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Per Unit Change of MVA Base

• Parameters for equipment are often given using power rating of equipment 

as the MVA base

• To analyze a system all per unit data must be on a common power base

2

2 2

  

Hence  Z /

 Z

base base

OriginalBase NewBase
pu actual pu

OriginalBase NewBase
pu puOriginalBase NewBase

BaseBase

NewBase
OriginalBase NewBaseBase
pu puOriginalBase

Base

Z Z Z

V V
Z

S S

S
Z

S

→ →

 =

 =



Transformer Reactance

• Transformer reactance is often specified as a percentage, say 10%.  This is 

a per unit value (divide by 100) on the power base of the transformer.

• Example: A 350 MVA, 230/20 kV transformer has leakage reactance of 

10%.  What is p.u. value on 100 MVA base?  What is value in ohms (230 

kV)?
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Three Phase Transformers

• There are 4 different ways to connect 3 transformers: 

Y-Y, -, Y-, -Y

– The reasons have to do with grounding and harmonics, which are outside of the 

ECEN 460 scope

– Only Y connections can be grounded

– Mixing Y and  introduces a 30 degree phase shift

• Most high voltage generator step-up transformers (GSUs) are  on the 

generator side, grounded Y on the transmission side

• Most transmission to distribution is  on the transmission side, grounded 

Y on the distribution side
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Autotransformers

• Autotransformers are transformers in which the primary and secondary 

windings are coupled magnetically and electrically.  

• This results in lower cost, and smaller size and weight.

• Most transmission level transformers are autotransformers, connected Y-Y 

with the low side grounded

• The key disadvantage is loss of electrical isolation between the voltage 

levels; not used when a is large.  For example in stepping down 7160/240 

V we do not ever want 7160 on the low side!  
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Three Winding Transformers

• Many high voltage transformers have a third winding, called the tertiary 

winding; called three winding transformers 

• There are a number of benefits in having 3 windings

– Tertiary can be used to provide lower voltage electric service, including providing 

substation service for remote transmission substations; sometimes capacitors are 

connected to the tertiary

– Helps with fault protection by reducing the zero sequence current providing higher 

zero sequence currents (beyond ECEN 460 scope)

– When -connected helps to reduce unbalanced and third harmonic issues (again 

beyond ECEN 460 scope)
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Load Modeling

• We need a model for the aggregate electric load. Challenges are 1) the 

heterogeneity of the load (i.e., there are lots of different devices), and 2) 

the load keeps changing

• Traditionally load models have been divided into two groups

– Static: load is a algebraic function of bus voltage and sometimes frequency; covered 

now

– Dynamic: load is represented with a dynamic model, with induction motor models 

the most common; covered when we get to stability

• The simplest load model is a static constant impedance, but it is not 

commonly used; what is commonly used is a constant power load
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Justification for the Common Power Flow 
Constant Power Model

• While many loads do exhibit voltage dependence, there is good 

justification for using a constant power model in the power flow

• A major justification is since the power flow is a steady-state analysis tool 

and is usually focused on representing load at the transmission system 

level, the assumption is the distribution tap-changing transformers have 

had enough time to respond so that in steady-state the voltage magnitude 

seen by the load is mostly independent of the transmission level voltage

• Another justification is that in the longer term power flow time frame 

since many loads have external controllers (i.e., thermostats for heating) 

when their behavior is aggregated over time they tend to look like constant 

power
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Generator Models

• Engineering models depend upon application

• Generators have traditionally been synchronous machines, but they 

increasingly include inverter-based resources (e.g., solar PV and wind) in 

which the power electronics are used to connect the generator to the 

system

• For generators we will use two different models:

– a steady-state model, treating the generator as a constant power source operating at a 

fixed voltage; this model will be used for power flow and economic analysis; we’ll 

also consider reactive power limits

– a short term model treating the generator with its dynamics, covered later when we 

get to stability
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Power Flow Analysis

• We now have the necessary models to start to develop the power system 

analysis tools

• The most common power system analysis tool is the power flow (also 

known sometimes as the load flow, terms that have been used 

interchangeably for at least 60 years!)

– power flow determines how the power flows in a network

– also used to determine all bus voltages and all currents

– because of constant power models, power flow is a nonlinear analysis technique

– power flow is a quasi steady-state analysis tool
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Linear versus Nonlinear Systems

A function H is linear if

 H(11 + 22) = 1H(1) + 2H(2)

That is

 1) the output is proportional to the input

 2) the principle of superposition holds

Linear Example: y = H(x) = c x 

    y = c(x1+x2) = cx1 + c x2

Nonlinear Example: y = H(x) = c x2 

     y = c(x1+x2)
2 ≠ (cx1)

2 + (c x2)
2
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Linear Power System Elements

Resistors, inductors, capacitors, independent

voltage sources and current sources are linear 

circuit elements

1
V = R I V =  V =

Such systems may be analyzed by superposition

j L I I
j C




13



Nonlinear System Example

• Constant power loads and generator injections are 

nonlinear and hence systems with these elements 

can not be analyzed by superposition

Nonlinear problems can be very difficult to solve,

and usually require an iterative approach
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Nonlinear Systems May Have Multiple Solutions 
or No Solution

