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Design Project Overview

• The goal of the project is to give experience in planning new transmission 

for a relatively large-scale electric grid while working as part of a four 

person engineering design team

• Project is motivated by the July 2024 

ERCOT report to plan for new 

transmission in the Permian Basin to 

accommodate large amounts of new load  
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Design Project Overview, cont.

• Since the actual grid models are not publicly available due to them being 

CEII, you’ll be working with an enhanced version of the 2000 bus grid 

we’ve been using in 460

– This enhanced grid has much more wind and solar and a higher load; this grid uses 

at 500/230/161/115 kV transmission grid

• Your design goal is to optimally provide reliable electricity to 5 new loads 

in (or close to) the Permian Basin, with each load requiring 1000 MW at 

230 kV

• There will be a number of assumptions to simplify the project, including 

using a DC OPF, only considering four distinct operating points, and 

ignoring all contingencies except those associated with your new 

transmission lines and transformers
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Design Project Overview: Starting Grid Flows and 
Generation by Fuel Type 
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Available generation by fuel type



Design Project Overview: Generation by Fuel Type 
and Total Generation Supply Curve

Supply Curve
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Existing and New Load

• This image shows the existing 

loads, with the ovals 

proportional to the load

– A layout algorithm has been 

used to remove overlap, 

somewhat expanding the large 

metro areas

• The five large ovals towards 

the left represent the new, 

currently not connected, load
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Design Project Scenarios 

• A transmission system design needs to work well under varying system 

conditions. In ERCOT key system variations are due to 1) the changing 

load, and 2) varying amounts of wind and solar generation 
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Design Project Scenarios, Cont.

• To simplify the design project, we’ll just be considering four scenarios, with 

the assumption that the system operates in each scenario for 25% of the 

time

– Maximum load, with maximum wind and solar available (Texas2K_ScenarioA)

– 80% load with high solar, low wind (August 15, 2023 at 4 pm) (Texas2K_ScenarioB)

– 70% load with low solar, low wind (August 25, 2022 at 9 am) (Texas2K_ScenarioC)

– 60% load with medium wind, no solar (May 2, 2023 at 2 am) (Texas2K_ScenarioD)

–  In all scenarios the five new loads stay fixed at 1000 MW each 

• Assume transmission right-of-way (ROW) lengths are 120% of the 

geographic distance between the substations; 

– there are many online tools to allow you to calculate geographic distance 

(e.g., www.nhc.noaa.gov/gccalc.shtml)
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Design Project Lines and Transformers

• To serve the new loads you’ll need to modify the grids by adding some 

combination of 

– 500 kV lines with a fixed cost of $15 million and variable costs of $3 million per mile; 

X=0.0002 pu per mile, rating of 1600 MVA, max ROW length of 200 miles

– 230 kV lines with a fixed cost of $8 million and variable costs of $1.3 million per 

mile, X=0.0012 pu per mile, rating of 400 MVA, max ROW length of 115 miles

– 500 kV/230 kV transformers with a total cost of $12 million, X=0.015, MVA of 1100

– 230/115 kV transformers with a total cost of $1.8 million, X=0.05, MVA of 200

– Upgrading a 230 kV substation to 500KV is $8 million; a new 500 kV substations 

costs $11 million plus an extra $2.5 million to also include 230 kV. A new 230 kV 

substation costs $ 6 million.  

– Existing lines cannot be modified except you can open them if desired. Do not make 

any new connections with the existing 161 kV lines   8



Adding New Simulator Objects via Spreadsheet

• Simulator has a number of ways to automate the addition of new objects 

(e.g., lines, transformers, buses and substations) or modifying existing 

objects

• One approach is in the Edit Mode to paste new objects into a Case 

Information Display from a spreadsheet 

• Pasting requires 1) the spreadsheet has a description of the data in the first 

row and column (e.g., Substation, Bus, Branch), 2) Key and Required 

field headers in the second row, and then 3) data in subsequent rows

– Examples are included in the Example_Design_Changes .xls file
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Example_Design_Changes File

• This file is used to create a new 500/230 kV substation, adding two new 

buses, a transformer between the buses, and two transmission lines 

connecting it to other buses; first paste in the substation data, then the 

buses, then the lines 
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DC OPF Solutions

• With the new transmission grid additions, for each scenario you’ll 

ultimately be solving a DC OPF solution

• A key value from the solution is the Final Total Cost Value in $/hr

– This is shown on the Add Ons, OPF Case Info, OPF Options and Results dialog, 

Solution Summary Page

It is OK to have 

some congestions, 

but there should be 

no unenforceable 

constraints
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Your Goal

• The overall goal is to minimize the sum of the total yearly production 

cost plus 0.129 times the new transmission costs

– The total yearly production cost is calculated assuming the grid operates in each of 

the four scenarios for 25% of the time over a year (i.e., 2190 hours each). So, to get 

the total yearly production cost sum the Total Final Cost Values for each of the 

four scenarios and multiply by 2190.  

