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Abstract

This thesis proposes a method using an energy function approach to
assess the vulnerability of an electrical power system to voltage
collapse. This approach is based upon the use of Lyapunov's direct
method, which provides a means for determining the stability of
systems of nonlinear differential equations, such as the power system
models employed here. A closed form energy function is first defined
for a power system dynamic model, which includes voltage dependent
reactive loads, reactive power limits on generators, and transmission
line losses. The voltage stability of a particular portion of the power
system is quantified by using this energy function to evaluate the
difference between the system's normal operating point and one of the
system unstable equilibrium points (UEPs). These UEPs correspond
to the alternative solutions of the power flow equations. The energy
difference associated with a UEP then provides a measure of the
voltage security in parﬁcular areas of the system. Since in a large
system there may be a number of separate areas simultaneously
vulnerable to voltage collapse, separate voltage security measures

would be needed for each.

i



- — et

The energy differences are shown to change in a manner proportional
to changes in the power system operating point, and in particular do

not exhibit discontinuities when generators reach their reactive power

limits. At least one energy difference goes to zero as the system

approaches the point of voltage collapse. Thus by monitoring the

energy differences the system voltage security can be quantified.

- Additionally, a method for improving system voltage security 1is

presented using the sensitivities of the closed form energy differences
to various system controls. Lastly, an algorithm is presented for
rapidly determining these alternative solutions with low associated
energy differences, thus allowing for on-line use. Application of the
method and its computational aspects are examined on systems of up

to 415 buses.
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Chapter 1 - Introduction
1.1 Voltage Instability in Power Systems

The availability of reliable and economical electrical power is vitally
important to the well being of major industrial economies. Over the
last few decades electrical systems throughout the industrialized world
have changed from relatively localized systems to large
interconnected systems with tens or hundreds of millions of customers
who often receive power from generators hundreds or even thousands
of miles distant. This high degree of interconnection makes it
essential that the high voltage transmission system, used to transmit
this power, be operated in both a secure and economical manner. An
operating point is classified as secure when the system can adequately
supply the necessary power to all customers even in the event of
statistically plausible contingencies (such as transmission line outages
or loss of generators). The system security requirement, however, is
often contradictory to economically optimal operation, which can
require operation of the system near its limit in order to take

advantage of distant, low cost generation.

Traditionally the balancing of system security with economical
operation has presented utility operators and pianners with the two

problems of thermal loading and angular (or transient) stability. The



former problem requires that the electrical current on each individual
transmission line or transformer be less than a limit derived from the
thermal characteristics of the device and the ambient conditions. The
latter problem requires that the system be able to return to a secure
operating point following a large scale disturbance (e.g. loss of a
generator). Many analysis techniques, such as optimal power flow
and transient stability programs, have been developed to predict the
impact of these problems. However over the last few years, as the
operating conditions for large power systems have evolved, another
type of problem has been observed with increasing frequency. This
phenomena is often referred to as voltage instability or voltage

collapse.

Voltage instability is characterized by the voltages throughout a large
portion of the high voltage transmission system gradually declining
over a period of minutes to hours. Eventually, if system loading
continues to increase, the voltages suddenly collapse, resulting in
either local or system-wide blackouts. To illustrate the basic
mechanics of voltage collapse, consider the simple system shown in
Figure 1-1. The region on the left represents an area of the power
system with excess generation capacity, while the region on the right
is characterized by high demand (load). Power is therefore transferred
through the transmission lines connecting the regions. This system is

a rough equivalent to many large power systems, which depend upon



distant generation to serve large urban loads. The voltage response of
the system could be represented approximately by using a two bus
radial system model consisting of a generator bus supplying a load bus
through an equivalent transmission line. Figure 1-2 shows the voltage
variation at the load bus for such a simple system as the amount of
power transferred through the transmission line is increased. For low
levels of interchange the sensitivity of the voltage to amount of power
interchanged is rather low, resulting in little drop in voltage at the load
end. However as the interchange is increased, the voltage sensitivity
also increases, first gradually, but then with increasing rapidity. The
net effect is an increasingly rapid drop i voltage. Eventually a
critical power level is reached, characterized by an infinite voltage
-sensitivity. An attempt to transfer more than this critical amount of
power results in loss of a stable operating point, and subsequent

voltage collapse .

The voltage behavior of the two bus radial system has been analyzed
by numerous authors [1], [8]. The two bus model is, however,
inadequate for representing all but the simplest of electrical systems.
The high degree of transmission system interconnections within
modern electrical systems requires the modeling of meshed networks
consisting often of thousands of buses. The analysis of the voltage
stability, and the prevention of voltage collapse in such a large,

meshed system is a much more challenging problem.
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An actual incident of a large scale voltage collapse induced blackout
occurred in 1978 in France [2]. Over the course of 26 minutes,
voltages throughout the entire French high voltage transmission
system gradually declined from normal voltage of approximately
410KV to less than 340KV. The cause of this collapse was large
power transfers between the French system and other European
electric systems. A more recent incident occurred in Tokyo during the
summer of 1987 [3]. There, high load demand and the necessity of
importing power from distant generators caused a power outage of
8000 MW, affecting about 2.6 million people. Again the actual

voltage collapse was preceded by about 20 minutes of gradually
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declining voltages throughout a large portion of the Tokyo system.
Domestically, near-record loads and high power transfers during 1987
caused voltages in the high voltage transmission sys'tern in Illinois and
Indiana to decline by as much as 12% over the course of hours,
although an actual voltage collapse did not occur [4]. Voltage
security problems in this time frame have also occurred in the

Northeastern U.S., with at least 8 incidents documented in 1988 [5].

Presently some utilities assess the security of their systems on-line via
security-constrained optimal power flow (OPF) programs [6] (the term
on-line is used to mean that the present state of the power system is
being analyzed, with results of the analysis available within seconds
to minutes). These programs try to optimize System operation by
recommending various controller moves (such as changes in generator
MW outputs, transformer tap positions, etc.) to minimize system

operating cost while insuring that there are no security violations.

Examples of security violations would include transmission line flows

above some thermal limit, or bus voltage magnitudes below some
limit. Typically limits are determined using assumed conditions in
off-line studies. While this approach has proved useful in dealing
with problems of a thermal overload nature, it is inadequate for a
number of reasons in predicting the onset of voltage instability. First,
voltage instability problems have been shown to occur in systems

where voltage magnitudes never decline below levels that have



traditionally been deemed acceptable in off-line planning studies [7].
Thus since voltages never decline below their limits (until the system
ultimately collapses), they never become active constraints in the OPF
problem. Therefore no control action is initiated. Second, near the
point of collapse, voltage variations can be extremely sensitive to
changes in load and other system parameters [8]. Knowledge of the
voltage level only at the current operating point may not be sufficient
since a small change in the system operating point could cause a large
voltage drop. Lastly, in order to avoid the high cost of constructing
new lines, utilities would like to operate their systems in such a
manner as to maximize the capacity from their existing transmission
system, However to do this they need an indication of how close they
are to the point of voltage collapse. Current OPF programs provide no

such proximity indicator.

The absence of an easily computable proximity indicator to voltage
collapse has meant that utilities must calculate system limits (such as
maximum MW transfer) using off-line power flow programs. In [9] it
is reported that engineers must run hundreds of power flow
simulations daily using assumed future operating conditions in order
to predict what these limits should be. An obvious difficulty of such
an off-line approach lies in predicting the future conditions. Worst
case scenarios are often assumed. This can result in either overly

conservative limits, which prevent the utilities from taking advantage



of more economical but more distant generation, or blackouts when
the actual conditions differ significantly from the assumed conditions.
The magnitude of this problem can be seen in [9] where one of the
larger utilities in the US reported that during 1987 they were not able
to utilize their available generators as economically as possible 74%
of the time, and that in approximately 96% of these instances the
problem was due to reactive power and voltage limitations in the
transmission system. Clearly a new approach to this problem 1is

needed.

In this thesis a method based upon energy function techniques is
developed, to accurately determine how close a power system is to the
point of voltage collapse. This approach is based upon the use of
Lyapunov's direct method, which provides a means for assessing the
stability of systems of nonlinear differential equations, such as the
power system models employed here. A closed form energy function
is first defined for the power system dynamic model. The Voltage
stability of a particular section (or area) of the power system is then
quantified by using this energy function to evaluate the difference
between the system's normal operating point and one of the system
unstable equilibrium points (UEPs). These UEPs are identified by the
alternative solutions of the power flow equations. The energy
difference associated with each UEP provides a measure of the

voltage security in particular area of the system. Since in a large



system there may be a number of separate areas vulnerable to voltage
collapse, separate voltage security measures would be needed for

each.

As the system moves towards the point of voltage collapse, the energy
differences tend to decrease in a manner proportional to changes in the
system operating point, with one of them going to zero immediately
before the system experiences voltage collapse. Thus the voltage
security of the system could be assessed directly by determining the
appropriate alternative power flow solutions, and their associated
energy differences. It is shown that these solu_tions can be calculated

with reasonable computational cost, allowing for on-line use.
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1.2 Power system Stability

In order to motivate the use of energy function methods, the concepts
of power system stability are briefly reviewed. Power systems are
nonlinear, often with slowly varying inputs, and subject to a number
of discrete disturbances. Such a system can be represented by the

following set of differential and algebraic equations:

X = f(x(t), y(t), u(t))
(1-1)
0 = g,y u®)
where
X -  state variables (e.g. bus voltage phase angles)
y - algebraic variables (e.g. bus voltage magnitudes)
u- input variables (which includes the changing

load/generation injections and other disturbances)

A system of the form described by (1-1) is said to have an equilibrium
point X at time t,e R if for a fixed known input, u(e), f(x(),y(t),u(t))
=0,V t>ty Thus the mathematical definition requires that once the
system reaches its equilibrium point xq at time tq it remains there ad
infinitum. However for realistic power systems this is never the éase.
The system state variables are subject to constant variation in response
to both sporadic large disturbances to the system (e.g. loss of a large

generator) along with the time variation in the loads of individual
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customers. However, this load variation is usually of the form of a
slowly varying average value (with its largest component normally |
having a 24 hour period) along with a small (a few percent) random
variation about this average value. This random variation term
typically displays much more rapid variation, on a time scale of
seconds. Research into aggregate load models has suggested that such
small random effects may be modeled by a white or colored noise
term in the load [10]. Ignoring for the moment the infrequent large

disturbances, we can express u(t) as

u(t) = uslow(t) + ysmati(y)
where

uslow - slowly varying average load component

usmall zero mean, "small" magnitude load variation

If the time scale of the problem of interest is sufficiently short, relative
to the variation in uslow(t), stability studies often make the assumption
that

uslow(t) 0

usmall(t) =0

(constant)

and we can therefore rewrite (1-1) as
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>

£ = fx@,yo, 0 = FEY

(1-2)
0 = gx®,yo, M= R

Since 1 is now a constant, (1-2) is an autonomous system. Therefore
if [ Qo , /y\o] is an equilibrium point of (1-2) at some time t,, we know
that it is an equilibrium point at all time thereafter. Then if the true
system has a solution [x(e), y(e)] for some given u(s), we would
expect that for a given time 1 with an instantaneous input of u(?) =11,
x(’t\) and y(?) from (1-1) should be "close" to Q(/t\) and ? (’f\) from
(1-2). One approximates the actual time varying input u(e) with a
time invariant input by "freezing” u at a given time T. We can then
define a "frozen equilibrium" of (1-1) as [ Qo . Sf\o], and then
determine the stability of the autonomous system relative to this

equilibrium point. The approximation of the actual time varying

system by a time invariant system is often the "hidden assumption” in

most power system stability analysis. The validity of this assumption
is dependent upon how fast the system inputs are changing relative to
the dynamics of the system and the time scale of the problem. If the
time variation in usiow is truly "slow enough", relative to the dynamics
of the system, and in the absence of any disturbances (usmall = 0), the
system state would sit in a negligibly small neighborhood of the

frozen equilibrium point. This point would gradually change on the
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time scale of uslow, and if the system is asymptotically stable, the

state would track this slow variation.

As noted above, this is never precisely the case for an actual system
since the state is constantly being perturbed away from this
equilibrium point by various system disturbances. In addition to the
time scale classification described above, one can also classify
disturbances as either small disturbances (modeled by usmall = 0) or
large disturbances. By definition, a small disturbance is an event for
which the system state remains in the neighborhood of the frozen
equilibrium point and for which linearized models are accurate. These
small magnitude random load variations add a small amount of
"energy" to the system and thus are constantly perturbing the state
away from its equilibrium point. This energy is normally dissipated
through damping in the system. The classification of system stability
related to small scale disturbances is known as small disturbance

stability [11].

Steady-state stability is typically determined by linearizing the system
about the equilibrium point of interest and then requiring that all
eigenvalues have strictly negative real parts. For an actual system at
its normal operating point, this is a minimal requirement. Once this
eigenvalue requirement is satisfied, the effects of these small random

variations are usually considered negligible and are typically ignored
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in normal power system analysis. In contrast, large disturbances are
events which suddenly drive the state far away from its equilibrium
point, and/or change the equilibrium by changing the system structure.
Examples of large scale disturbances are loss of generators, loss of a
transmission line, or other faults on the systemn. Following such an
event the question to be answered is whether the system will return to
a frozen equilibrium point (which may be different from the pre-
disturbance equilibrium point). This classification of stability is
known as transient stability. For t < td (time when disturbance is

applied to the system) the system equations are assumed to be the

following:
x = fx@,yo,0) = 0
0 = gx®,y®,0)

A . .
where u is a constant and the system is assumed to have reached its
frozen equilibrium. At t = td the disturbance is applied to the system,

possibly changing @, f(s), and g(+). For t > td the new equations are

x = fdx(), yb), 0d)
gd(x(t), y(©), 0d)

=
I

Note that in the general case, a number of individual disturbances

could be applied to the system at separate discrete times (to model, for
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example, the action of line reclosures or protective relays actions).

Since ud is modeled as a constant during the time period between

disturbances, the system is considered time invariant during each time
segment. The assumption that uslow(t) = constant and wsmall(t) = 0 is
typically valid since the time frame during which the system either
reaches a stable equilibrium point, or loses synchronism (unstable) is
seldom more than a few seconds. Thus the ultimate determination of
whether a system is transiently stable is a function of the pre-
disturbance operating point and which large disturbances we choose to
apply to the system. From a more formal mathematical viewpoint,
steady state stability implies the equilibrium of interest is
asymptotically stable. A system is transiently stable for a disturbance
if the initial state "resulting” from the disturbance is inside the post-
disturbance equilibrium'’s region of attraction. Clearly any system can
be considered to be transiently unstable if the disturbance is large
enough (consider the disturbance defined to be the loss of a significant
portion of total system generation). Normally a system is called
transiently stable if it can return to a stable equilibrium point
following any credible disturbance. However the key point is that,
except for a small number of discrete disturbances, a time invariant u

is assumed throughout the problem.

Returning again to the problem of voltage instability, we first note that

most reports of voltage collapse seem to indicate that it was not
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directly caused by a large disturbance in the system. This is one of
the features that distinguisheé voltage collapse from transient stability.
Instead the system operating point 18 moving (on a time scale of
minutes to hours), usually with gradually increasing loads, from a
state of relative security to one of vulnerability. Since voltage
instability is driven by the time variation in u(t), clearly the earlier
assumption of a time invariant system is no longer possible. However
this future variation in u(t) is known only approximately at best.
Additionally, as the system state evolves in response to uft), various
automatic control systems (e.g. load tap changing [LTC] transformers
and generator reactive power outputs) will act upon the éystem, irying
to hold their control values close to their setpoints. Thus the
determination of a system's voltage stability involves prediction of
behavior in a nonlinear, time varying system whose input function is

only approximately known.

