selected along with fore-
cast data saved from up to 16 days prior to these study dates.
This approach captures seasonal weather variability across the
study region. To compare forecast data with what happened
in reality, historical weather data from the same days are used
as a benchmark. As mentioned, for forecast data NOAA data
and as benchmarks ERA5 data are selected. After the weather
data are loaded in time step simulation and the output power
of renewables are calculated from both forecast data and the
benchmarks, hourly generation data is used for each study
day to find the relative error between the forecast and actual
generation, providing insight into the model’s performance
throughout the day. Calculating the maximum and minimum
relative errors highlights deviations from the benchmark, en-
abling an assessment of forecast reliability and uncertainty.
Generation data for each forecast date and benchmark is
plotted for visualization. These visualizations provide insights
into weather behavior and its influence on power generation
trends.

The error calculation was performed using the mean ab-
solute error equation, as referenced in [24], for each state’s
historical and forecast generation data. In this context, f(x)
represents the historical generation, g(x) signifies the forecast
generation, and n indicates the number of data points. To
compute the average error across all states for the individual
forecast data, the sum of absolute error is divided by the num-
ber of data points (equation 1). Additionally, the maximum
and minimum errors were determined through this process
to assess the improvements in accuracy as the forecast date
approaches the benchmark.

1

n
∗

n∑
i=1

|f(xi)− g(xi)|
|f(xi)|

∗ 100 (1)

IV. CASE STUDY AND SIMULATION RESULTS

For this study, EIA-860 data at the end of year 2023 is used
for simulations with grid model available at [21]. Selected
study dates are April 25th, 2024, July 15th, 2024 and October
15th, 2024. The power generation outputs for both solar and
wind are calculated using time step simulations in PowerWorld
Simulator Version 23 is used to load weather measurements
of forecast and historical benchmark data in PWW format,
calculate power outputs and find the differences from the
selected historical benchmark data by comparing the results.

In Figures 1 and 2, the data points for the forecast from
the start date and end date are illustrated. The color of the
plot indicates the distance of the data from the benchmark,
with lighter shades representing a greater deviation and darker
shades indicating closer proximity. The y-axis represents wind

(a) Wind forecast of April 25th, 2024

(b) Wind forecast of July 15th, 2024

(c) Wind forecast of October 15th, 2024

Fig. 1: Wind forecast result

power generation, while the x-axis denotes the time point in
hours.

A. Analyzing Wind Power Results

As it can be observed from comparing Figures 1 and 2,
forecasting wind power output is more challenging compared
to predicting power output from solar energy. This can be
related to the more unpredictable patterns for wind speed. This
increases the uncertainty in the disparity between benchmark
wind power and the forecast.

The data presented in Table 2 illustrates the relative error
between forecast and benchmark renewable power generation,
revealing significant fluctuations in error values using different
forecast margins in successive data days, particularly in the 10
days leading up to the benchmark date. These sharp variations
highlight significant inconsistencies in the forecast model’s
accuracy during this period.

However, a noticeable pattern emerges after the 10-day mark
before the benchmark date, where the errors exhibit a linear
decline, approaching the benchmark data. This consistent



TABLE II: Error values for wind forecast of 2024

Date Max Error (%) Min Error (%) Relative Error (%) Date Max Error (%) Min Error (%) Relative Error (%) Date Max Error (%) Min Error (%) Relative Error (%)
04 / 01 53 16 36 07 / 01 47 1 21 10 / 03 32 2 17
04 / 02 51 1 25 07 / 02 43 1 22 10 / 04 78 41 65
04 / 03 37 2 23 07 / 03 100 24 58 10 / 05 65 3 46
04 / 04 61 2 22 07 / 04 106 23 62 10 / 06 46 6 23
04 / 05 61 27 46 07 / 05 140 21 80 10 / 07 57 34 46
04 / 06 49 4 25 07 / 06 75 7 50 10 / 08 48 1 30
04 / 07 62 2 28 07 / 07 132 21 68 10 / 09 38 2 19
04 / 08 52 1 18 07 / 08 134 4 68 10 / 10 58 8 33
04 / 09 62 9 36 07 / 09 139 7 67 10 / 11 58 14 36
04 / 10 17 1 7 07 / 10 157 19 74 10 / 12 65 5 39
04 / 11 45 1 15 07 / 11 91 4 47 10 / 13 45 4 27
04 / 12 35 2 11 07 / 12 83 2 49 10 / 14 60 8 35
04 / 13 29 1 9 07 / 13 68 1 43 10 / 15 53 5 32
04 / 14 29 1 7 07 / 14 53 1 30 10 / 16 50 1 28
04 / 15 35 1 9 07 / 15 45 1 15 10 / 17 47 3 26
04 / 16 35 1 9 07 / 16 22 1 10 10 / 18 43 2 23