Example 1: x2 - 2 = 0 has solutions x = 1.414…

Example 2:  x2 + 2 = 0 has no real solution

f(x) = x2 - 2  f(x) = x2 + 2  

two solutions where f(x) = 0 no solution f(x) = 0
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Multiple Solution Example 

• The dc system shown below has two solutions:

where the 18 watt

load is a resistive

load

2

2

Load

Load

Load

The equation we're solving is

9 volts
I 18 watts

1 +R

One solution is R 2

Other solution is R 0.5

Load LoadR R
 

= =  

= 

= 

What is the

maximum

PLoad?
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Bus Admittance Matrix or Ybus

• First step in solving the power flow is to create what is known as the bus 

admittance matrix, often call the Ybus.  

• The Ybus gives the relationships between all the bus current injections, I, 

and all the bus voltages, V,

 I  = Ybus V

• The Ybus is developed by applying KCL at each bus in the system to relate 

the bus current injections, the bus voltages, and the branch impedances 

and admittances
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Ybus Example

Determine the bus admittance matrix for the network shown 

below, assuming the current injection at each bus i is Ii = IGi  - IDi 

where IGi is the current injection into the bus from the generator and IDi is 

the current flowing into the load
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Ybus Example, cont’d

1 1 1

1 31 2
1 12 13

1 1 2 1 3 j

1 2 3

2 21 23 24

1 2 3 4

By KCL at bus 1 we have

1
( ) ( ) (with Y )

( )

Similarly

( )

G D

A B

A B
j

A B A B

A A C D C D

I I I

V VV V
I I I

Z Z

I V V Y V V Y
Z

Y Y V Y V Y V

I I I I

Y V Y Y Y V Y V Y V

= −

−−
= + = +

= − + − =

= + − −

= + +

= − + + + − −
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Ybus Example, cont’d

1 1

2 2

3 3

4 4

We can get similar relationships for buses 3 and 4

The results can then be expressed in matrix form

0

0

0 0

bus

A B A B

A A C D C D

B C B C

D D

I Y Y Y Y V

I Y Y Y Y Y Y V

I Y Y Y Y V

I Y Y V

=

+ − −    
    − + + − −
    =

− − +    
    −    

I Y V








For a system with n buses the Ybus is an n by n symmetric matrix (i.e., one where Aij = 

Aji); however this will not be true in general when we consider phase shifting 

transformers
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Ybus General Form 

• The diagonal terms, Yii, are the self admittance terms, equal to the sum of 

the admittances of all devices incident to bus i.  

• The off-diagonal terms, Yij, are equal to the negative of the sum of the 

admittances joining the two buses.

• With large systems Ybus is a sparse matrix (that is, most entries are zero)

• Shunt terms, such as with the  line model, only affect the diagonal 

terms.     

21



Modeling Shunts in the Ybus 

from other lines

2 2

Since ( )
2

2

1 1
Note

kc
ij i j k i

kc
ii ii k

k k k k
k

k k k k k k k

Y
I V V Y V

Y
Y Y Y

R jX R jX
Y

Z R jX R jX R X

= − +

= + +

− −
= = =

+ − +
22



Two Bus System Example

1 2
1 1

1 1

2 2

( ) 1
12 16

2 0.03 0.04

12 15.9 12 16

12 16 12 15.9

cYV V
I V j

Z j

I Vj j

I Vj j

−
= + = −

+

− − +    
=    − + −    
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Using the Ybus

1

bus

If the voltages are known then we can solve for 

the current injections:

If the current injections are known then we can 

solve for the voltages:

where  is the bus impedance matr

bus

bus bus
−

=

= =

Y V I

Y I V Z I

Z ix

However, this requires that Ybus not be singular; note it will be 

singular if there are no shunt connections!
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Solving for Bus Currents

*
1 1 1

For example, in previous case assume 

1.0

0.8 0.2

Then

12 15.9 12 16 1.0 5.60 0.70

12 16 12 15.9 0.8 0.2 5.58 0.88

Therefore the power injected at bus 1 is 

S 1.0 (5.60

j

j j j

j j j j

V I

 
=  − 

− − + −     
=     − + − − − +     

= = 

V

*
2 2 2

0.70) 5.60 0.70

(0.8 0.2) ( 5.58 0.88) 4.64 0.41

j j

S V I j j j

+ = +

= = −  − − = − +
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Solving for Bus Voltages

1

*
1 1 1

For example, in previous case assume 

5.0

4.8

Then

12 15.9 12 16 5.0 0.0738 0.902

12 16 12 15.9 4.8 0.0738 1.098

Therefore the power injected is

S (0.0738 0.902) 5 0

j j j

j j j

V I j

−

 
=  − 

− − + −     
=     − + − − − −     

= = −  =

I

*
2 2 2

.37 4.51

( 0.0738 1.098) ( 4.8) 0.35 5.27

j

S V I j j

−

= = − −  − = +
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Power Flow Analysis

• When analyzing power systems we know neither the complex bus 

voltages nor the complex current injections

• Rather, we know the complex power being consumed by the load, and the 

power being injected by the generators plus their voltage magnitudes

• Therefore we can not directly use the Ybus equations, but rather must use 

the power balance equations
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Power Balance Equations

1

bus

1

From KCL we know at each bus i in an n bus system

the current injection, , must be equal to the current

that flows into the network 

Since  =  we also know

i

n

i Gi Di ik
k

n

i Gi Di ik k
k

I

I I I I

I I I Y V

=

=

= − =

= − =





I Y V

*
iThe network power injection is then S i iV I=
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Power Balance Equations, cont’d

*

* * *
i

1 1

 S

This is an equation with complex numbers. 