1.3 Existing Voltage Security Measures

As was mentioned earlier, utilities are continually confronted with the
problem of how to operate their systems in both a secure and
economical manner. In order to solve this problem, the typical utility
must determine the settings of a few hundred controllers (e.g. MW

output of a generator, MW transactions with other utilities, voltage
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setpoint of a generator, transformer tap position, etc.) in order to
supply power to hundreds or thousands of time varying aggregate
loads (with each load normally representing hundreds or thousands of
customers) so that economy is maximized and security is maintained.
In order to assess system security, it is necessary that the utility have
some measure to determine how close the system is to voltage
collapse. This section reviews the various methods appearing in the
literature and in standard industry practice of assessing this voltage

security.

Intuitively, the problem of determining proximity to voltage collapse
can best be explained by the well established concept of security
regions [12], [13], [14], [15] [19]. To illustrate this concept in two
dimensions, refer to Figure 1-3. The current stable, frozen equilibrium
of the power system can be thought of as being located at point u
within a region called the feasible space. The dimensions of this
space are the set of inputs. Each point in the feasible space
corresponds to a set of inputs for which a stable operating point exists.
In actual practice the size of the feasible space would be further
reduced due to other operati_onal constraints, such transformer,
generator and transmission lines limits. To simplify the intuitive
development of the voltage security measures, other operational
constraints are not yet considered; these constraints will be included in

Chapter 5. As usSlow varies with time (both through customers
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changing their loads and through actions of the controllers mentioned
in the previous paragraph), the location of u within the feasible space
also varies. Surrounding the feasible space is the infeasible space,
which is defined as those values of u which do not possess a stable
operating point. If we assume that usmal! = 0 and that the variation in
uslow is very much slower than the dynamics of the system, then the
boundary between these two regions is quite distinct. This is never
completely true in practice. Therefore we have some points in the
feasible region close to the boundary that have corresponding
operating points that are "small disturbance” stable, but are not secure
because small perturbations of the form usmall can cause the state to
move out of the region of attraction for the equilibrium. However, the
assumption used for power systems is that the width of the "band"
about the boundary containing these marginally stable poirits is small

compared to the variation in u caused by uslow,
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Infeasible region

Figure 1-3 : Time Variation in Power System Operating Point

Determining the voltage security of any operating point is then
reduced to the problem of determining how close its corresponding u
is to the feasibility boundary. However two problems arise. First,
calculating the entire set of points comprising the feasibility boundary
is computationally prohibitive for all but the simplest systems (this
boundary is calculated in Chapter 2 for a very simple system).
Second, even if the boundary could be identified, one must determine
which portion of the boundary should be used when determining the

proximity of u to that boundary. Intuitively one might think that the
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closest boundary point (in a Euclidean sense) would be appropriate.
The applicability of this approach depends on the relative correlation
and the individual variation in the elements-of u, and on the shape of
the boundary. For example consider the simple case with the input

subspace considered consisting of the real power injections at buses i
and j, u = [P; Pj], with the feasible region defined [lull. <1.0.

Assume that the output of P; is free to vary, but the output of Pj is
fixed at 0.95 (e.g. P; represents a load bus and P; represents a base
load generator). Since P;j is constant, only the portion of the boundary
int the P; dimension is of interest. In calculating the system security
measure, the distance from u to the P; boundary should be used, rather
than the distance to a closest boundary point. In a higher dimensional
system, where the individual elements of u could ber relatively
uncorrelated, a number of different security measures may be needed.
With this context in mind, several of the techniques of determining

proximity to voltage collapse are examined.

Probably the most common technique used by utilities today to
maintain voltage security is the use of various operational guidelines
and/or heuristic rules of thumb. These are based both upon studies
performed days or months earlier using assumed system conditions,
and the individual operator's best judgement. On-line power flow
studies may also be used to augment these guidelines [16]. Examples

of operational guidelines are limiting the amount of power



21

interchanged with neighboring utilities when various units are out of
ser\)ice, and maintaining iransmission system voltages above certain
levels. While these guidelines have certainly proved useful in
preventing some system problems, they have a number of fundamental
weaknesses. The main problem is that the guidelines have been
derived based on assumed conditions which never completely match
the actual operating state. For example transmission lines or
generators might be out of service, load distribution might not match
what was anticipated, or neighboring utilities may be operating their
systems in an unanticipated manner. Thus it is up to the system
operator to determine how the limits in the guideline should be
interpolated based upon actual conditions. Second, the guidelines
often do not provide reliable quantitative indication of how close the
system is to the voltage feasibility boundary. Thus the operator does
not have a good idea of direction in which the state is moving, and
how control actions are affecting the voltage security of the system.
This information is particularly usefui when unexpected operating
states are encountered. The lack of a quantitative measure of voltage
security has meant the existing security enhancement software (such
as the linear programming technique from [6] or the Newton's method
optimization from {17]) must try to assess the system voltage security

indirectly by looking at bus voltages and transmission system flows.
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A number of techniques have been developed which attempt to
quantify how close the system is to the point of voltage collapse.
These proximity indicators can be broken down into two groups:
those that determine system voltage security by making assumptions
about the future system trajectory from the present state, and those

that use only information about the present state of the system.

The most straightforward of the former techniques is to simply make
an assumption about how the system inputs will change with time and
then solve the power flow problem at a number of discrete timesteps
until the simulated system loses its steady state solution (failure of a
Newton-Raphson iteration is often used an indication that no solution

exists). In essence a single point on the boundary of the feasible
space is determined by making an estimate at the current time = t, of

the trajectory u(t) for t > t,. The proximity to Voltage collapse is then
based upon the value u(T) when the critical point on the boundary is

reached.

In normal circumstances utilities often have fairly good estimates of
how some of the components of u(t) will vary over the next few hours.
In particular, their own generation dispatch, their interchange with
other companies and their customer load distribution are usually
known. However there is often less certainty conceming the future

variation of the generation, interchange, and load of their neighboring
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utilities (with whom they may have a competitive relationship).
Additionally voltage collapse often occurs under abnormal
circumstances (such as under extremely high loads). In such
situations the utility has little historical data upon which to base a

prediction of future variations in u(t).

A problem with developing a proximity indicator based upon assumed
future changes in u is that the indicator could be highly sensitive to
the accuracy of this prediction of this trajectory. For example,
consider the case where the current operating point is close to the
voltage stability boundary. If the assumed u(t) for t > t, moves the
system state in a direction parallel to, or away from this boundary, the
current operating point could be judged as quite secure. However, if |
the actual system moves in only a slightly different direction, the
system could experience a voltage collapse. Additionally, since the
calculation of this indicator requires a time simulation, it would be
difficult to calculate the effects of controller changes upon the
proximity indicator without repeating the entire simulation from the
new assumed operating point. This not only introduces additional
inaccuracies due to again using an assumed u(t), but may be
computationally prohibitive since each proposed controller change

could require solving a series of power flow solutions.
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A number of improvements on this approach have appeared in recent
literature. In [18] and [19] the computational burden is reduced by
recognizing that since the critical point of volfagc collapse 1is
characterized by singularity 6f tﬁe Jacobian, a point of the boundary
surface can be determined by solving the power flow equations with
the explicit requirement of singularity of the Jacobian matrix. This
bifurcation calculation has become known as the Point of Collapse
method in the power system literature. The method works by
parameterizing u as a function of an arbitrary scalar t and then solving
directly for the value of t which results in a singular Jacobian. The
computational requirements of this method are on the order of a few
power flow solutions. Additionally, the results of various automatic
control actions (such as transformer tap movement and generator
reactive output variation), along with their limits can be handled
directly during the iterative solution. The boundary point determined
is dependent upon the parameterization of u chosen. The closest point
on the boundary (in terms of Euclidean distance) can also be
determined using either an iterative method [20] or directly [21].
These methods exploit the observation that the normal to the closest
boundary point can be computed using the left eigenvalue method
from [20].

An approach is presented in [22] which attempts to determine the

closest point on the feasibility boundary through an iterative process,
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where each successive value of u(t) is determined by moving in the
direction of the gradient of the determinant of the power flow
Jacobian. The boundary is assumed to be reached when the value of |
the determinant is sufficiently small. By providing a result based
upon the distance to the closest boundary point, the technique is not
dependent upon an assumed u(t). However, the authors state that the
calculation of VIJl is very time consuming, with the computational
cost greater than O(n3) (where n is the number of buses in the power
system model). In [23] the distance to voltage collapse is determined
not by solving a series of power flows, but rather through a series of
linearized approximations. Thus this technique also results in reduced
computational costs. Automatic control actions which would occur
along the simulated trajectory are also taken into account. However
as with the earlier methods, the resultant accuracy of both these
techniques depends upon the appropriateness of the assumed

trajectory.

The second major group of methods for assessing proximity to voltage
mstability are those techniques which only use information about the
present state of the electrical system. In contrast to the previously
discussed methods, they make no assumptions about future system
trajectories. In [24] and [25] the use of the smallest singular value of

the Jacobian of the power flow equations, denoted by Gy, is

recommended as a proximity indicator. The singular value of the
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Jacobian matrix J may be obtained as the square root of the smallest
eigenvalue of (JTJ). As the system moves towards the point of
voltage collapse, Opin decreases, eventually reaching zero when J
becomes singular. The advantage of this approach is that it is not
necessary to make predictions about future changes in the system
trajectory. The proximity indicator is solely based upon the current
operating point. In [24] it is shown that G, can be calculated quite
quickly, and decreases as the systern moves towards voltage collapse.
However its decrease is not smooth with respect to variations in the
system state; it can exhibit large discontinuities when the generators

hit their reactive power limits. These discontinuities could cause |
problems as a system gradually approaches the pomnt of voltage
collapse, since O, might vary slowly initially, giving the operator a
false sense of security. The value could then suddenly jump
downwards as generators hit their reactive limits, notifying the

operator too late to take preventative controller actions.

The proposed method of erthancing system security in [25] is to move
controllers so that oy;, is maximized while maintaining feasibility. In

order to perform this optimization, it is necessary to calculate the
sensitivity of Gy, to each of the system controllers. This 1s done

using a singular value decomposition of the Jacobian matrix. The

disadvantage of the method, aside from using Gpjp, as security

measure, it that the computational cost of computing the singular
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value decomposition of the Jacobian matri)i is O(m3). Therefore it is
computationally prohibitive for a large system, at least on a serial
machine. In [26] a singular value decomposition algorithm is
presented using large arrays of parallel processors. Whether such an
approach is workable in a utility control center has yet to be

determined.

A different type of indicator, which is also only based upon the
current operating state, is presented in [27]. The proposed qualitative
measure varies from O (for a system with no load) to 1 for a system
experiencing voltage collapse.  The measure is calculated by
partitioning the bus admittance matrix based upon load and generator
buses. Then a partial inversion of the matrix is performed in order to
calculate the load bus voltages as a linear function of their currents

and the generator bus voltages. A security measure L; is then

calculated for each bus based upon these linearizations. The system
security indicator is the maximum of the Ly's. This indicator has the
advantage that it can be obtained with reasonable computational effort
and can be extended to large systems. One bf the difficulties with the
approach is that since only current operating point information is used,
the nonlinear effects of generators and transformers can not be
included unless the devices have already hit their limits at the current

operating point. Also it appears that it would be difficult to derive the
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effects of controller actions on the measure in order to improve system

voltage security.

A variation of the use of Jacobian singularity to determine proximity
to voltage collapse is presented in [28] and [29]. Rather than using
the least singular value of the Jacobian, three security measures are
calculated. First, an estimate of the eigenvalue of the portion of the
Jacobian matrix associated with the reactive power equations at the
load buses is calculated. This eigenvalue estimate is based upon the
flows in the system, and measures the reactive power surplus or
deficit of the transmission system. For a secure systefn the eigenvalue
is very large, becoming smaller as the system load is increased.
Second, the ability of the voltage control devices in a portion of the
system to maintain a type of steady state "voltage controllability” is
determined. A system has voltage controllability if it is possible to
both raise the voltage at the load buses by increasing the generator
voltage set points, and if decreasing the reactive load causes an
increase in the bus voltages. These sensitivity values are based upon
selective values of the inverse of the Jacobian matrix. Once all the
voltage control devices within an area have reached their limits, the
area no longer has voltage controllability. The third security criteria is
based upon the amdunt of reactive power which can be imported into

an area with a reactive deficiency. This value is a measure of the
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reactive transmission reserve on the boundary of the voltage

vulnerable area.

A third major grouping of voltage collapse proximity indicators are
the methods based upon multiple solutions of the system equations.
As will be shown in later sections, these methods can be thought of as
a hybrid between the methods which dependent explicitly upon an
assumed future system trajectory, and those that use only current
system state information. Techniques utilizing multiple solutions
include the energy based approach, which the author will present in
this thesis[30], [31], [32]; and the methods presented in [33] and [34].
The latter methods are based upon calculating a scalar index which
can be interpreted as the "angle” between two of the vector solutions
of (1-2).

As has been shown, a number of different approaches have been put
forth to determine the voltage vulnerability of power systems. While
many of these approaches have provided insight into the voltage
stability problem, no technique to date has provided the electric
utilities with an easily computable, accurate measure which can be
used both to determine how close a system is to voltage instability,
and to identify feasible control actions that best increase the system
voltage security. In this thesis a method based upon energy function

techniques is developed to solve these problems.
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Chapter 2 - Application of Enefgy Function
Methods to Voltage Collapse

2.1 Energy Function Methods Introduced

Insight into the problem of voltage instability may be gained by the
study of the region of attraction of an asymptotically stable
equilibrium for the power system model. One tool which has proved
useful in analyzing the region of attraction of such systems 1Is
Lyapunov's direct method. Consider a set of differential equations of

the form
x = f(x) ‘ (2-1)

Comparing this equation with (1-1) we note that ufe) is no longer
explicitly identified, and that the algebraic variables have been
eliminated. This is not to say that u(s) is longer present, but rather
that it is modeled as a fixed known input. The idea behind the use of
Lyapunov's direct method is that for a time invariant system of this
form, the relative stability of a stable equilibrium point X3 can be
quantified if it is possible to define a scalar function ¥ with certain
properties. Typical requirements on such a function are that 9(x5) = 0

and that 3 is a locally positive definite function (l.p.d.f.) about the
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stable equilibrium over some region Q. Additionally, the system
dynamics must be such that the energy derivative along trajectories of

the system, defined as

B(x) = VH(x) fx() (2-2)

is always less than or equal to zero for all x € Q. If these properties
hold, the function ¥ is known formally as a Lyapunov function (it is
also referred to as an energy function, since it 1s in some sense
analogous to the "energy"” of the system). The existence of ¥ can
provide sufficient conditions for the asymptotic stability of xS..
Additionally, Q is contained within the region of attraction of xS,

These results can be stated formally as LaSalle's theorem [35]:

LaSalle's Theorem For the system from (2-1), let 3:R?* — R be a
continuously differentiable 1.p.d.f., and suppose that for some ¥¢r > 0,

the set

Q. = component of {x € R0 : 9(x) < O¢r} containing xS

is bounded. Suppose ¥ is bounded below on £, that 8(x) < 0
Vx € Q, and that the set |

S={xe Qc:i‘}(x)=0]
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contains no trajectories of (2-1) other than the trivial trajectory x(f) =
xS. Then the equilibrium point x$ of (2-1) is asymptotically stable
(proof is given in [35]).

Therefore the relative stability of x§ can be quantified based upon the
value of 9¢r. The region Q can be thought of as defining an energy
"well” contained in the region of attraction. Unless the system
receives a disturbance that pushes the state x to a point with energy
greater than 0T, the state can not escape the well and will eventually

return asymptotically to x8.