– The 0.129 (12.9%) is based on the value ERCOT uses in their production cost 

savings test associated with the first-year annual revenue requirement

• Example: if the hoursly costs for the scenarios are 1.6, 1.4, 1.2 and 1.0 

million dollars per hour, and your total transmission costs are two billion 

dollars, then the total value in million dollars is 

2190*(1.6 + 1.4 + 1.2 + 1.0) + 0.129*2000 = $11.646 billion
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You are Encouraged to Read the ERCOT Report

• It will be included with the design project. This image is a solution 

presented in the report. However,

they are designing for the existing

345/138 kV grid, not your

500/161 kV grid

• The ERCOT report is estimating

costs on the order of $ 13 billion
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Quickly Auto-Drawing a Transmission Grid 

• Simulator does make it extremely easy to auto-draw a transmission grid. 

To do this with one of the design project cases open, open the oneline 

Texas_2K_SubGDVDesign; then in the Edit Mode select Draw, Auto 

Insert, Lines (click Default Drawing Values to Customize), click OK
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Switching Back to Dynamics: 
Differential Algebraic Equations

• Because of the complexity of modern electric grid, stability is determined 

using numerical techniques. Many problems, including many in the power 

area, can be formulated as a set of differential, algebraic equations (DAE) 

of the form

• A power example is transient stability, in which f represents (primarily) 

the generator dynamics, and g (primarily) the bus power balance equations

• We'll initially consider the simpler problem of just 

( , )

( , )

=

=

x f x y

0 g x y

( )=x f x
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Ordinary Differential Equations (ODEs) 

• Assume we have a problem of the form

• This is known as an initial value problem, since the initial value of x is 

given at some time t0
– We need to determine x(t) for future time

– Initial value, x0, must be either be given or determined by solving for an equilibrium 

point, f(x) = 0

– Higher-order systems can be put into this first order form

• Except for special cases, such as linear systems, an analytic solution is 

usually not possible – numerical methods must be used

0 0( ) with (t )= =x f x x x

16



Initial value Problem Examples

( )

0

0

1 2

2 1 2

Example 1:  Exponential Decay

A simple example with an analytic solution is

x with x(0)  x

This has a solution x(t)  x

Example 2: Mass-Spring System

or

x

1

t

x

e

kx gM Mx Dx

x

x k x g M D x
M

−

= − =

=

− = +

=

= − −

Example 2 is similar to 

the SMIB swing equation
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Numerical Solution Methods

• Numerical solution methods do not generate exact solutions; they 

practically always introduce some error

– Methods assume time advances in discrete increments, called a stepsize (or time 

step), t

– Speed accuracy tradeoff: a smaller t usually gives a better solution, but it takes 

longer to compute 

– Numeric round-off error due to finite computer word size

• Key issue is the derivative of x, f(x) depends on x, the value we are trying 

to determine

• A solution exists as long as f(x) is continuously differentiable
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Numerical Solution Methods

• There are a wide variety of different solution approaches, we will only 

touch on two

• One-step methods: require information about solution just at one point, x(t)

– Forward Euler 

– Runge-Kutta

• Multi-step methods: make use of information at more than one point, x(t), 

x(t-t), x(t-t)…

– Adams-Bashforth

• Predictor-Corrector Methods: implicit

– Backward Euler
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Error Propagation

• At each time step the total round-off error is the sum of the local round-off 

at time and the propagated error from steps 1, 2 ,  … , k − 1

• An algorithm with the desirable property that local round-off error decays 

with increasing number of steps is said to be numerically stable

• Otherwise, the algorithm is numerically unstable

• Numerically unstable algorithms can nevertheless give quite good 

performance if appropriate time steps are used

– This is particularly true when coupled with algebraic equations
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Euler’s Method