Sometimes we would like an equivalent set of real

power equations.  These can be derived by defining

n n

i i i ik k i ik k
k k

ik ik ik

i

V I V Y V V Y V

Y G jB

V

= =

 
= = = 

 

= +

=

 

jRecall   e cos sin

ij
i i i

ik i k

V e V

j







  

 

= 

= −

= +
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Real Power Balance Equations

* *
i

1 1

1

i
1

i
1

S ( )

(cos sin )( )

Resolving into the real and imaginary parts

P ( cos sin )

Q ( sin cos

ik
n n

j
i i i ik k i k ik ik

k k

n

i k ik ik ik ik
k

n

i k ik ik ik ik Gi Di
k

n

i k ik ik ik i
k

P jQ V Y V V V e G jB

V V j G jB

V V G B P P

V V G B



 

 

 

= =

=

=

=

= + = = −

= + −

= + = −

= −

 





 )k Gi DiQ Q= −
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These are probably the 

most important power 

system analysis 

equations!!!

There are different 

ways to show them 

(e.g., 6.4.10 and 

6.4.11, and 6.4.12 and 

6.4.13)



Slack Bus

• We can not arbitrarily specify S at all buses because total generation must 

equal total load + total losses

• We also need an angle reference bus.

• To solve these problems we define one bus as the "slack" bus.  This bus 

has a fixed voltage magnitude and angle, and a varying real/reactive power 

injection.

• In an actual power system the slack bus does not really exist; frequency 

changes locally when the power supplied does not match the power 

consumed    
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Three Types of Power Flow Buses

• There are three main types of power flow buses

– Load (PQ) at which P/Q are fixed; iteration solves for voltage magnitude and angle.  

– Slack at which the voltage magnitude and angle are fixed; iteration solves for P/Q 

injections

– Generator (PV) at which P and |V| are fixed; iteration solves for voltage angle and Q 

injection
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Newton-Raphson Algorithm

• The book gives two approaches for solving the power flow: Gauss-

Seidel (Section 6.5) and Newton-Raphson (Section 6.6)

• Gauss-Seidel is included because it is easy to explain, but it is no 

longer used commercially and won’t be covered here

• Most common technique for solving the power flow problem is to use 

the Newton-Raphson algorithm

• Key idea behind Newton-Raphson is to use sequential linearization

General form of problem: Find an  such that

( ) 0ˆ =

x

f x
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Newton-Raphson Method (scalar)

( )

( )

( ) ( )

( )
( ) ( )

2 ( ) 2( )

2

1. For each guess of ,  , define ˆ

-ˆ

2. Represent ( ) by a Taylor series about ( )ˆ

( )
( ) ( )ˆ

1 ( )
higher order terms

2

v

v v

v
v v

v
v

x x

x x x

f x f x

df x
f x f x x

dx

d f x
x

dx

 =

= +  +

+  +
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Newton-Raphson Method, cont’d

( )
( ) ( )

( )

1( )
( ) ( )

3. Approximate ( ) by neglecting all terms ˆ

except the first two

( )
( ) 0 ( )ˆ

4. Use this linear approximation to solve for 

( )
( )

5. Solve for a new estim

v
v v

v

v
v v

f x

df x
f x f x x

dx

x

df x
x f x

dx

−

=  + 



 
 = −  

 

( 1) ( ) ( )

ate of x̂

v v vx x x+ = + 
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Newton-Raphson Example

2

1( )
( ) ( )

( ) ( ) 2

( )

( 1) ( ) ( )

( 1) ( ) ( ) 2

( )

Use Newton-Raphson to solve ( )  - 2 0

The equation we must iteratively solve is
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( )

1
(( ) - 2)

2

1
(( ) - 2)

2

v
v v

v v
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v v v

v v v

v

f x x
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x f x

dx

x x
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x x x
x

−
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+
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 
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 

 
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  
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  
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Newton-Raphson Example, cont’d

( 1) ( ) ( ) 2

( )

(0)

( ) ( ) ( )

3 3

6

1
(( ) - 2)

2

Guess x 1.  Iteratively solving we get

v ( )

0 1 1 0.5

1 1.5 0.25 0.08333

2 1.41667 6.953 10 2.454 10

3 1.41422 6.024 10

v v v

v

v v v

x x x
x

x f x x

+

− −

−

 
= −

  

=



−

−

 − 


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