downward trend observed across all three months suggests an
improvement in the alignment of forecasts with the benchmark
data over time. The transition from a more unpredictable
behavior to a more consistent decline indicates that the model
has become more predictable using forecasts from 10 days
prior to the benchmark date. In Figure 1, as the forecast day
gets closer to the studied benchmark day, the plots become
progressively darker, in a way that color intensity correlates
negatively with error margins and distance from the study
dates revealing a trend where the forecast power generation
increasingly aligns better with the benchmark plot (black).
More details on relative errors on each days of forecast before
the study day is presented in Table 2. Despite the initial
larger relative errors noted in Table 1, the overall behavior
of power generation can be estimated from the plots using
relative errors as uncertainties, as the forecast time gets closer
to the benchmark day. The results suggest that forecasts made
before the 10-day mark can provide more valuable insights into
generation performance trends. Although the earlier forecasts
are less precise as expected, but are useful for capturing the
general behaviors and trends of power generation, allowing for
preliminary planning and decision-making based on expected
patterns.

B. Analyzing Solar Power Results

Solar forecasting demonstrates stable patterns, unlike the
unpredictable fluctuations in wind forecasting. The monthly
plots reveal trends closely aligned with the benchmark data.
Peak solar generation aligns more closely with historical data
as the forecast date approaches. However, most of the forecast
plots share a similar shape throughout all the results. This
behavior is illustrated in Figure 2, and Table 3 presents this
phenomenon numerically as well.

Table 3 shows minimal fluctuations in error values, reflect-
ing consistent forecast accuracy. The values from both the
maximum and relative error columns fall within a similar
range, which demonstrates the consistent behavior of all fore-
cast data. In contrast, the minimum error shows improvement
as the days progress, as the peak generation is becoming closer
to the actual peak generation data. Solar forecasts are less

(a) Solar forecast of April 15th, 2024

(b) Solar forecast of July 15th, 2024

(c) Solar forecast of October 15th, 2024

Fig. 2: Solar forecast result

affected by unpredictability compared to wind forecasts, as
indicated by the smoother error trends in Table 3.



TABLE III: Error values for solar forecast of 2024

Date Max Error (%) Min Error (%) Relative Error (%) Date Max Error (%) Min Error (%) Relative Error (%) Date Max Error (%) Min Error (%) Relative Error (%)
04 / 01 97 1 39 07 / 01 83 9 72 10 / 03 59 2 52
04 / 02 76 5 47 07 / 02 82 6 84 10 / 04 75 3 49
04 / 03 81 4 37 07 / 03 93 3 74 10 / 05 59 1 44
04 / 04 62 7 39 07 / 04 86 4 94 10 / 06 59 5 27
04 / 05 98 10 47 07 / 05 90 6 75 10 / 07 90 1 42
04 / 06 90 20 54 07 / 06 91 6 77 10 / 08 89 1 52
04 / 07 86 10 34 07 / 07 92 1 86 10 / 09 86 1 39
04 / 08 68 3 38 07 / 08 81 1 82 10 / 10 87 1 54
04 / 09 98 1 43 07 / 09 71 2 75 10 / 11 80 1 51
04 / 10 95 4 48 07 / 10 82 2 83 10 / 12 77 1 48
04 / 11 88 2 49 07 / 11 85 4 75 10 / 13 86 3 49
04 / 12 98 4 47 07 / 12 99 4 96 10 / 14 74 2 50
04 / 13 74 4 46 07 / 13 95 1 88 10 / 15 76 2 49
04 / 14 88 1 45 07 / 14 98 2 85 10 / 16 80 1 52
04 / 15 82 5 48 07 / 15 40 2 90 10 / 17 70 1 49
04 / 16 89 5 48 07 / 16 41 3 94 10 / 18 86 1 53

V. CONCLUSIONS AND FUTURE WORK

This paper presented a comparison between forecast power
output and historical data for both photovoltaic (PV) solar
energy and wind energy based on forecast weather mea-
surements with different daily distances from selected study
days and historical weather measurements as a benchmark
of what happened in reality. Weather measurements were
used to calculate renewable power outputs, which were then
compared.

Each dataset was compared on an hourly basis to compute
the differences between forecast and benchmark weather mea-
surements and related power outputs. The results of the simula-
tion were visualized by plotting each data point of generation,
illustrating the trends between historical and forecast data.
Consequently, minimum, maximum, and relative errors were
calculated. The results show larger fluctuations in forecasts
farther from the study dates, with error rates declining after the
10-day mark, indicating an improved accuracy as the forecast
time approached closer to the benchmark date. However, the
forecasts before this period still reflected changes in renewable
power generation, showcasing both upward and downward
trends compared to the historical data.

The comparisons help find uncertainties in the weather
forecast with different distances from study days and reality
and can be used for power system operation and planning
studies. Future research will analyze a broader range of study
dates to improve the understanding of forecasting uncertainties
and enhance predictive accuracy.
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