• The simplest technique for numerically integrating these equations is 

known as Euler’s method, which dates to about 1768

• The key idea is to approximate

• Then 

• In general, the smaller the time step, t, the better the approximation 

d
( ( ))  as 

dt t
t


= =



x x
x f x

( ) ( ) ( ( ))t t t t t+   + x x f x
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Euler’s Method Algorithm

0

0 0

end

Set t = t  (usually 0)

(t ) =

Pick the time step t, which is problem specific

While t  t  Do

( ) ( ) ( ( ))

End While

t t t t t

t t t





+  = + 

= + 

x x

x x  f x
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Euler’s Method Example 1, cont’d

• Consider the exponential decay

example with

• Since we know the solution, we

can compare the accuracy of

Euler’s method for different 

time steps

t xactual(t) x(t)  

t=0.1

x(t)  

t=0.05

0 10 10 10

0.1 9.048 9 9.02

0.2 8.187 8.10 8.15

0.3 7.408 7.29 7.35

… … … …

1.0 3.678 3.49 3.58

… … … …

2.0 1.353 1.22 1.29

0

0

x with x(0)  x

This has a solution x(t)  x t

x

e−

= − =

=
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Euler’s Method Example 2

1 2

2 1

1 2

1

Consider the equations describing the horizontal 

position of a cart attached to a lossless spring:

x

Assuming initial conditions of (0) 1 and x (0) 0,

the analytic solution is x ( ) cos .

We

x

x x

x

t t

=

= −

= =

=

 can again compare the results of the analytic and

numerical solutions
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Euler's Method Example 2, cont'd

1 1 2

2 2 1

Starting from the initial conditions at t =0 we next

calculate the value of x(t) at time t = 0.25.

(0.25) (0) 0.25 (0) 1.0

(0.25) (0) 0.25 (0) 0.25

Then we continue on to the next time step, t 

x x x

x x x

= + =

= − = −

1 1 2

2 2 1

= 0.50

(0.50) (0.25) 0.25 (0.25)

1.0 0.25 ( 0.25) 0.9375

(0.50) (0.25) 0.25 (0.25)

0.25 0.25 (1.0) 0.50

x x x

x x x

= + =

= +  − =

= − =

= − −  = −
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Euler's Method Example 2, cont'd

t x1
actual(t) x1(t)  t=0.25

0 1 1

0.25 0.9689 1

0.50 0.8776 0.9375

0.75 0.7317 0.8125

1.00 0.5403 0.6289

… … …

10.0 -0.8391 -3.129

100.0 0.8623 -151,983

Since we know from the exact solution that x1 is 

bounded between -1 and 1,  clearly the method 

is not working well, and is actually numerically 

unstable. Below is a comparison of the solution 

values for x1(t) at time t = 10 seconds

t x1(10)

actual -0.8391

0.25 -3.129

0.10 -1.4088

0.01 -0.8823

0.001 -0.8423
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Second Order Runge-Kutta Method

• Runge-Kutta methods improve on Euler's method by evaluating f(x) at 

selected points over the time step

• Simplest method is the second order method in which

• That is, k1 is what we get from Euler's; k2 improves on this by 

reevaluating at the estimated end of the time step

( ) ( ) ( )

( )( )
( )( )

1 2

1

2 1

1
              

2

where   

    

       

  t t t

t t

t t

+  = + +

= 

=  +

x x k k

k f x

k f x k
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RK2 Oscillating Cart

• Consider the same example from before the position of a cart attached to a 

lossless spring.  Again, with initial conditions of x1(0) =1 and x2(0) = 0, 

the analytic solution is x1(t) = cos(t) 

• With t=0.25 

at t = 0

1 2

2 1

x x

x x

=

= −

1

0 0 1 0 1
(0.25) , (0) 1

1 0.25 0 0.25 0.25

         
=  = + = + =         − − − −         

k x k

( ) ( )2 1 1 2

0.0625 1 0.968751
(0.25) (0) , (0.25)

20.25 0 0.25

−     
=  + = = + + =     − −     

k f x k x k k
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Comparison

• The below table compares the numeric and exact solutions for x1(t) using 

the RK2 algorithm

time actual x1(t) x1(t) with RK2

t=0.25

0 1 1

0.25 0.9689 0.969

0.50 0.8776 0.876

0.75 0.7317 0.728

1.00 0.5403 0.533

10.0 -0.8391 -0.795

100.0 0.8623 1.072

t x1(10)

actual -0.8391

0.25 -0.7946

0.10 -0.8310

0.01 -0.8390

0.001 -0.8391

The below table compares the x1(10) 

values for different values of t; recall 

with Euler's with t=0.1 was -1.41 and 

with 0.01 was -0.8823
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RK2 Versus Euler's