The method can be illustrated with the example of a ball in a two
dimensional well shown in Figure 2-1. The well has an
asymptotically stable equilibrium point (SEP) x5 at the local minimum
of the function in the center, and an unstable equilibrium point (UEP)
xU at the local maximum on the right. Assume the ball is initially at
x8, and then is subsequently displaced from the SEP by some type of
disturbance. The problem then is to determine whether following this
disturbance the ball will eventually return to the SEP; that is, to
quantify the security of the SEP. To solve this problem using
Lyapunov's direct method, a Lyapunov function ¥ is needed. For a
general system of the form of (2-1) this is far from trivial. However
for this simple example system, a suitable © is the total potential and

kinetic energy of the ball with 0(x5) defined as zero. Then to
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determine whether the ball will escape the well, we note that since due
to friction the ball's total energy following the disturbance is non-
increasing with time (and that there are no nontrivial trajectories
where ﬁ(x) = 0), we can guarantee that the ball will return
asymptotically to xS, provided its initial energy following the
disturbance is less than the potential energy associated with xU (OxY]
= 1351'). Thus the value of 9(x¥) can be thought of as providing a

quantitative measure of the security of x.

10 P 1 A H

8
| UEP

Potential Energy
=~
)

Figure 2-1 : Ball in Well Example
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LaSalle's theorem can be applied to power systems by first assuming
that the system is time invariant. This corresponds to freezing uslow(t)
=1 (constant) and setting usmall =0, Then, assuming that a suitable ¢
function can be defined, we can think of the stable operating point of
the system as being close to the bottom of a time invariant energy well
with the "depth" of the well determined by both { and the system
equations. The depth of the well then gives some indication of the
security of the current operating point since the greater the depth, the
larger the disturbance needed to escape the well. This depth can be
measured by calculating the energy associated with the lowest point(s)
on the boundary of the well. A necessary condition for such a saddle
point is that V3(x) = 0; it will be shown later that for the function used

here these saddle points in energy correspond to the unstable
equilibrium points (UEPs) of (2-1).

The use of energy functions has proved quite useful in determination
of system transient stability [36]. In that context, a large disturbance
is first applied to the system, which, in essence, gives the system

some initial "energy". Following the disturbance, a time invariant

system model is assumed, so the existence of a time invariant energy ~

well follows. Using the simplest Lyapunov based criterion, if the
initial energy following the disturbance is less than that of the post-

fault system's UEP with the lowest energy, the system will return
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asymptotically to its post-fault equilibrium point. Other more
sophisticated criterion make use of such concepts as the “controlling
UEP" or "potential energy boundary surface." These approaches
recognize that a fault which yields a system trajectory passing exactly
through the lowest saddle point on the boundary of the energy well is

a rare, worst case scenario.

In contrast, for the voltage security problem considered here the
system has either not been subject to a large disturbance, or has
seemingly "settled down" following the disturbance. Rather the
system is subject to a time varying input u(e) with a time scale of
minutes to hours which is not a known fixed function. Therefore the
operating point of the system is moving in a "quasi-static” manner,
with the "frozen" equilibrium point approximating the true state of the
system. At any fixed time % the shape and boundary saddle points of
the energy well about the frozen equilibrium point could be
determined. However this energy well is also a function of time, since
its boundaries are at least partially a function of the operating point.
As the system changes with time, so does the boundary of the energy
well. Thus by monitoring the changes in the energy of the boundary
saddle points, the security of the system could be tracked over time.
As the system moves closer to the point of voltage collapse one would

expect the depth of the energy well to decrease. This will be shown to
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be the case in later sections.. Eventually at the point of voltage
collapse, where a stable solution no longer exists, the depth of the well
goes to zero. Thus while the system has always remained close to the
bottom of the v;/elll (i.e. close to its frozen equilibrium point), the shape
of the well has changed with time so that at voltage collapse the
energy function about this point is no longer locally positive definite.
In actuality, however, shortly before this point, the random load
variations, which have little effect on a normal, robust operating point,
will dominate and cause the state to escape from the now shallow
well. Once the state leaves the potential well about the operating
point, the deterministic dynamics drive a very rapid decline in voltage
magnitudes until either the problematic portion of the system is

isolated by protective relaying actions, or the entire system collapses.

2.2 Derivation of Energy Function for Voltage Stability
Assessment

The application of energy function methods to the problem of power
system voltage stability is more challenging than was the case for the
simple "ball in a well" example. In this section, the energy function
method is developed. First, consider the static power balance
equations for the two bus system shown in Figure 2-2. For simplicity

the transmission line will be assumed to be lossless, so that the real
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power injection at bus 1 must equal the real load at bus 2.
Furthermore assume that the load attached at bus 2 is represented by a

constant P-Q demand. The resulting power balance equations at bus 2

are:

P, + B2 Vsin(a) =0 (2-3)

QL - B22V2 - ByaVeos(or) (2-4)
where

V := bus voltage magnitude at bus 2

o := &, - 1 phase angle difference between buses 2 and 1

Bus 1 Bus 2

Z = 0.1] l
P/Q Load

Generator

Figure 2-2: One-line Diagram of Two Bus System

For B13 = -Byp = 10.0, the locus of points in the .-V space satisfying
these constraints for a range of P and Q values are shown in Figure
2-3. A radial line with a fixed sending voltage typically has two

solutions for receiving end voltage. This is reflected in Figure 2-3 by
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the fact that the P and Q constraints typically have two intersections,
each corresponding to a power flow solution. However, as shown in
Figure 2-3, for certain critical values of P and Q, the two constraint
curves become tangent, with only one resultant solution. At this point
the Jacobian of the two power balance equations must be singular, If
either P or Q is increased further, the power flow equations no longer

have a solution.

;i n:llz -'-m'2 -7

Figure 2-3 : Power Balance Constraints in -V Plane

In order to develop the energy function approach, it is useful to also

introduce dynamics to augment the algebraic power flow equations.
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Note that the dynamics in this example do not represent the most
general models that can be accommodated by the method. The goal
here is to illustrate the basic methodology; the range of allowable
models will be discussed later. First assume that the real power
demand at bus 2 is a constant plus a linear term dependent on bus
frequency. This follows the structure preserving model introduced for
transient stability analysis in [37]. Using the classical model for the

generator, the system equations are then given by:

Mg @+ Dg o - B2 Vsin(4;-62)-Py = O

-(PL+Dy8y) = BipVsin(8,-8)
-QL = -B»V2-B1Vcos(d:-81)

Under the assumptions that [Ppl= IPy| (generator mechanical power
- matches active load demand) and B = B,;, and recalling the
definition of o as the angle difference across the line, these equations

may be rewritten as:

® = - Mg Dy - Mg (o, V) (2-5a)
. 1

& = D floV)+ (2-5b)
0 = VigaV) (2-5¢)

M, =  Inertia constant of the generator
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D, Dy =  Damping of load and generator
f(CL,V) = PL + B12Vsin(a)

glo,V) =  Qp-BiaVeos(e)-BpV?2

1)) = 81 "

Note that multiplication by V-1 in (2-5¢) does not affect the desired
solutions because voltage magnpitudes are always restricted to be
strictly positive. The equilibrium of (2-5) are the (a,V) intersection

points pictured in Figure 2-3, in the @=0 plane.

The mixed system of differential and élgebraic constraints in (2-3) is
not guaranteed to define a globally well posed dynamical system;
that is, for some feasible initial conditions trajectories cannot be
continued for all time, particularly when the voltage magnitudes are
very low [38]. However, using the technique from [38] the algebraic
equation is singularly perturbed to form a differential equation whose
equilibrium is the solution of the original equation. For (2-5c), this

becomes
eV = Vi,V (2-5d)

where € is a small positive parameter that controls the speed with
which trajectories of voltage magnitude move towards values

satisfying the reactive power balance. It is shown later that the



41

model's ability to predict voltage collapse is independent of the choice
of this parameter. From an engineering standpoint, 2-5d may be
interpreted as follows. The load demand is taken as an "independent
input”, and the voltage magnitude responds to this input to maintain
reactive power balance. The right-hand side of 2-5d is the difference
between the reactive power absorbed by the load and the reactive
power delivered to the load. When the load instantaneously demands
more reactive power than the system is supplying, (2-5d) predicts that
the bus voltage drops until power balance is re-established. The rate
of this change is dependent upon ¢€; for £ sufficiently small it 1s
essentially instantaneous and the behavior is nearly identical to the
original algebraic equation. Note that the use of € is not advocated for
simulating system trajectories since this would.create an unnecessarily
stiff set of differential equations to be solved. The point of
introducing (2-5d) is to obtain a single model that is physically
reasonable over a wide operating range of voltage, thereby facilitating

the energy function analysis.

In order to develop the energy function for the system of equations
given by (2-5a), (2-5b) and (2-5d), they are first written in matrix form

as
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- - -M_ngM-l Moo | _
o g8 g T Mo
& = N T B flo,V) | (2-6)
g 1
. -1
v . , 1| BV eeWm-
= £ .

with Mg,Dy, Dy and € assumed to be strictly positive.

Defining A as the 3 by 3 matrix from the right hand side of (2-6), x =
[0 a VIT, (x) = Mge f(a,V) Vlg(a,V)]T, and letting 6(x) be
defined as the vector function of the right-hand sides of equations
(2-5a), (2-5b) and (2-5d), we can derive a Lyapunov function for this

system using the following theorem:
Theorem 2.1 [39]

Suppose the system of the form X =0 (x) has a strictly stable

linearization at the equilibrium point x8. Further suppose that there

exists a constant matrix A € R1X1 gatisfying

a) det(A)=#0;
b) (A+AT) <0,1i.e., (A+AT) is negative semi-definite;

c) A'le(x) = ¢(x) is a gradient function, or equivalently,
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A_lae(x) - dd(x)

is symmetric.
ox ox y

Under these conditions the integral

B(x) = f" (Ao Tdx = J" [9(x)]Tdx (2-7)
xS xS

defines a Lyapunov function for the system of (2-1), that is 9(x) is

locally positive definite about x5, and

B (x) = [VO)]T 8(x) =% vox)T (A+ATVex)< 0.

For the power system under consideration, the initial stipulation that
(2-6) have a strictly stable linearization at the equilibrium pomt xS is
met by definition because only systems which have steady state
stability are studied. The first requirement that det(A) # 0 can be
shown to be true by straightforward calculation. Second, (A+AT) can
be shown to be negative semi-definite by noting that it is a diagonal

matrix whose diagonals are all less than zero. Lastly,
[ Mg 0 0 ]

-l 90(x) Id(x) 0 BpaVcos(a) Byssin(a)

ox ox -

. L
0 Busin(e) - 75-Bn

S
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is a symmetric matrix, implying that A-lo(x) is a gradient function.
Therefore it is possible to define H(x) by (2-7). Additionally, Vi(x) =
d(x) since

"

Vox)= V "S[A-le(x) 1Tdx

X

o/

=V ’;S[qa(x) 1Tdx = 0(x) - 3(xS) = $(X)

From (2-7) it can be seen that 9(x) is the vector integral of ¢(x) from
X8 t0 X, thus being dependent not only upon x but also upon x5; it can
be characterized as an "energy difference” between the two states.
However since the power systems under consideration here are
assumed to have only a single stable equilibrium point of interest (the
normal operating state of the system), for notational simplicity this

dependence on x5 will be made to be implicit.

Formally, the previous definition of the Lyapunov function 9(x) is
sufficient to show stability of x8 in the sense of Lyapunov, but not

asymptotic stability. This is because we have not precluded the set

Q¢ = component of (x € R : §(x) < O¢T} containing x5

from containing trajectories of (2-1) where ﬁ(x) = 0. If such a

trajectory were to exist (other than the trivial trajectory x(t) = x3), the
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value of O(x) would never decrease, indicating that x is not
converging to x8. However if (A+AT) is negative definite then .
does not contain any trajectories where ﬁ(x) = 0 (again other than the
trivial trajectory x(t) = x%), and asymptotic stability can be shown by
LaSalle's theorem. This would be the case in a physical system where

all the diagonal elements of A are strictly less than zero.

For the two bus system under consideration here, with an equilibrium
- point (0,a5,Vs), the Lyapunov function 9(w,c,V) 1s given in closed

form by:

1
Ho,oV) =5 Mga)2 - B Veos(a) + Byp Vscos(ois)

1 1 V
+2B22V2 + 3Ba(V + PL(0-0) + Quin () (2-8)

The function ¥(®,x,V) can be thought of as representing the energy of
the system, with the first term representing the "kinetic energy” term,
and the remaining terms representing. the "potential energy" term.
Using (2-8) it is possible to calculate the energy difference between
any point in the (®,0,V) space and the stable equilibrium point xS,
For example, if we let P = 200MW and 'Q = 100MVAR, the per unit
stable eQuilibrium point (i.e. the standard power flow solution) is
(0,-13.52°,0.855). This solution can be verified by straightforward

substitution into (2-6); note that the equilibrium point is independent
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of the values of elements of A, Figure 2-4 plots the contours of this
energy difference in the ® = 0 plane. Since when ® = 0 the system
kinetic energy is zero, Figure 2-4 shows the potential energy well

for the system at the specified values of P and Q.

o

-90 60 -30 0 30 60 20
Bus 2 Voltage Angle (in degrees)

Figure 2-4 : Contours of Energy Function ¥ in o-V Space

To determine the depth of the energy well, it is necessary to calculate
the value of the "nearest” saddle point, where VO(x) = 0.
Geometrically, this is the first point x, satisfying V3(x) = 0,

encountered by expanding constant contours of ¥ from xs. Since A is
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- nonsingular, the only points where VU3(x) is equal to zero are the

equilibrium points of (2-6), where ¢(x) is equal to zero. For the
simple two bus system under consideration here, it is shown in [62]
that such a system only has at most two equilibrium points and at
most one saddle point. The equilibrium points correspond to the
intersection of the two constraints shown in Figure 2-3. For the
example loads of the previous paragraph, this second equilibrium is at
(0, -49.91°, 0.261). The energy difference for this system can be
found using (2-8) to be 0.8608. This value then provides a measure of

the system security; it will be referred to as the energy measure,

The steady-state stability of each of these equilibriom points can be
calculated by linearizing the system about each point and then

determining the eigenvalues. The linearized equations are given by

- 1 S
T | MeDs Mg M .
. 1 1
Ad |= 1 SO N PR ) i Ao | 2-9)
- AV
1
-AV- 0 ovly oviy

with
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_ af(o,V)
1= Ja
of(o, V)
Io="4
(V)
I3 = 75,
ag(a,V)
ja =

Note that at an equilibrium point, where g(.,V) = 0 by definition, we

have

AV ie(a V)] _ vl dg(a,V)

oV av

Define the 3 by 3 matrix from (2-9) as B. The stability of an
equilibrium point could then be determined numerically by calculating
the eigenvalues of B. An analytic calculation of the individual
eigenvalues of the above system could, however, be quite difficult.
Nevertheless, a number of properties conceming the stability of the
above system can be determined analytically.  Throughout the
following analysis it will be assumed that My, Dy, Dy and € are all
strictly positive.  The requirement that the generator inertia and
damping constants, My and Dy, are strictly positive is satisfied for
realistic generator models. The requirement that the load parameters,
Dy and €, are also strictly positive is based upon realistic load models

and is normally satisfied in practice.
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Define the determinant of the Jacobian of (2-3) and (2-4) (i.e. the

power flow Jacobian):
Jpt =T1Ja- 1213

Note that the definition of the power flow determinant, pr, assumes

the elements of the power flow Jacobian are ordered so that the
relationships between the state variables and the underlying state

equations from (2-9) are maintained. Also define -

¢ = DilJl +(Veylly

-1 -1
2 = (M, Dy(DVe)l + M . vVeyD
The characteristic equation of B is then given by
7&. M'Dy) 22+ MDD
+(c1+ g g) A+ ( g Dgé1+

-1
(DIVS)‘1 pr+ Mg ]1) A+ Cr pr (2-9a)

' The roots of the characteristic equation (2-9a) then determine the

matrix's eigenvalues. The Routh-Hurwitz stability criterion can be
used to determine the stability of the system [39]. Define the Routh
array for (2-9) as
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Column 1 Column 2

-1 M1+ Vel T
1 (Mg Dgeq+M, J1+(DiVe) " Ipp)

-1 J
(c1+M, Dg) c2 Jpf

1 -1 -1 1
(Mg DgerMy T) (cr+My, D+erDrl-My )(Vey 1y

-1

c2lpf 0

The Routh-Hurwitz stability criterion then states that a necessary and
sufficient condition for stability is that there are no sign changes in the
first column of the array. Since the element in the first row of the
above array is positive (it is equal to one), sufficient conditions for
system stability could be developed by placing restrictions on the
system parameters to insure that the remaining elements of the first

column are positive.

Proposition (sufficient conditions for system stability)

The following are sufficient conditions for the stability of the system
from (2-9):

1. My, Dy, Dy, V and € are all strictly positive.
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2. Jq and I4 positive
3. J, *J3 non-negative
4, ]pf> 0

Proof

The first element in row 2 is positive by assumptions 1 and 2. This is
because Jq, J4, Dy, V and € positive implies ¢; > 0. A sufficient

condition for the first element in row 3 to be positive is that I, * J3 be
non-negative. The denominator is positive by the previous argument.

The numerator can be rewritten as

g

-1

1

1 1l 2
(M, Dger#M, 1) My Dy + M, Dgcy + M

| . -1
+c1Drl(Vey HIpe+ M gl(Vs)-l IJs - M, (Veyl 1y

-1
+ Mg (VE)"I I5J3

Canceling the second and third to last terms results in an expression
with all terms strictly positive except for the last term, which is non-
negative by assumption 3. The first element in row 4 is positive by

assumptions 1 and 4.

From (2-3) and (2-4) it can be seen that assumption 2 is satisfied if the

angle across the transmission line is less than 90 degrees with By
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positive and By negative. These assumptions are almost always

satisfied in practice. Assumption 3 is always satisfied for the lossless

case under consideration here because

af(a,V) - V_I ag(asv)
ov oo

Therefore we can conclude that for a "normal" (as defined by
assumptions 1 through 3) lossless two bus system, a sufficient
condition for stability is that the determinant of the power flow

Jacobian (as previously defined) is positive.
Proposition (sufficient conditions for system instability)

1. Mg, Dy, Dy, V and € are all strictly positive.
2. JPf <0

Prbof

By the Routh-Hurwitz stability criterion, the number of sign changes
in elements of the first column of the Routh array determines the
number of eigenvalues with strictly positive real parts. Since the first
element in the first row is positive (it is equal to one), we only need

show that at least one element in the first column is negative. Since
Jpt < O by assumption 2 and ¢3 > 0 by assumption 1, the first element

in the last row is negative. ¢
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Proposition System [2-9] can only lose stability by eigenvalues

passing through the origin.

Provided My, Dg, Dy, V, and ¢ are all strictly positive, the system from

(2-9) can not have purely imaginary eigenvalues (other than the trivial
case of eigenvalues at the origin) when there are no other eigenvalues
in the right half plane. Equivalently, the only way the system can lose
stability is for an eigenvalue to pass from the left half plane through
the origin into the right half plane. Similar results have previously
been shown i [40] for the case of load buses modeled with fixed
voltage magnitude (PV), and in [44] for the power system model

considered here.

Proof

Assume the opposite, that the system loses stability by a pair of
complex conjugate eigenvalues moving into the right half plane, not

passing through the origin. At the point where they cross the

Imaginary axis, B| # 0 since |B]| is equal to the product of the
matrix's eigenvalues, and we have assumed that the system does not

have a zero eigenvalue. However a necessary and sufficient condition
for | B | 0 s that J¢ 0 since
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and all terms in parenthesis are assumed strictly positive.

However if J;r > 0 all the eigenValues have negative real parts,

contradicting the original assumption that a pair of complex conjugate
eigenvalues are on the imaginary axis. Conversely if Jpr < O the
system has eigenvalues with strictly positive real part, contradicting
the assumption that a stable system is losing stability with eigenvalues

on the imaginary axis. Thus we've established a contradiction since
we originally assumed that J,¢= 0.

Therefore for the two bus lossless system, the stability of the
equilibrium point can be determined by the sign of the determinant of
the power flow Jacobian [41],{42]. For the second equilibrium point
(0, -49.91°, 0.261) from above, the determinant of the Jacobian is
-17.3, indicating it is unstable. Because the unstable equilibrium
points are characterized by low voltage magnitudes, they will be
referred to as "low voltage” solutions. The point (0, -49.91°, 0.261) is
a saddle point, and hence can be used to measure the depth of the

energy well.
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The ability of the energy measure to predict vulnerability of a system
to voltage collapse for the two bus system will be examined next. The
problem to be solved is to quantify the voltage stability of a given
system operating point, providing a measure of how far the system is
from the point of voltage collapse. The system will lose its steady
state stability, with subsequent voltage collapse, when the Jacobian of
the two power flow equations is singular. Geometrically, this singular
solution occurs when the active and reactive power constraint curves
are tangent to one another. If either P or Q is increased further, the
curves no longer intersect, and the power flow has no solution. For
the two bus system it is straightforward to derive the algebraic
expression describing the locus of point in the (P,Q) space where the

Jacobian is singular. First observe that the Jacobian for the system is

B 12Vco's(oc) B, Vsin(a)

B 12VSiI’1(O!.) -’2B22V- B 12VCOS((1)

Points of singularity are identified by setting the determinant to zero,

yielding the constraint

det()= .V (-2B12By;Vcos(a) - (B12)*) =0

Ignoring the unrealistic case of V = 0, the determinant is zefo for all

(0, V) pairs satisfying
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-B12
Vcos(o) = 5]3_2—2

Since from (2-3) and (2-4) each point in the (o,V) space maps to only
one point in the (P,Q) space, the locus of points which satisfy the
above equation can be plotted in the (P,Q) space. These points are

shown in Figure 2-5. Note that the boundary between the feasible and
infeasible regions is only a function of the system parameters B, and

Bys.  Since the boundary is defined as the set of loads whose

constraint curves are tangent, each point on the boundary has only a
single power flow solution. Hence the energy measure associated
with these points is identically zero since the upper and lower limits of
the integral in (2-7) are identical. For each point contained within the
feasible region an energy measure can be calculated by first
determining both the normal operating point solution (i.e x%) and the
low voltage solution (i.e. x1), and then calculating the energy measure
using (2-7). The contours of these energy measures are shown in
Figure 2-6. Since the points in the infeasible region do not have

power flow solutions, their energy measures are not defined.
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Figure 2-5 : Locus of Points where Power Flow Jacobian is Singular
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Figure 2-6 : Contours of Energy Function & in P-Q Space

Interestingly, the energy contours in Figure 2-6 are both parallel to the
feasible region boundary and fairly evenly spaced. Recognizing this,
various frozen equilibrium points (operating states) could be ranked,
according to their proximity to the feasible région boundary, by their
energy measures. The usefulness of this method's ability to rank
operating points is illustrated in the following example. Consider a
fairly typical scenario where P(t) and Q(t) are slowly varying
functions of time which are not known a priori. Also assume that the
operating point is sampled at a rate so that relatively small variations

in P and Q occur between sample periods. At each sample period
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we'd like to calculate a proximity index which tells us how close the
system is to voltage collapse so that corrective action can be taken if
needed. For such an approach to provide useful results, a number of

criteria should be satisfied by the proximity index.

First, we need to know beforehand what value of the index
corresponds to voltage collapse. Therefore a simplistic approach of
watching the voltage magnitude at the load bus would not work since
we have no idea beforehand of the voltage magnitude at which voltage
collapse will occur. The energy method provides this functionality
since voltage collapse occurs by definition when the energy measure
is zero. Second, in order for the proximity index to adequately predict
how close a system is to voltage collapse, it must vary in a smooth,
ideally linear, manner with respect to continuous changes in the
system (i.e. does not exhibit discontinuous changes in value for small
system changes). It can be seen that the energy method has this
characteristic by noting that the contours in Figure 2-6 are fairly
uniformly spaced. Third, the index should be relatively insensitive to
the assumed path the system will take from the current operating point
(for which the index is to be determined), and the point where the
system is assumed to reach the feasible region boundary. This
insensitivity is needed because future load variations are known only
approximately at best. Strong dependence upon an assumed path

could result in inaccurate rankings of various operating points.
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Consider the case where the current operating point is close to the
boundary, but the assumed path is parallel to, or away from, this
boundary. The operating point would be ranked as quite secure, even
though a slight variation in the actual path from the assumed path
could result in loss of steady state stability. Since in the energy
method no assumption is made about future system load variation, this
criteria is also met. Lastly, the computational time to calculate the
index must be suitable for on-line use. The scalar energy measure is
determined by solving for the current operating point (08,V®) and for
the unstable equilibrium (o2, V%), and then simply calculating the

energy difference.

Based on the insights gained from the lossless 2 -bus system, the
energy function approach appears to be a promising indicator of
proximity to voltage collapse. Subsequent analysis and examples will
show that its desirable properties also carry through to realistically
sized networks. Completing the example from the penultimate
paragraph, Figure 2-7 shows how the energy measures varies as the
load at bus 2 is increased so that the P/Q ratio remains constant at 2.
Recall that in the calculation of the energy measures for a given
operating point, no ‘assumptions are needed concerning the future

variation in the load.
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Figure 2-7 : Energy Measure versus Load Level for Two Bus System

For the lossless system previously studied it is possible to define an
energy function which is truly a Lyapunov function. That is one in
which energy is continuous and nonincreasing along all trajectories,
and with the stable operating point as a local minimum of . This is
no longer the case when losses are considered. Consider the realistic

extension of (2-3) and (2-4) to include transmission line losses:

Pp + Gy1V2 + BypVsin(or) + G1aVeos(e) = fogey(0,V) = 0
(2-10)

Blossy(®,V) = 0

QL - B22V2 - BuVCOS(G) + GuVSin(G.)
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Equation (2-6) could then be rewritten, substituting flossy and gjossy
for f and g respectively. In trying to derive a Lyapunov function for
this system of equations, we note that Theorem 2.1 can no longer be

applied to obtain a Lyapunov function because

B Mg 0 0 -
9px) | 0 BraVeos(e)-GypVsin(e 2Gy1V+B1gsin(a)+Gqcos(o)
ox
: QL
| 0 Bypsin(a)+Gygcos(ar) - W-Bn ]

is no longer symmetric. In general for the case of a multimachine
power system with losses, no global Lyapunov function has yet been
found [43]. Instead the lossless Lyapunov function from (2-8) is used
to approximate the behavior of the system. Since losses are included
in system differential equations, but not in 3, the derivative of ¥ along

all trajectories
M, _

{E}(x)-_-[ M, ® f(a,V) V'lg(a,V) 1 A flossy(a’v)

—V-lglossy(a,v)—
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can no longer be guaranteed to be non-positive. Therefore ¥ is no
longer formally a Lyapunov function; for the remainder of this thesis
the term energy function will be used instead. Also since analysis will
focus on the value of ¥ at equilibrium points, where ® = 0 by

definition, ¥ will no longer be written as a function of ®.

Another consequence of including losses in the system model is that
B0, V®) no longer defines a local minimum of the 1 function as |
defined in (2-8). A necessary condition for a local minimum of ¥ at
(05, V%) is that V{0, VS) = 0. However

f(os, V)

Vo(as, VS =

| Vlg(os,ve)

[ flosey (05, V9) G, Veos(a)

| Vlgoeey(@s,V9) V1G5 Vsin(a)
is no longer 0 since

flOSSy(aSaVS)
= 0

glossy(asavs)
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by definition of an equilibrium point and Gy, # O for a lossy system.

This -difﬁcﬁlty can be resolved in the neighborhood of the stable
operating point (¢8,Vs) by redefining f and g used in (2-7) to be

PL + B1oVsin() + G13Vcos(a) + Goa(VH?2 = f(o,V)

(2-11)
glo,V)

Qy. - B22V2 - BysVceos(a) + GIQVSSin(OtS)

Since the added terms in (2-11) are constants with respect to the
variable of integration in (2-7), the vector function remains exactly
integrable (i.e. no path dependence). With the addition of these
constant offset terms, the gradient of the energy function at the stable
equilibrium point is now identically zero. Note also that although the
only explicit dependence of 3 upon the system transfer conductances
is through these offset terms, ¥ is implicitly dependent upbn the
transfer conductances since both of the limits of (2-7) reflect the

influence of transfer conductances.

Using the redefined power balance equations (2-10), the revised

energy function for the two bus system (2-8) is now

1
Hw,o,V) = EMg(oZ - BiaVcos(a) + BisVicos(as) - %BZZVZ

1 v
+ 2Bn(V9? + Prlo-od) +Quin (1))
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+ (G12VScos(as) + Goo(VE?) (0t-05)
+ G Visin(as) (%) - (2-12)

As was done earlier, this revised function can be used to calculate an
associated energy difference for any feasible load point (P,Q) in a
system which includes transmission line losses. For example Figure
2-8 plots the energy contours of the system used for Figure 2-5 but
with the addition of conductance terms Gyp = -Ggp = -5.0. As was the
case with the earlier figure, the energy contours are again both parallel
to the feasible region boundary and fairly evenly spaced. This suggest
that the modified energy approach still provides a good index of
proximity to voltage collapse in a two bus system, even when
transmission line losses are included. In the next section the approach

is extended to an arbitrary sized system.
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Figure 2-8 : Contours of Energy Function ¥ for Two Bus System

with Losses

2.3 Application to Multiple Bus Power Systems

The two bus system model used in earlier sections allows simple
graphical display of the concepts being developed but is, of course,
much too small to analyze all but the simplest of power systems.
Today it is quite common for utilities to include several thousand
buses in their power system models in order to accurately model the

behavior of their electrical systems. In this section the extension of
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the energy function method to multiple bus system is discussed.
Before delving into a discussion of the application of energy functions
to multiple bus systems, it is important to clarify one point. For the
two bus system thé calculation of the operable and the low voltage
solutions was straightforward; there was at most one low voltage
solution. In general this is no longer the case for systems with more
than two buses. Throughout this section the assumption is made that
both the operable solution and the appropriate low voltage solutions of
the power flow equations are available. The current operating point
(or high voltage solution) is normally either available on-line from the
state estimator, or known in a planning study. The means of
calculating the appropriate low voltage solutions is touched upon in
this section, but will be examined in much more detail in Chapters 3

and 4.

The system dynamics from (2-5) can be generalized for a system of

arbitrary size.  Assume that for an n bus system, the buses are
partitioned so that the n; load buses are numbered 1 through ng, and

the ng generator buses are number n; +1 through n. Bus n is chosen as

the system slack. The system dynamics can then be written in matrix
form as [44]:

. -1 -1
g = -M,Dgwg-M, T;'f(0,V) (2-13a)
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1

Toog -T1D; T11f(@,V) (2-13b)

-V-lg(a,V) (2-13c)

[an'l'].’"'.’(Dn]T

[ct,.. 0] T

[Visen Vil

diag(Mgg +1,--Mgn} (Mgi>0)
diag(Dy,..Dy )  (D;>0)
diag(Dp, 1Dy} (D;>0)

In,
.| eR®-Dxm
L0
© 0
—e | gpm1Dxng
L IIl(;-].
,..,1]7

Constant positive diagonal matrix of parameters
for singularly perturbed system model.