• RK2 requires twice the function evaluations per iteration, but gives much 

better results

• With RK2 the error tends to vary with the cube of the step size, compared 

with the square of the step size for Euler's

• The smaller error allows for larger step sizes compared to the Euler 

Method
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Multistep Methods

• Euler's and Runge-Kutta methods are single step approaches, in that they 

only use information at x(t) to determine its value at the next time step

• Multistep methods take advantage of the fact that using we have 

information about previous time steps x(t-t), x(t-2t), etc

• These methods can be explicit or implicit (dependent on x(t+t) values; 

we'll just consider the explicit Adams-Bashforth approach 

( )

( )

3

4

Second Order

( ) ( ) 3 (x( )) ( ( )) ( )
2

Third Order

( ) ( ) 23 (x( )) 16 ( ( )) 5 ( ( 2 )) ( )
12

t
t t t t x t t O t

t
t t t t x t t x t t O t


+  = + − −  + 


+  = + − −  + −  + 

x x f f

x x f f f
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Numerical Instability

• All explicit methods can suffer from numerical instability if the time step 

is not correctly chosen for the problem eigenvalues

Image source: http://www.staff.science.uu.nl/~frank011/Classes/numwisk/ch10.pdf

Values are scaled by the time step;  the shape 

for RK2 has similar dimensions but is closer to 

a square.  Key point is to make sure the time 

step is small enough relative to the eigenvalues.
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Implicit

• Implicit solution methods have the advantage of being numerically stable 

over the entire left half plane

• Only method considered here is the Backward Euler

 

 
1

 ( ( )) ( ))  

Then using backward Euler

( ) ( ) ( ( ))

( ) ( )

( ) ( )

t t

t t t t t t

I t t t t

t t I t t
−

= =

+  = +  + 

−  +  =

+  = − 

x f x Ax

x x A x

A x x

x A x

We’ll only consider 

linear equations
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Backward Euler Cart Example

• Returning to the cart example 

 
1

1

0 1
 ( ))  

1 0

Then using backward Euler with 0.25

1 0.25
( ) ( ) ( )

0.25 1

t

t

t t I t t t

−
−

 
=  − 

 =

− 
+  = −  =  

 

x x

x A x x

Results with t = 0.25 and 0.05  

time actual 

x1(t)

x1(t) with 

t=0.25

x1(t) with 

t=0.05

0 1 1 1

0.25 0.9689 0.9411 0.9629

0.50 0.8776 0.8304 0.8700

0.75 0.7317 0.6774 0.7185

1.00 0.5403 0.4935 0.5277

2.00 -0.416 -0.298 -0.3944

Note: Just because the method is numerically 

stable doesn't mean it is error free!  RK2 is 

more accurate than backward Euler with a 

small enough timestep.
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Transient Stability Example

• A 60 Hz generator is supplying 550 MW to an infinite bus (with 1.0 per 

unit voltage) through two parallel transmission lines.  Determine initial 

angle change for a fault midway down one of the lines.

H = 20 seconds, D = 0.1.  Use t = 0.01 second.

Ea
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Transient Stability Example, cont'd

a

e

We first need to determine the pre-fault values.  

Since P = 550 MW (5.5 pu) I = 5.5

E 1.0 0.1 5.5 1.141 28.8

Next to get P ( ) we need to determine the 

thevenin equivalent during the fault looking 

j



→ →

= +  =  

into 

the network from the generator

0.05 0.05 0.1 0.08333

0.3333 0

th

th

Z j j j j

V

= + =

=  
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Transient Stability Example, cont'd

prefault
e

m

faulted
e

1 2

1.141 1.0
Therefore prefault we have P ( ) sin

0.1

and P 5.5  (0) 28.8 (0) 0.50265 radians

1.141 0.3333
and during the fault P ( ) sin

0.08333

Let x  and x .  The equations to integ

 

 

 

 


=

= → = → =


=

= =

1 2

2 1 2

1 2

rate are

1 1.141 0.3333
5.5 sin 0.1

20 / 60 0.08333

(0) 0.50265 (0) 0.0

x x

x x x

x x



=

 
= − − 

 

= =
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Transient Stability Example, cont'd

( )
1 2

2 1 29.425 5.5 4.564sin 0.1

0.50265
(0)

0

With Euler's Method we get

0.50265 0 0.50265
(0.01) 0.01

0 31.11 0.3111

0.50265 0.3111 0.50576
(0.02) 0.01

0.3111 30.82 0.

x x

x x x

=

= − −

 
=  

 

     
= +  =     

     

   
= +  =   

   

x

x

x
6193

 
 
 
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Two-Axis Synchronous Machine Model

• Classical model is appropriate only for the most basic studies; no longer 

widely used in practice

• More realistic models are required to couple in other devices such as 

exciters and governors

• A more realistic synchronous machine model requires that the machine be 

expressed in a reference frame that rotates at rotor speed

• Standard approach is d-q reference frame, in which the major (direct or d-

axis) is aligned with the rotor poles and the quadrature (q-axis) leads the 

direct axis by 90
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Synchronous Machine Modeling

3 bal. windings (a,b,c) – stator

Field winding (fd) on rotor

Damper in “d” axis

(1d) on rotor

2 dampers in “q” axis

(1q, 2q) on rotor

Damper windings are added 

to help damp out oscillations
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• Round Rotor

– Air-gap is constant, used with higher 

speed machines

• Salient Rotor (often called Salient Pole) 

– Air-gap varies circumferentially

– Used with many pole, slower machines 

such as hydro

– Narrowest part of gap in the d-axis and 

the widest along the q-axis

Two Main Types of Synchronous Machines

Book Chapter 9 Photo
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D-q Reference Frame 

• Analyzing synchronous machines is done using Park’s transformation (from 

1929) to change the machine differential equations with time-varying 

components into a set of equations with time invariant components

• That is, the machine voltages and currents are “transformed” into what is 

known as the d-q reference frame using the rotor angle, 

• Terminal voltage in network (power flow) reference frame are VT = Vr - Vi

sin cos

cos sin

dr

qi

VV

VV

 

 

    
=     

−    

sin cos

cos sin

d real

q imag

V V

V V

 

 

   − 
=    
    
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Top Electric Power Papers of the 20th Century

• In 2000 Park’s paper was voted the second most important power paper of 

the 20th Century

43


	Slide 0: ECEN 460 Power System Operation and Control Spring 2025
	Slide 1: Design Project Overview
	Slide 2: Design Project Overview, cont.
	Slide 3: Design Project Overview: Starting Grid Flows and Generation by Fuel Type 
	Slide 4: Design Project Overview: Generation by Fuel Type and Total Generation Supply Curve
	Slide 5: Existing and New Load
	Slide 6: Design Project Scenarios 
	Slide 7: Design Project Scenarios, Cont.
	Slide 8: Design Project Lines and Transformers
	Slide 9: Adding New Simulator Objects via Spreadsheet
	Slide 10: Example_Design_Changes File
	Slide 11: DC OPF Solutions
	Slide 12: Your Goal
	Slide 13: You are Encouraged to Read the ERCOT Report
	Slide 14: Quickly Auto-Drawing a Transmission Grid 
	Slide 15: Switching Back to Dynamics:  Differential Algebraic Equations
	Slide 16: Ordinary Differential Equations (ODEs) 
	Slide 17: Initial value Problem Examples
	Slide 18: Numerical Solution Methods
	Slide 19: Numerical Solution Methods
	Slide 20: Error Propagation
	Slide 21: Euler’s Method
	Slide 22: Euler’s Method Algorithm
	Slide 23: Euler’s Method Example 1, cont’d
	Slide 24: Euler’s Method Example 2
	Slide 25: Euler's Method Example 2, cont'd
	Slide 26: Euler's Method Example 2, cont'd
	Slide 27: Second Order Runge-Kutta Method
	Slide 28: RK2 Oscillating Cart
	Slide 29: Comparison
	Slide 30: RK2 Versus Euler's
	Slide 31: Multistep Methods
	Slide 32: Numerical Instability
	Slide 33: Implicit
	Slide 34: Backward Euler Cart Example
	Slide 35: Transient Stability Example
	Slide 36: Transient Stability Example, cont'd
	Slide 37: Transient Stability Example, cont'd
	Slide 38: Transient Stability Example, cont'd
	Slide 39: Two-Axis Synchronous Machine Model
	Slide 40: Synchronous Machine Modeling
	Slide 41: Two Main Types of Synchronous Machines
	Slide 42: D-q Reference Frame 
	Slide 43: Top Electric Power Papers of the 20th Century