The power flow equations at each bus, fj and g;, can be written as

n
fo,V) = P;- YBjl Vil |Vl sin(as-o)

j=1
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n .
ZGUIVI | ;| cos(or-ot)) (2-142)
n
gi(a,V) = QiVy + ZBij|Vil |Vj|cos(oci—ocj)
4
n
- 36; 1 vil Ivjlsintaap (2-14b)

=1

B;;, Gij - Susceptance and conductance between buses i and j

Vi - Voltage magnitude at bus i
o4 - Voltage angle at bus i
P; - Real power injection into the network at bus i (thus

generation is positive, load is negative)

Q;(V;) - Reaciive power injection into the network at bus i,

specified as a (once) differentiable function of bus
voltage.

In a similar manner to what was done for the two bus case, a scalar
energy function ¥ can be developed using (2-7). In [45], it is shown
that for a lossless system (i.e G = 0) ¥ is formally a Lyapunov
function. However for ¢ to define a true Lyapunov function, the

construction does place restrictions on allowable load models.
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Reactive power demand may, for example, be an arbitrary polynomial
or exponential function of bus voltage magnitude; path independence
of the generalized integral from (2-7) requires that active power
demand not depend on bus voltage magnitudes. However, experience
in energy functions for transient stability studies [46] has shown that a
path dependent integration may be used to represent voltage
dependent real loads, with the resulting energy function still
approximating many properties of a Lyapunov function. As an
alternative, a local correction that adds a constant term similar to that

employed for losses may be employed.

Additionally, the development of & places restrictions on the
allowable models of system dynamics. In particular the generator
excitation control loop is not modeled in detail; the assumption being
that the voltage control loop is stable. The model employed here
assumes a type of fast exciter representation with reactive power
output of a generator allowed to vary in order to hold its bus voltage
constant, Exciter saturation is included by restricting the allowable
reactive power output. If a limit is reached, the exciter is considered
saturated, and the generator's reactive output is held constant at that
limit. This is a standard approach to treating generator voltage control
in power flow calculations. However, as discussed in [47], if the flux
decay dynamics and excitation control loop introduce instabilities,

then the system may experience voltage instabilities associated with
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complex eigenvalues crossing the imaginary axis when the energy
function is nonzero. The use of the energy function method to predict
vulnerability to voltage instabilities is here restricted to those cases
where voltage instability is caused by the loss of the steady state

equilibrium point (i.e. singularity of the power flow Jacobian).

For the energy function method to accurately handle realistic system
models, which include losses, it is important that the effects of the
conductance matrix G be included. A difficulty which could arise if &
did not include the effects of G would be that of (as,V®) no longer
defining a local minimum of the ¥. As was done for the two bus case,
this difficulty is resolved at the stable operating point (o5,VS) by

redefining f and g used in the integral definition of 3 to be

n
fio,V) = Pi(V)- YBjjl Vil [ Vjlsin(aj-o
=1
nG"lVSHVS| § S8
j=1

n
g V) = Qv+ IBjjl Vil [Vjlcos(os-o)
j=1
2 S| [<S| ., 8 S
- 3Gy v | Ivj |sm(oci-0cj ) (2-15b)
=1
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Since at (a8,VS) equations (2-15) are identical to (2-14), the gradient
of the energy function at the stable equilibrium is now identically
zero. The revised form of the energy function can then be expressed

in closed form as [31]:

1 b
B =-7 2, ¥Bj | V? | le1 | cos(a]il-a}l)
| ¢ & § S S 8
+3 Bilei | |Vj |cos(ozi-ocj)
i=1j=1
[ N
W
o Qi)
-1 Z J - dx | - PT(omas)
i=1
8
\ Vi J
n n
5 S § s, u s
- 'Z Y Gijlvi | ‘Vj |cos(ai-aj o, - )
i=1 =1
n .1 n
S S §1 ., 8 8§ u..s

i=1 j=1

In deriving (2-16), the integration in (2-7) was assumed to be between
the stable equilibrium point (5, V®) and an unstable equilibrium point

(o, VY); it thus represents only the potential component of the system
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energy. However to assess system voltage security, only the values of
the energy function at the equilibrium points (where @ = 0 by
definition) need to be computed. We are thus only concerned with the
potential energy function, which is a function of the voltage
magnitudes and angles, but not of w. Additionally, for notational
simplicity the dependence of 9(x!) upon the stable operating point x8

will not be explicitly identified.

The evaluation of the summation terms in (2-16) is straightforward.
Since the equations are sparse (i.e. many of the Bj; and Gjy; terms are
identically zero), the computational cost for calculating these sums is
small (much less than that of a single power flow solution iteration).
For the non-generator buses, the integral term can be quite easily
evaluated, provided the reactive load is modeled in the common form
of either a polynomial or exponential function of bus voltage. For
example, if the reactive load at bus 1 is modeled as a constant
component plus component linearly dependent upon the bus i voltage

magnitude
Qi=ki+ky Vj

then the integral evaluates to
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u
Vi 4 s
kyln || + ko (V; - V) ©2-17)

Vi

(7]

At the generator buses in the system the voltage magnitude is
generally specified, rather than the reactive power output. The
reactive injection at the generator bus then is assumed to vary in order
to hold its bus voltage within a small tolerance of a specified voltage
(the voltage setpoint). Exciter saturation is modeled by representing
the reactive output of the generator as a function of terminal voltage,
with saturation to specified upper and lower limits. With this model,
the mathematical framework for treating voltage regulating generators
is identical to that for voltage dependent reactive loads. A typical
reactive power output versus terminal voltage characteristic is shown

in F{gure 2-9.
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Figure 2-9 : Generator Reactive Output versus Terminal Voltage

If the reactive output of a given generator has not yet reached a limit
at both the high or low voltage solution, then the deviation from this
voltage setpoint is assumed to be very small. Thus the resulting
integral term is negligible because the limits of integration are nearly
identical. It is, however, quite common for a number of generators to
be pushed to their limits in the low voltage solution, while the
generators are still regulating in the high voltage solution. In that case

the integral term is well approximated by
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u
Vi

Qlim(max) ¥ In ; (2-18)
i

The rationale for this approximation is that along the integration path
from the high solution ViS to the low solution Vlil, the reactive output
of the generator would rapidly saturate once the voltage had moved
outside the small tolerance about its setpoint (Figure 2-9), and thus
may be considered as a constant. This is to be expected since the
generator bus is saturated along most of the path of integration and

thus would behave as a constant reactive power source.

The application of energy methods to multiple bus system is more
formidable than for the case of a two bus system because of the
possible presence of multiple low voltage solutions. As the first step
in complexity beyond the two bus system, consider the system shown
in Figure 2-10. The system consists of a strong generator bus (an
infinite or slack bus), with two separate load buses connected to the
generator through realistic (i.e. with losses) transmission lines. This
system could be a rough representation of a large generating area
supplying power to two separate urban centers. Mathematically the
system is equivalent to two independent two bus systems; it is clear
that there are at most four power flow solutions (both load buses at the

high solution, one high and the other low, or both low) for this system.
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Buses 1 and 2 are completely isolated by slack generator

Bus 1 Bus 2 Bus 2
P/ Load Slack Generator P/Q Load

Figure 2-10 : One-line Diagram for Double Radial System

Using (2-16), an energy measure could then be calculated for each of
these low voltage solutions. The presence of muitiple energy
measures requires that an explanation be provided  as to their
individual significance. For the uncoupled three bus system, the
independence of the two load buses allows for a straight forward
interpretation of the energy measures. An energy measure found
using the solution with one bus high and the other low can be used as
a proximity indicator for vdltage collapse at the bus with the
depressed 'voltage magnitude. Since the two loads are truly
independent, the risk of voltage collapse at each bus is also
independent. Thus to provide a complete assessment of the system
voltage stability, the two independent security measures, provided by

evaluating the energy function at the individual low voltage solutions,
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are needed. The energy measure calculated using the solution with
both buses low is simply the sum of the other two indicators; it is
interpreted to represent the rvisk of voltage collapse occurring
simuitaneously in both areas. Since energy measures are available
using the other low voltage solutions for each separate area, this value
is not needed. Therefore only the first two low voltage solutions are
of interest. The key point is that a single measure could not be used to

adequately assess the system's voltage stability.

The next logical extension of this system is to couple the two loads by
adding a third transmission line between them (Figure 2-11).
Additionally, a generator is added at bus 1, but is assumed to be
initially off-line. The question then is to determine the voltage
security of the system when it is characterized by .a given load
distribution (P,Q1,P2,Q2). In the remainder of this section the
applicability of the energy method to providing such a measure is

demonstrated.
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Z = 0.03 + 0.2]

Bus 3 Bus 1 Bus 2

Z = 0.03 + 0.15j
P/Q Load

Z = 0.02 + 0.1]

P/Q Load

Local generation
{initially off-line)

Slack Generator

Figure 2-11 : One-line Diagram for Coupled Three Bus System

To determine the voltage vulnerability of this system using the energy
approach, it is first necessary to calculate the appropriate low voltage -
solutions. Theoretically for an n bus power system there are believed
to be at most 20-1 solutions of the power flow equations [48], [33].
However for a large system there are normally substantially fewer
solutions, and only a small subset of these will need to actually be
determined. The technique used here is to only consider those’
equilibrium points which are of type-one. A type-one equilibrium
point is one in which a single eigenvalue of the linearized system
about that equilibrium point has a positive real part. The motivation
for this approach comes from [49] where it is shown that for system

models of the type examined here (2-13) will generically lose steady
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state stability by a saddle node bifurcation between the SEP and a
type-one UEP. Note that as was mentioned earlier, the models do not
include detailed representation of the generator voltage control loop;

fast exciter representation is assumed.

Classifying low voltage solutions as type-one raise the issue of
identifying the stability properties of a power flow solution with
respect to the linearized dynamic model. A number of authors have
examined the issue of relating small disturbance stability of the
linearized power system dynamics to the eigenvalues of the power
flow Jacobian (see [47] and references therein). In [44] it is shown
that the Jacobian of (2-13) and the Jacobian of the power flow
equations (2-14) have the same number of eigenvalues with positive
real part. Therefore the low voltage solutions can be classified as

type-one by examining at the eigenvalues of the power flow Jacobian.

Retuming to the three bus system, with the assumption of constant
load power factor (making Qq and Q, dependent variables), Figure
2-12 plots the energy contours of the feasible region in the (P1,P;)
space. As wasr the case in Figure 2-6, the energy contours are nearly
parallel to the feasible region boundary and fairly evenly spaced. This
again suggests that the energy measures provide a method of ranking

the operating points (frozen equilibrium points) of the system.
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Figure 2-12 : Energy Contours for Three Bus System in P{-P; Space

It is important to note that the computation required for the
construction of Figure 2-12 was not as simple as for the two bus case.
Since in a multi-bus power system there is often more than a single
low voltage solution, there are correspondingly often more than a
single energy measure. For the coupled three bus system one may
identify a single SEP, two type-one UEPs, and a single UEP of type
greater than ohe. This can be illustrated by plotting the voltage
magnitudes at buses 1 and 2 for each solution as the system load is

varied. For an initial load of 20 MW and 10 MVAR at each load bus,

four solutions are possible. Figure 2-13 shows the solutions

trajectories in the (V1,V,) space as the loads at both buses are
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increased proportionally, maintaining a constant power factor. The
initial starting voltage points are labeled 1,2,3 and 4. Table 2-1 lists
the four eigenvalues of the power flow Jacobian, associated with each
initial equilibrium point. As can be seen, solution one is an SEP,
while solutions two and three are type-one UEPs, and solution four is

a type-two UEP.

Solution # _ Eigenvalues
1 -199+39]1-199-39] 1 -6.6+1.1] |-6.6-1.1]
2 5.6 -0.5 -2.1 -4.3
3 -8.6 -6.5 4.0 -0.5
4 4.4 -0.5 -0.6 2.0

Table 2-1 - Solution Eigenvalues
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Figure 2-13: Variation in Voltage Magnitudes as Load is Increased

As the load is uniformly increased at buses 1 and 2, trajectory 1
moves downward to the left, indicating that the voltages at both buses
are falling. This is reasonable behavior for a power system without
voltage regulation.' Eventually the voltage collapse point is reached
(labeled point 3); at this critical point the Jacobian becomes singular
and no further increase in load is possible. The power system loses its
stable equilibrium point through a saddle node bifurcation with
solution from trajectory 2. Subsequently, the deterministic dynamics

of the system would then display a number of negative dV/dt terms,
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indicating voltage collapse. Likewise, as the load is increased from its
initial value, the solutions associated with the three low voltage
solutions also move in the directions shown. However at a load level
significantly less than the load associated with the critical point, the
solutions associated with trajectories 3 and 4 coalesce. This occurs at
a load of P; = P = 67 MW, at this point the Jacobian of the power
flow equations is singular. For further increases in load these two
solutions no longer exist. As the load is further increased, trajectory 2

continues upward, eventually meeting with trajectory 1 at point 3.

Thus the number of power flow solutions is dependent upon the
loading of the system. In general as the loading on a system increases
the number of solutions tends to decrease, with the solutions vanishing
“(or occasionally appearing) in pairs [33]. As the system approaches
the voltage collapse critical point, the number of solutions typically
goes to two. These two solutions eventually coalesce at the critical

point. For the example system this occurred at a load of Py = P =

192 MW,

An alternative way to present the voltage collapse scenario is to plot
the energy measures associated with each of the low voltage solutions
as a function of the system load. This is shown in Figure 2-14. Since
there are initially three low voltage solutions, there are three energy

measures. However as the load is increased, the upper two energy
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measures vanish when their respective solutions coalesce. For higher
loads there is only a single energy measure for the system. The near
linearity of the lower energy measure curve in the figure is due to the
evenly spaced contours of Figure 2-12 parallel to the feasibility region
boundary. To construct Figure 2-12 for those loadings with more than
one associated energy difference, the lowest energy difference was
chosen (which was always associated with a type-one equilibrium).
When there was only a single low voltage solution (such as in the
example above for loads greater than 67 MW) then that energy

measure was used. Figure 2-15 shows the energy contours in the
(P1,P») space associated with the individual type-one solutions.
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Figure 2-14 : Energy Measures for each Low Voltage Solution versus
Load
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Figure 2-15 : Energy Contours for Each Type-one UEP

For those load levels with more than a single type-one equilibrium, it
is necessary to determine which of the possible energy measures are
appropriate to use. This selection process can be illuminated by
briefly discussing some properties of the low voltage solutions. At the
point of bifurcation between the SEP x0 and a type-one UEP x1
(xO=x1=x* at the bifurcation point), the SEP loses asymptotic stability
with its Jacobian having a zero eigenvalue, Al = 0. A slight
perturbation in the state would then result in voltage collapse
according to the deterministic dynamics of the system. In [50] and

[49] it is shown that the initial direction of the voltage collapse is
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along the right eigenvector v0 = vl = v* corresponding to the zero
eigenvalue of the Jacobian at x*. The magnitudes of the individual
components of v* provide a relative ranking of the initial changes in
the voltage magnitude and phase angle at each individual bus.
Generally the magnitude of this initial voltage drop or angle slip is
significant only at a subset of the system buses. This indicates that if
voltage collapse were to occur via a bifurcation of x0 and x1, this
subset would lead the rest of the system in collapse. Thus while
voltage collapse is characterized by loss of a steady state equilibrium
for the entire system, its initial effects are normally apparent only at a
subset of the system buses. Since these buses are usually electrically
close to each other, the subset is referred to as an area. Nétationally
this area will be referred to as Area(x!). Thus we can talk about
voltage collapse occurring in only an area of this system, while tacitly
remembering that voltage instability is a system wide phenomenon.
The extent to which a voltage collapse. propagates depends upon the
system dynamics, and upon the amount and location of protective

equipment on the system.

Now assume that the system has not yet reached the point of
bifurcation (xO and x1 still separate). Assuming that the system varies
quasi-statically, whether x0 and x! will coalesce depends upon the
variation in uslow(t). Since x! is a type-one equilibrium, the

eigenvector v1 associated with the positive eigenvalue of its Jacobian
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can be calculated. Interestingly, numerical testing of a number of
systems indicates that the relative sizes of the components of vl are
fairly insensitive to the distance between x0 and x! (the energy
measure H[x1] is used as a distance function). In particular, the bus
associated with the largest component vl usually does not vary. Thus
even while the two solutions are still quite far apart in state space, the
magnitudes of the components of v! indicate which buses would be
most affected by the voltage collapse if the variation of u(t) was such
that x0 and x! eventually coalesced. Thus by defining 9(x!) to be the
energy difference between the low voltage solution x! and the
operable solution x0, 8(x!) can be interpreted as a proximity indicator
for voltage collapse in Area(xl). When a system has more than a
single type-one low voltage solution, a separate energy measure could
be calculated for each Area(xi), with 9(x1) interpreted as a proximity
indicator to voltage collapse occurring in Area(xi). The determination
of multiple voltage security indicators is required in an actual system,
where there may be a number of areas independently vulnerable to

voltage collapse.

As an example, Table 2-2 shows the variation in the components of
the eigenvectors associated with each of the two type-one solutions

for the three bus system for various loadings at buses 1 and 2.



Load - MW | Eigenvalues | Positive Energy
eigenvalue Measures
eigenvector

Py Py xl x2 \2 v2 | 9(xd) | 8(x2)

20 20 560| -8.61| -0.871 0.13]|5.36 |3.61

-0.48 | -6.46| -0.45| -0.10
-2.06| 3.99| 0.08] -0.83
-4.30| -048| -0.10| -0.47
50 50 535 -8.321 -0.87| 0.1114.32 1272
-3.631 -6.28| -0.48 | -0.12
-1.44 | 3.90| 0.03| -0.87
-1.13 | -1.15| -0.12 | -0.50
180 180 - -10.08| - -0.16 - |0.10
-0.58 -0.31
1.40 0.72
-0.58 0.60

Note: The first two rows of the four component eigenvectors
correspond to the voltage angle (in radians) and magnitude at
bus one, while the last two rows correspond to the voltage
angle and magnitude at bus two.

Table 2-2 - Low Voltage Solutions Eigenvector

90
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At the first two load levels in Table 2-2 there are two type-one
solutions; while for the highest load level there is just a single type-
one solution (the solutions can be verified as being type-one by noting
that they have a single positive eigenvalue). Note that regardless of
load, the largest components of the x! solution are associated with the
bus 1 quantities, while the largest components of the x2 solution are
associated with the bus 2 quantities. Thus the energy measure 8(x!)
can be interpreted as providing an indication of the vulnerability to
voltage collapse of an area centered around bus 1 (because of the
small system size, each area contains just a single bus). Likewise
B(x2) is an indicator for vulnerability around bus 2. For low load
levels the areas tend to be independent, and therefore have separate
energy measures. The lower value of B(x2) indicates that bus 2 is the
more vulnerable portion of the system. This is due to the higher
impedance of the line from the slack bus to bus 2. As the load is
increased, the areas tend to merge, inferred by the loss of a type-one
solution. Thus for load values greater than 67 MW, where x1 no
longer exists, 9(x2) provides an indication of voltage collapse

occurring in the merged area of buses 1 and 2.

For the energy measure to provide an accurate indication of system
proximity to voltage instability, it is important to include the effects of
the various automatic controls of the system. Power systems normalily

contain a number of automatic controllers which attempt to maintain
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various system variables within predefined limits. Examples of such
controls are excitation systems on generators, which regulate the
generator terminal voltage; speed governors on generators, which
maintain a constant system frequency; automatic generation control
(AGC), which regulates the interchange of power between utilities;
and load tap changing (LTC) transformers, which regulate the
transformer voltage. These controllers also have limits on their
control ranges. Once a control has reached its limit, it is no longer
able to regulate its control variable. In normal operation most controls
are within their regulation range. However, it is not uncommon (even
in normal operation) for some controllers to be at their limits. The
time constants on these controllers vary, but are typically on the order
from under a second (generator excitation systems) to a few minutes
(LTCs). Since the time scale of the voltage collapse problem under
consideration here is on the order of minutes to hours, it is important

to include the effects of these controllers.

The applicable dynamic ranges of these controllers can be intrinsically
included in the energy measure by assuming that they regulate both at
the stable solution and at the low voltage solutions. Hence limits on
controller action must also be enforced at both solutions. The low
voltage solution could be quite unrealistic if controller limits are not

enforced. This could cause the energy difference to provide an
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unreliable measure an proximity to voltage collapse (this is

demonstrated in the example of the next paragraph).

The next example demonstrates an important property of the energy
function approach: its ability to incorporate saturation of the generator
excitation system. Using the three bus system from Figure 2-11,
assume that the generator at bus 1 is now on-line but is only supplying
reactive power for voltage support, holding its terminal voltage at 1.0
per unit. This system is a slightly more detailed representation of the
type of system prone to voltage collapse. A large load local (buses 1
and 2) is being supplied mostly from distant generation (slack at bus
3). However some local voltage support is being provided (generator
at bus 1). Voltage collapse wiil normally not occur until the local
voltage support has saturated and is no longer able to maintain its

setpoint voltage. Voltage regulation is modeled here by allowing the

reactive output of the generator at bus 1 (Qgy) to vary within some
limits (QG1[max,min}) in order to hold its bus voltage constant. This is
known as PV mode. When the reactive power has reached its
maximum or minimum limit, the generator's exciter is assumed to
have saturated, and the generator's reactive output is subsequently

held constant. This is known as PQ mode.

One would expect that the more maximum reactive power the

generator can provide, the greater the load which can be tolerated, and
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the subsequently the more secure the system for any particular load.
Figure 2-16 shows that this is indeed the case. Using the voltage
collapse scenario from the earlier example (bus 1 load = bus 2 load),
the lowest curve shows how the energy measure would vary if there
was zero output from G1 (in other words the generator is off-line) and
is therefore a repeat of the lower curve from Figufe 2-14. The next
three curves show how the energy function varies as the maximum
reactive power output of generator 1 is increased in increments of 100
MVAR. During the sequence of power flow/energy calculations, the
voltage at bus 1 was held at 1.0 per unit as load ramped up until Qg1
reached its limit. Thereafter the reactive power output was held at its
maximum (i.e. the generator had switched from PV to PQ). Table 2-3

shows how the generator reactive output and energy measures vary as
the maximum reactive power limit is varied for an example load of Py

=P, = 150MW.
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Load MW Bus 1 MV AR Generation .
busl bus2 SEP UEP Max Energy
solution | solution | MVAR | measure
150 150 0 0 0 0.55
150 150 100 100 100 0.92
150 150 192 200 200 1.26
150 150 192 300 300 1.54

Table 2-3 - Generator Reactive Limits

Var limit = 300 MVAR
Var limit = 200 MVAR
Var limit = 100 MVAR

Var limit = 0 MVAR

Energy measure
[\ ]
[

50 100 150 200 250 300
MW load at buses 1 and 2

Figure 2-16 : Effect of Generator MVAR Lirmits on Energy Measure

As would be desired, the energy measure increases as the maximum

reactive limit of the unit is increased. Note that the limits on available




96

var (reactive power) support are taken into account even when the
current system operating point does not push the generators to these
limits. This property is important since one would like an accurate
determination of system voltage security before local generators have
saturated (at which point it may be too late to prevent voltage

collapse).

Intuitively, the ability of the energy measure to incorporate reactive
limits of non-saturated units is because the low voltage solution tends
to push the var sources to their limits. The var limits thus reduce the
height of the potential energy boundary that the system must cross to
experience voltage collapse. If the generator regulation status at the
low voltage solution was assumed to always be that of the high
voltage solution (PV or PQ), the energy curve could exhibit
discontinuities when the generator switches modes (PV to PQ or vice
versa). This is shown in Figure 2-17 for the case with G1 var limits of

+ 300 MVAR. The reason for the discontinuities is apparent from a

plot of low voltage generator reactive output vs system load shownin™ =

Figure 2-18. For load levels less than about 200 MW, G1 is assumed
to be in the PV mode (i.e. holding its terminal voltage constant at 1.0
P.U) at both solutions because it has not yet reached its limit in the
operable solution. Whiie this is reasonable modeling for the operable
solution, it is unrealistic for the low voltage solution since it would

require a reactive power output of more than twice the limit of 300
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MVAR. When G1 hits its limit in the operable solution, the reactive
output is then fixed at 300 MVAR, resulting in a discontinuous drop
in the var output of G1 at the low voltage solution from about 750
down to 300 MVAR. This in turn results in the discontinuity shown
in Figure 2-17. Therefore generator reactive power limits should be

enforced independently at both solutions.

Bus 1 generator hits its upper |
reactive power limit

Energy Measure

o‘ . T . .\

0 100 200 : 300
Mw Load at Buses 1 and 2

Figure 2-17 : Energy Measure versus Load when Var Limits are not
Enforced at Low Voltage Solution
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Figure 2-18 : Generator Reactive Qutput versus Load for Low
Voltage Solution

The energy method can also be applied to larger systems. As with the

case of the three bus system, energy measures are calculated using the

stable operable solution and the appropriate type-ome low voltage

solution. These energy measures then provide an indication of how
close the system is to voltage instability. Methods for locating the

appropriate low voltage are discussed in Chapters 3 and 4.

The New England 30 bus system (NE30) [27] was chosen as the first
test system since it is the standard system for testing measures of

proximity to voltage collapse. The voltage collapse scenario selected
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was to increase the reactive power at bus 11 (Qp1) until voltage

collapse occurred, while keeping all other loads and generator MW
outputs fixed. The two curves in Figure 2-19 represent the energy
differences between two type-one low voltage solutions and the
operable solution, as the reactive load at bus 11 is increased (until
voltage collapse occurs). The upper left-hand curve corresponds to
the energy measure associated with voltage collapse in the area
centered at bus 12. The lower right-hand curve corresponds to the
energy measure asscciated with voltage collapse in the area centered
at bus 11. Recall that the center bus in each area can be determined
from the largest component of the eigenvector of the posiﬁve
eigenvalue of the Jacobian. However in Chapter 3 it is shown that this

bus is directly known from the low voltage solution technique.

For low load levels, only the bus 12 low voltage solution exists; for
load levels of Qg between about 450 and 550 MVARS both solutions
exist; while for higher loads, only the bus 11 low voltage solution
exists. Because only the reactive load at bus 11 is being increased in
this scenario, it is not surprising that voltage collapse should
ultimately be characterized by a bifurcation between the low voltage
solution associated with bus 11 and the stable solution. Note the
energy measures vary in a propoitional way to the increase in the load
at bus 11, and in particular that there are no discontinuities in the

measures. Figure 2-19 may be compared to plots of other voltage
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security measures in [51] and [16] for the same voltage collapse

scenario.

Low voltage solution in
bus 12 area

g

Low voltage solution in
bus il area

Energy measure
(=]
1

) T T v T T T Y T T T T
0 200 400 600 800 1000 1200 1400
Reactive load at bus 11 (MVAR)

Figure 2-19 : Energy Measure Variation for NE30 System

The method was also tested on the IEEE 118 bus system (the data for
this case is provided in Appendix A in the IEEE Common Data
Format, which is described in [52]). In this example the loads at all -
buses were first assumed to be a linear function of a parameter k (k=1
for basecase). As k was increased, the system generation was varied

in order to keep the real power delivered by the system slack (bus 69)
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constant, This was done to simulate an area maintaining constant
interchange with the rest of the interconnected electrical grid
(represented here by the slack bus), as the load within the area varies.
The generation participation ‘factors used are also provided in

Appendix A.

Figure 2-20 shows the variation in the energy measures with respect to .
k for the six solutions having lowest energy. For low load levels the
high energy levels indicate that the system is relatively secure, with
the weakest areas in the vicinity of buses 44, 43, and 21. As the load
is increased, all the energy measures tend to decrease, with the rate of
decrease dependent upon the rate of change of the system parameters.
For example while the area in the vicinity of bus 95 is quite secure
initially, the high subsequent load increase (due to its large basecase
load) causes a rapid drop in its voltage security and hence its energy
measure. The underscores the necessity of monitoring more than just
the lowest energy solution. For any given system state, the energy
measures provide a relative ranking of the voltage security of the areas
of the systern. When combined with their rate of change, the energy
values provide the system operator with a very good indication of how
close the system is to voltage collapse, and where collapse would
initially occur. For this case the steady state operable solution

vanishes at k=3.0 when it coalesces with the bus 44 solution.
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Figure 2-20 : Energy Measure Variation for E118 System

Note that the energy measures variation in Figure 2-20 is smooth,

even though as k was increased a number of generators reactied their

reactive power limits. The generators, along with the value of k when

tl'ley switched from PV mode to PQ mode, are shown in Table 2-4.

Gen# |k Gen# |k Gen# t k Gen# |k
74 1.00 103 1.00 104 1.00 105 1.00
12 1.04 56 1.16 77 1.16 85 1.20




. 103

92 124 119 1.28 110 1.28 110 1.32

76 [1.36 15 144 |34 1.44 49 1.44

1 1.48 36 . {1.48 55 1.60 70 1.60
18 1.64 139 1.64 80 1.64 6  |1.80
65 1.88 62 2.04 |46 2.24 8 2.52

54 260 |99 1264 |66 272 89 2.76

40 2.80 113 2.84 |32 292 1107 2.92

61 2.96

Table 2-4 : Values of k when Generators reached Reactive Limits

To demonstrate that the energy measures are providing an indication
of the voltage security in a particular area of the system, the voltage
collapse scenario was modified so that all of the load increase
occarred at bus 21. The results for this case are shown in Figure 2-21.
As expected, as the load is increased the energy measure associated
with bus 21 decreased in a proportional manner, again with no
discontinuities. = The other energy measures, however, remain
relatively constant, indicating that the voltage security in those areas
of the system is essentially unchanged. For this example the steady
state operable solution vanishes due to a coalescence with the bus 21
solution. Thus each energy measure provides an indication of the

-voltage security in a particular area of the system.
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Figure 2-21 : Increase in Load Only at Bus 21

2.4 Energy Function Summary

In this chapter the method of assessing vulnerability of a power
system operating point to voltage collapse based upon an energy
function approach has been described. The system voltage stability is
quantified by determining energy differences, using a closed form
energy function, between the operable solution and the type-one low
voltage solutions. A separate energy difference can be calculated for

each type-one low voltage solution, with each energy difference
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providing a measure of the voltage stability in the portion of the
system corresponding to the largest components of the eigenvector
associated with the positive eigenvalue of the power flow Jacobian.
The energy measures vary smoothly with respect to continuous
changes in the state of the power system, with the var limits on
generators taken into account even before these limits have been
reached by the current operating point. Characteristics of the low
voltage solutions, along with solution techniques, will be discussed in
Chapters 3 and 4.
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Chapter 3 - Low Voltage Power Flow Solutions

As was seen in Chapter 2, in order to apply emergy function
techniques to the voltage collapse problem, it is imperative that the
appropriate low voltage solutions (UEPs) be found with reasonable
computational effort. In this chapter some of the properties of these
solutions, along with solution techniques are discussed. In Chapter 2
the power flow equations (2-14) were written with the complex
voltages expressed in polar form. This method was chosen in order to
exploit the physical meaning of bus voltage magnitude and angle in
the derivation and use of the energy function. However, these

equations could also be rewritten with the voltages expressed in
rectangular form of V; = ¢; + jf;. The equivalents to (2-14) are then

n

fie.H = P~ Y, (ei(ejGij- By + i (iGij + fjBij)} (3-12)
j=1 |
n

giteh =  Qi- Y {fi(eiGij - fiBij) - ei (fjGij + ¢jBij)} (3-1b)
=1

Experience has shown that the rectangular form of the power flow
equations is often the preferred representation for computing the low
voltage solutions [53], [54], [55].  Therefore the rectangular

representation will be primarily used in this chapter.
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3.1 A General Method for Determining Low Voltage
Solutions

The determination of the appropriate low voltage solutions is of
crucial importance in applying the energy function method to the
voltage instability problem. As mentioned in Chapter 2, for an n bus
power system there are believed to be at most. 2(n-1) separate power
flow solutions. If it was necessary to find all these solutions, the
energy method would be computationally intractable for all but the
smallest systems. In this section the properties of, and general
solution algorithm for determining the low voltage solutions of

multiple bus systems are be examined.

An early algorithm to calculate all of the low voltage solutions of a

system was presented in [62], and can be summarized as follows:

0. Obtain the stable operating point power flow solution V.
Using the quadratic algorithm from Appendix B (which
is based on a similar algorithm from [62]), calculate the |
low voltage "solution" for each load bus assuming that
the voltages at all the other buses are fixed. This

calculation is not performed at buses which have voltage
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regulation (PV buses), including the system slack bus.
Denote this voltage as V?.

2. Select either V? or Vli1 as initial voltage guesses for the
rectangular Newton-Raphson algorithm. Form all of the
2(n-m) - ] possible combinations of initial voltage guesses
with at least one bus set to its Vl;l value (where m is the
number of PV buses).

3. Compute power flow solutions using the rectangular
Newton-Raphson algorithm for each of the 2(-m) - 1
initial voltage guess permutations. The optimal
multiplier method [56] is used to lessen the possibility of

the algorithm diverging or oscillating.

The idea behind the above algorithm is that by varying the initial
voltage guess the rectangular Newton-Raphson iteration can be
initialized within the region of attraction for different solutions of
(3-1). The algorithm presents a systematic method of creating such a
set of initial voltage guess vectors. Using this exhaustive search
technique, the authors of [62] attempted to demonstrate that the
number of actual solutions in most systems was substantially less than
the presumed maximum number. For example, in a lightly loaded
eleven bus system with two PV buses, out of the 255 possible
solutions only 57 were found. Additionally, as the loading on the

system increased, the number of solutions tended to decrease until
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immediately before the loss of the stable equilibrium solution (i.e. the
point of voltage collapse) only a single low voltage solution exists.
However in order to find this small number of solutions, the above
algorithm requires tests of the 2(n-m) _ 1 initial guesses. This would

be computationally prohibitive in systems of realistic size.

As an alternative, a "Simplified" algorithm was also presented in [62]
which substantially decreased the number of necessary initial guesses.
The Simplified algorithm is essentially the same as the exhaustive
method, except that rather than forming all of the 2(n-m) . 1 initial
voltage guess combinations, only the n-m combinations corresponding
to the use of Vlil at a single bus are calculated. The initial voltage
vector with Vli1 set at the single bus i will be referred to as the "bus i
low volitage guess.” Using this method on the sample 11 bus system,
power flow iterations had to be performed only for the eight bus i low
voltage guesses. Not all of these converge to solutions; the number of
solutions which are actually found depends upon the loading of the
system. During the course of the research for this thesis, the
Simplified technique was often used to determine low voltage
solutions. However in this work controller limits were enforced at the
low voltage solutions so the bus i low voltage guesses were calculated
for all buses in the system (except the system slack), as opposed to

locating soluticns only at the PQ buses as in [62].
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Interestingly, numerical testing on a number of systems suggests that
the solutions obtained by the Simplified method correspond to the
type-one UEPs mentioned in Chapter 2. Recall that loss of voltage
stability, if it were to occur, would take place by a bifurcation between
the SEP and a type-one UEP. This suggests that the number of low
voltage solutions, and hence energy measures, can be restricted to
those solutions obtained by the Simplified method. Additionally, the
voltage collapse areas defined in Chapter 2 are centered on the bus
with the low initial voltage guess. This allows for an straightforward
interpretation of the energy measures: the energy measure associated
with the power flow solution found with the bus i low voltage guess
provides a measure of the voltage security in the area of bus i. There
is no need to explicitly calculate the eigenvector associated with the

positive eigenvalue of the power flow Jacobian.

For example, consider the voltage collapse scenario from Chapter 2,
where the reactive load at bus 11 of the New England 30 bus system
was increased. The energy measures used to construct the lower
right-hand curve in Figure 2-19 (labeled as "Low voltage solution in
bus 11 area") were found by initializing the power flow with the bus
11 low voltage guess. Hence one would expect the eigenvector
associated with the positive eigenvalue of the low voltage Jacobian
should have its largest components at bus 11. To confirm this, the

eigenvector components are shown in Figure 3-1 for a reactive load at
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bus 11 of 1300 MVAR. The largest component was indeed at bus 11
(the eigenvector was normalized so that the largest component was

1.0), with the next largest components at the first neighbors of bus 11

‘(buses 6, 10, and 12). Figure 3-2 shows the eigenvector components

when load is decreased to 800 MVAR. Again the largest component
was at bus 11, with other significant components at its first and
second neighbors. As the load at bus 11 is decreased, eventually the
low voltage solution found by initializing with the bus 11 low voltage
guess disappears. However a new solution, found by initializing the
power ﬂbw with the bus 12 low voltage guess, appears. This solution
was used to construct the upper left-hand curve in Figure 2-19
(labeled as "Low Voitage solution in bus 12 ared"). Figure 3-3 shows
the components for this solution's positive eigenvalue eigenvector
when the load at bus 11 is 400 MVAR. As would be expected, the

largest component is now at bus 12.
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eigenvalue of UEP solution Jacobian when reactive load at bus 11 =
i 800 MVAR '
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Figure 3-3 : Components of eigenvector associated with positive
eigenvalue of UEP solution Jacobian when reactive load at bus 11 =
400 MVAR

Thus the energy measure calculated using the bus i Simplified method
solution provides a measure of the voltage security in the vicinity of
bus i. If no solution exists for the bus 1 low voltage guess, then either
the bus i area is relatively invulnerable to voltage collapse, or an

energy measure exists for a nearby bus.

A shortcoming of the Simplified method is its requirement of n-1 full
power flow solutions to calculate energy measures for an entire n bus
system. Such high computational requirements would preclude on-

line use for large system models. A second shortcoming is that there
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is no guarantee that the rectangular Newton-Raphson power flow will
converge to the bus i solution, when initialized with the.bus ilow
voltage guess, even when the solution exists. The initial bus i low
voltage guess must be in the region of attraction (with respect to the

modified step size Newton-R‘aphsoﬁ algorithm) of the bus 1 solution.

- The size, however, of this region of attraction is increased due to the

use of the optimal multiplier [56]. While testing indicates that the vast
majority of solutions do converge correctly, such convergence is not
guaranteed. The remaining sections of this chapter present two

alternative methods of calculating the low voltage solutions.

3.2 Optimal Multiplier Method

A new method of finding a low voltage solution for a system was
recently presented in [57]. This technique exploits the convergence
characteristics of the Newton-Raphson method when the power flow
equations are expressed in rectangular from (3-1). In order to explain
this technique, it is necessary to first discuss the optimal multiplier

theory originally presented in [56].

The rectangular power flow equations from (3-1) can be expressed as

a set of quadratic equations having no first order terms:
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“x1X1_

X1%2

F]: 0x) = [ A } o (3-2)
iXj

L XnXn

where A is a constant matrix of the susceptances and conductances
from (3-1), 8 € R2n is the vector of the bus real aﬁd reactive pbwer
injections, and x € R2n is the vector of bus voltages expressed in
rectangular coordinates. For any guess of xX, using a Taylor series

expansion about 8(xk), the value of s can be expressed exactly (since

A is constant) as
S = 8(xk) + J(xk) Ax + B(Ax) (3-3)

The standard method of solving using the Newtbn-Raphson power
flow is then to ignore the third term and obtain an approximation of
Ax as

Ax = JexRy s - B(xk)) | (3-4)

The best increment to approximately solve (3-3) is then given by Ax.

The new voltage guess is then determined by
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xk+l = xK - 1L Ax (3-5)

where L is normally unity. However because (3-3) is exact, it is
possible to solve directly for the value of 1 which minimizes the norm
of the mismatches in the direction Ax. This analytic expression for p

is derived by first defining a cost function as

h | a - pa + p2e ]2 (3-6)

with
a=s-0(xk) =-Jx)Ax

¢ =—0(Ax)

Then solve for

oh

w - B rmirgmtg =0 (3-7)

where

gp=-aea
gi=aea+2asec
grg=-3aec
gz=2cCec
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Since (3-7) is a cubic equation, it has three roots. The roots are either
three real numbers, or one real and two imaginary numbers. For the
latter case, (_3-6) only has a single local extreme value in the direction
of Ax. The value can be seen to be a minimum because unless a and
¢ are zero (which means the solution has been reached), (3-6) goes to
infinity as L goes to tee. For the case of three real roots, there will be
two local minima of (3-6) and a single local maximum in the direction
of Ax. Define U as the smallest (or only) real root of (3-6), denoting it
as the optimal multiplier; and pp and pl3 as either the imaginary roots
or as the middle and largest real roots. Using the optimal multiplier p

in (3-5) results in the new xk+1 always defining at least a new local

~minimum in the direction given by Ax. This prevents divergence of

the power flow solution.

Retumning again to [57], this method exploits an interesting
convergence property of the rectangular Newton-Raphson poWer flow
method that when a pair of multiple solutions of the power flow
equations are located close to each other, the power flow tends to
converge in the direction of the line containing the two solutions. If
the convergent loci are exactly on this line, it is then possible to
calculate the two solutions directly using the optimal multiplier, since
each solution is a global rninimum of (3-6) (note that even though the
solutions are distinet, each is still a global minimum since the value of

(3-6) is equal to zero at each solution). The authors provide no
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] mathematical explanation as to why the method works, but rather

provide a number of test results supporting their hypothesis.

However it is possible to prove that once an iterant xX is an element of
i the line passing through two solutions, all subsequent elements of the
) ' iteration sequence (x1}, 1 = k, will also be elements of this line.
Define xS and xU as two distinct solutions of the power flow equations
‘ (3-1), with x8 being the stable high voltage solution, and xU the
unstable low voltage solution. The line through x5 and x" is defined

' ' as the set

L={xI1x=(1-A)x8+Ax!%, A e R}

ey

xs=xk + B

xu = xk - oB

where xk and B are vectors of the same dimension of x, xke L, xk #

x5, xk#x1 and a e R,

Then since (3-3) is an exact Taylor expansion and (3-2) is a set of

quadratic equations with no first order terms, we can write § from

(3-3) as

‘ ‘ s = 8(xk) + J(xK)B + 6(B)
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s = 0(xX) - aJ(xK)B + a20(B)

Assuming that J(xk) is nonsingular, the new direction Ax from the

Newton-Raphson power flow is given by (3-4). We must then show

that Ax is tangent to L or equivalently that Ax = AB where A € R.
Since from (3-4)

Ax = J(xk)! (s - 0(xk)) = B + J(x)16(B)
we can write
Ax =B + J(x%)16(B) = - oB + a2J(xk)16(B)

Solving for J(x%)"16(B) in terms of B we get
Jokylem) = =2 p
021

Provided o # 1 we can write Ax as a linear function of B

1+0 . 2+0-02
Ax = B4+—=B =
1-a2 1-02

Because Ax is tangent to L, the new point xk*1 = xk 4 Ax is also an

element of L. ¢
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As an example of optimal multiplier method, consider the three bus
system from Figure 2-11. For a load of 150 MW at both buses 1 and

2, the system has the two solutions shown in Table 3-1.

Bus Number | High Solution Low Solution
e f € f
1 0.7979 | -0.1665 0.5203 | -0.1778
2 0.7347 | -0.2127 0.1909 | -0.1887
3 1.0 0.0 1.0 0.0

Table 3-1 : Three Bus System Solutions

To calculate both solutions, the standard Newton-Raphson algorithm
is first performed, with the optimal multipliers being calculated each
iteration. The first five columns of Table 3-2 shows these values,
along with the maximum mismatch, for each iteration. To illustrate
that the solution is actually converging along the line through x3 and
xU, the last column in Table 3-2 shows the angle (in degrees) between
the vector from x% to xS and the vector from x5 to xX. Since the angle -
is converging to zero, xK is also converging towards the line through

x§ and xu,
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Tteration | Mismatch L H2 H3 Angle
0 150.00 | 1.036 | 1.347+1.4j| 1.347-14
1 43.78 1153 | 4.581 6.741 8.4°
y) 5.82 1.027 | 20.42 36.05 5.7°
3 0.16 1.001 | 684.7 1321.0 3.3°
4 1.2¢-6  11.000 |9.22e5 1.23¢6 1.7°

Table 3-2 : Newton-Raphson Iterations for Three Bus System

For those iterations in which three real optimal multipliers are

obtained, the cost function h from (3-6) has two local minima in the

direction Ax. These local minima occur at XK — p;Ax (normally the

high voltage solution) and xX ~ ps3Ax (normally the low voltage

solution). The value of the cost function h(x! — AAx) (after the first

iteration from Table 3-2) is plotted in Figure 3-4 as a function A. As

would be expected, the local minima occur at A = 1.1 (1) and 6.7 (i43).

Since the angle between the solutions is not yet close to zero, the

value of h(x] — u3Ax) is rather high. However as the angle between

the solutions goes to zero, the value of the h(xk — n3Ax) also tends

towards zero.
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Figure 3-4: Variation of Cost Function in Direction Ax

Once the high voltage solution has been solved with sufficient

accuracy, a guess of the low voltage solution is then given by

xul = X — H3Ax (3-8)

The error associated with this estimate is a function of how close the
angle between the solution vectors is to zero. The value of the low
voltage solution can then be computed precisely using the standard

Newton-Raphson algorithm with x40 as the initial guess.



124

Since the cost of calculating the optimal multipliers is negligible
compared to the cost of the rest of the Newton-Raphson algorithm, the
optimal multiplier method provides a quick method of determining an
initial guess of a low voltagé solution. The accuracy of the value from
(3-8) appears to be a function of the relative closeness of the two
solutions. When the load for the three bus systems was 190MW at
buses 1 and 2 (close to the critical load of 192 MW, so the high and
the low voltage solutions were also close), the value of h(xu0) was just
0.001 MVA. However as the load was decreased (causing the
solutions to move apart), the value of h(x0) increased, reaching 6.6
MVA for a load of 150 MW and 37 MVA when the load wés 100
MW.

The optimal multiplier method can be used on arbitrary sized systems.
However the method can only, at best, determine one of the low
voltage solutions, though this normally is the solution with the lowest
associated energy measure. Since in the energy function approach a
number of low voltage solutions may need to be determined, the
optimal multiplier method would have to be supplemented with other
techniques. Additionally, a problem develops when a generator’s
reactive output is saturated at one solution (the generator is modeled
as PQ) while still regulating at the other solution (PV). Because of the
type switching of the generator from PV to PQ (or vice versa), the

matrix A from (3-2) is no longer identical for both solutions.
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Therefore the two solutions are no longer both defined as minima of
(3-6).  Nevertheless, provided the perturbation introduced by
generator type switching is not too severe, xu0 can often still provide a
fairly good starting guess to locate the low voltage solution. In
conclusion, the optimal multiplier method provides a fairly good
technique of getting an initial guess of the closest low voltage
solution, and could be useful when used in conjunction with other

techniques to determine the pertinent low voltage solutions.

33 Energy Contour Search Method

To use energy methods to assess proximity to voltage collapse, it is
important to determine the set of low voltage solutions with lowest
associated energies. Both of the methods presented thus far in the
chapter for determining low voltage solutions depend upon the
convergence characteristics of the Newfon-Raphson power flow. In
this section an alternative technique is presented which does not make
use of the Newton-Raphson method. In the energy contour search
method, the technique to determine the set of low voltage solutions is
to expand the constant contours of the energy function ¥ about the
equilibrium point xS [58]. Since the energy function is positive
definite about x8, the contours for sufficiently small energy values will

define closed surfaces. Increasing the energy value will yield a nested
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family of contours. The low voltage solutions would then be the

points xi on each contour which satisfy the constraint h(xi) = 0, where

b = sewlewm = gllemlly

and © corresponds to the real and reactive power flow mismatch
equations defined in [3-1]. Thus by expanding the constant energy
contours out from x5, the set of low voltage solutions_ could be

determined, ranked by energy.

An algorithm to locate this set of points is given below. The notation
used is that within the iterative solution, the iteration numbers are
indicated by square brackets. For example, xi[3} would represent the

vector x! at its third iteration.

0. Start from the stable operating solution xS, where 3(x5) = O.
Select an initial target energy contour value C[0] = € (a small
positive constant), and "initial guesses" of the members of the
set of low voltage solutions for the iterative optimization:
(x1[0], x2[0], ...,xm[0]} (the value of m depends upon how
many solutions are desired. Each xK[0] satisfies $(xk[0]) = €.

Select & as the convergence tolerance: h(xX) = 0, when h(xi) <

d.
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1. Identify set L of indices k for which h(xk[i]) = 8. Save those
xk[i] for which h(xX[i]) < &; these are the desired solutions. L
is an empty set, then Quit; otherwise increment C[i+1] = Cli] +

€.

2. Foreachke L

a. Select a search direction AxX[i].

b. Move in diréction AxK[i] until O(xK[i] + y Axk[i])} =
Cli+1].

c. Numerically solve the following constrained optimization

problem using xX[i] as the initial guess: minimize
h(xk[i]) such that O(xX[i]) = C[i-+1]

d. Set xK[i+1] equal to the resulting minimizer.
3. Leti=1i+1; goto 1.

Because of the nonconvexity of the problem, there could be a large
number of local minima of h(x) on the constraint surface. Thus the
selection of the initial starting points xi[0] in step O is of particular
importance. In [58] it is proved that provided C[0] is small enough,
the irlitial local minima and maxima on the constraint manifold 0{x]
=C[0] are given by the 2n points obtained by moving from x$ in the
directions of the teigenvectors of the power flow Jacobian at xS, J(x8).

A summary of the proof is as follows.
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For an optimization problem with a single equality constraint, a
necessary condition for a local minimum is that the gradient of the
objective must be orthogonal to the tangent space of the constraint

manifold.
Proposition

Consider & e (x|9(x)=C]. If { is an extreme point of | Vo) l|%
on this manifold, then V8(x) is an eigenvector of J(&) = V29(x).

Proof .

The gradient of the objective function is given by 2J (®) VB(®). The
outward normal of the constraint manifold is simply V&(®). If R is a
local minimum or maximum, then at this point the gradient of the
objective function must be collinear with the outward normal of the

constraint manifold. It then follows that there exists a real scalar A

such that
I(R) VO(R) =L VB(R)

which implies by definition that V&(R) is an eigenvector of J (%).

To use this result to identify candidate local minima, C[0] must be

chosen "sufficiently small” so that on the set {x[ﬁ(x) = C[0]},
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V8(xs+Ax) can be well approximated by its linearization J(x$)Ax
(since VO(xS+AX) = VO(x5) + J(x8)Ax, and VO(x8) = 0). Under these
conditions, consider a point ® obtained at one of the two intersections
between the constant energy manifold and the Xdirections given by an
eigenvector v of J(x3) (note: v is translated to be based at x5). Let Ax
= % - x8, and A be the eigenvalue corresponding to v. Then, since
VHR) = J(x$)Ax = MAx, VR) will be collinear with an eigenvector
of J(xS) (up to the accuracy of the linear approximation). This implies
that the 2n points, obtained by intersecting the constant energy
manifold in directions of the *eigenvectors of J(x5) starting from xS,
should approximate the local minima and maxima of the cost function
h on the manifold. Thus they can serve as the initial guesses {x1{0],

x2{0],...x20[0]}. Only the local minima would be of interest. ¢

To illustrate the energy contour search method, consider the case
shown in Figure 2-2, with a load of P = 200 MW and Q = 100
MVAR. For this load level the system has an operable solution x§ of
(V5,08) = (0.855, -13.52°), and a low voltage solution x© of (0.261,
-49.91°) with an energy measure of 0.861. The contours of the energy

function are shown in Figure 2-4. The Hessian of 3(x8) is equal to

-8.314  2.338 }

2 _
V¥ x) = [ 2.338 -8.632
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with eigenvalues of A; = -10.8 and A, = -6.13; and eigenvectors of
-0.683 0.731
V1= [ 0.731] V2= [0.683}

where the first component of the vector corresponds to the bus 1
voltage angle (in radians), while the second component corresponds to
the bus 1 voltage magnitude. Thus the initial search directions for the
algorithm' are tvq and tvy. To demonstrate that the eigenvectors
actually do point in the direction of the local minima and maxima on
the constant energy manifold, a value of C[0] is selected sufficiently
small, C[0] = 0.01. Figure 3-5 plots the values of |[Vﬁ(x)||§ at the
point of intersection between a vector d(0) translated to be based at x5
and the constant energy surface C[0] = 0.01 enclosing x5, as a function
of 0. The search direction © is the angle between d(8) and v;. Thus
d(0°) = vy, d(90°) = v4, d(180°) = -vy, and d(270°) = -v,. Note from
the figure that the local minima and maxima do indeed occur in the
directions of plus/minus the eigenvectors of Vzﬁ(xs), with the minima

occurring in directions tvp, and the maxima occurring in directions

Tvy.
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Figure 3-6 shows a contour plot of the cost function as a function of

the search direction angle € on the x-axis, and the value of the energy
contour (enclosing x5) on the y-axis. Notice that the global minimum
on the constant energy manifelds is always in the approximate
direction of -vy (270°) out to the equilibrium point occurring at $(x%)
= 0.86. With an initial guess in the direction of -v,, the energy
contour search algorithm would follow this "valley" out to xUu,

correctly locating the unstable equilibrium point. The other local
minimum at C[0] = 0.01, in the direction v, (90°), also continues to be



133

a local minimum as the constant energy contour value is increased.
With an initial guess in the direction of v,, the algorithm would also
follow this "valley", but this unfortunately would not result in finding
the equilibrium point. An additional local minimum "valley" develops
at about 9(x) = 0.30. This local minimum would not be found using
the energy contour search algorithm since it is not an initial local
minimum in the direction of an eigenvector of V29(x5). Initial
guesses in directions of the local maxima at CI0] would not be
followed because the constrained minimization in step 2¢ would move
their solution to one of the local minima, which presumably would
have already been found using one of the other starting directions.
Table 3-3 shows the cost function value and the load bus voltage at

the local minima associated with initial guesses in the directions of
+v5 on various constant energy contours. The trajectory following the

initial guess in the direction of -v, moves toward the low voltage
solution at %(x) = 0.86. This can be seen by noting that the cost
reaches a maximum at abbut ¥x) = 0.5, and then decreases towards
zero. It is not necessary to exactly determine the point where the cost
goes to zero; once h(xk[i]) < 9§, the low voltage solution could be
determined quite accurately using standard power flow techniques

initialized at xk[i].
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Initial xi[0] in direction | Initial x1[0] in direction

ofvp of -vy.
Energy | Cost | Volt Volt Cost | Volt Volt
Contour Mag. Angle Mag. Angle
0.10 0.77 11.00 -9.2° 1056 |0.70 -19.4°
0.20 1.60 1.07 -7.9° 1098 |0.63 -22.4°
0.30 245 {1.11 -7.0° [1.31 |0.58 -25.0°
0.40 3.33 | 1.15 -6.3° [1.54 |0.53 -27.5°
0.50 422 11.19 -5.8° [1.64 1048 -30.1°
0.60 512 [1.22 -54° [1.60 1043 -32.9°
0.70 6.03 |1.25 -5.0° [1.34 10.39 -36.2°
0.80 6.95 |1.28 -4.7° 10.74 |0.33 -41.1°
0.90 7.86 | 1.30 -4.4°
1.00 8.80 | 1.33 -4.1°

Table 3-3 : Energy Contour Search Algorithm for 2 Bus System

In step 2a of the algorithm, a new direction to move AxK[i] has to be
chosen to move out to the next contour. Ideally this direction should
result in O(xK(i] + vy AxK[i]) = Cfi+1], with the new value close to the
local minimum on the new contour, and within the same "valley” as
the previous xK[i]. Thé method which appeared to work best was to
move in the direction given by xk[i] - xK[i-1]. The allowable increase

in the constant energy contour, €, depends upon how well the search
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direction AxK[i] approximates the direction of the local minimum

valley.

Once AxX[i] has been chosen, the value of y can be determined quite
rapidly by using an iterative procedure in which O(x[i] + v AxK[i]) is

approximated using a second order Taylor expansion:

¥ Axk

azﬂ(xk)
ox2

k
S(xK[i] + v AXK[]) = B(XK) + )

+ % V2 (axk) T (Axk) (3-9)
Because the Hessian of 9(xk) is sparse, and since all other quantities
are known, Y can be calculated using the quadratic equation. Normally
only a few iterations are needed so that O(xK[i] + v AxK[i]) is
sufficiently close to C[i+1]. If (3-9) has no real solution, then the value
of C[i+1] must be decreased; either the energy function has a saddle
point in the direction AxK[i] from xK{i], or the energy function about
O(xk[i]) can not be well approximated by a second order Taylor

expansion.

The actual constrained minimization from step 2c could be performed
using the iterative generalized reduced gradient method [59]. At each
loop k[m] within this minimization the following three steps are

-performed. First, the vector xk[m]{i] € R2n is partitioned into the
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dependent and independent variables y and z respectively. Since there
is only a single constraint in the minimization, y is a scalar. Let the

values of y and z be given by the components of xklml[i] with

yk{m] = [x,]

zk[m] = (X1, X2y wee s Xpals Xppls voe s X901

Second, the minimization of the cost function is accomplished by

moving in the reduced gradient direction given by

3h 3 391 30

mo= 5T S (3-10)
where
g—: = 0T (xkIml{i] ) J(xkIml[i] )

00
Jz(xk[m][i])=£= the power flow Jacobian, with column
representing partial derivatives with respect

to y removed.

Then zk[m+1] = zkim] 4. Az, where W is a scalar "step-size" parameter.
Ordinarily the value of L which minimizes h(xk[ml[i}) would have to
be determined using a line search method such as the Fibonacci or
golden section techniques. However because of the structure of

h(yklm] zk[m]+pAz), it is possible to determine W analytically with the
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optimal multiplier method from the previous section using (3-6).

However because the direction of movement, Az, is no longer defined

by (3-4), (3-6) has to be rewritten as

h = |la+ub+p2el|? (3-11)
with

a=s-06(xk)

b = J,(x)Az

¢ = -0(Ax)

The coefficients of (3-7) are then redefined as

go=asb
gi=beb+2aec
gr=3bec
gy=2cec

As before, the roots of the cubic equation are used to determine the

minimum(s) of (3-11) in the direction Az.

The third step in the constrained minimization is to solve the equation
O(yklm+1] gk[m+1]y = C[i+1], treating yk[m+1]l as an unknown, and
zk[m+1] g5 fixed. This step is necessary due to the nonlinearity of the

constraint surface. The movement in the previous step in the direction
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of the reduced gradient is tangential to the constraint surface; a
corrective step is needed to move back onto this surface. This can be
accomplished quite quickly using an iterative procedure in which

B(yklm+1] zk[m+1]) g approximafed using a second order Taylor

expansion

a@(yk[m]’zk[rnﬂ])A

ﬁ(yk[m+l],zk[m+1]) = ﬁ(yk[m],zk[mﬂ]) + 8y y
l az,e_(yk[m] ’zk[m+1] ) 5
+ 2 8y2 (Ay) (3-12)

The value of Ay can then be determined by the quadratic equation; if
[3-12] has no real solution, then xk[mlfi] must be repartitioned with a
different variable chosen for y. If a solution exists, Ay approximates
how much to change yk[ml in order to move back to the constant
energy manifold. Since the Taylor expansion is not exact, a few
iterations may be needed before ®(yklm+l] zk[m+1]y is sufficiently
close to C[i+1]. However experience has shown that seldom more
than one or two iterations are needed. The calculation of d9/dy is
straightforward since V&(x) is just the power flow mismatch
equations neglecting the conductance terms, with the reactive
mismatch equation for each bus scaled by the inverse of the voltage

magnitude at the bus. The calculation of 020/dy2 is similar to the
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calculation of a diagonal element of the power flow Jacobian and is

computationally dependent only upon the first neighbors of y.

The stopping criteria for the constrained minimization is when the
change in the cost function h(xk[i]) from previous value is sufficiently
small. Otherwise m = m+1, and the three steps detailed above are

repeated.

The energy contour search method provides an alternative to the
earlier methods, which are dependent upon the convergence
characteristics of the Newton-Raphson power flow. The advantage of
this method is that if the minimum of the cost function can be found
for each contour, the method would provide a straightforward way of
determining the most pertinent low voltage solutions, nameiy those

with the lowest energy differences.

However the implementation of the energy contour method does
present at least one major obstacle. The key to the élgorithm is the
ability to determine the local minima on each constant energy contour.
This is rather straightforward providéd the local minima are
continuous with respect to variation in the energy contour levels from
the operable solution x5 out to each of the desired low voltage
solutions. The algorithm would simply follow the "valley” out to the

- solution. This, however, is not the case. As was seen in Figure 3-6 it
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is possible for a new local minimum to appear on a contour. While
for this case the new local minima did not lead to a low voltage

solution, this is not the case in general.

For example consider the Stagg and El-Abiad five bus system from
[60] with the loads scaled by 0.8. This case then has a bus 5 low
voltage solution (with an associated energy measure of 2.8), and a bus
4 solution (with an energy measure of 4.2). The bus 5 solution can be
determined using the energy contour search method with an initial
guess in the direction of the eigenvector associated with the smallest
magnitude eigenvalue. A continuous local minimum "valley” exists
out to this solution. Unfortunately no such valley exists out to the bus
4 solution. This was verified by starting at the bus 4 solution (known
a priori from the Simplified methed), and trying to move backward
along constantly decreasing energy contours to x5. A local minimum
valley existed from 9(x) = 4.2 down to %(x) = 3.0, but then vanished.
Testing on larger systems also indicated that while the low voltage
solution with the lowest energy measure could often be found with an
initial guess in the direction of the eigenvector associated with the
smallest magnitude eigenvalue, no such local minimum valleys

appeared to exist out to other nearby low voltage solutions.

The promise of the energy contour search method was its

independence of the convergence characteristics of the Newton-
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is possible for a new local minimum to appear on a contour. While
for this case the new local minima did not lead to a low voltage

solution, this is not the case in general.

For example consider the Stagg and El-Abiad five bus system from
[60] with the loads scaled by 0.8. This case then has a bus 5 low
voltage solution (with an associated energy measure of 2.8), and a bus
4 solution (with an energy measure of 4.2). The bus 5 solution can be
determined using the energy contour search method with an initial
guess in the direction of the eigenvector associated with the smallest
magnitude eigenvalue. A continuous local minimum "valley” exists
out to this solution. Unfortunately no such valley exists out to the bus
4 solution. This was verified by starting at the bus 4 solution (known
a priori from the Simplified method), and trying to move backward
along constantly decreasing energy contours to xS. A local minimum
valley existed from %(x) = 4.2 down to 0(x) = 3.0, but then vanished.
Testing on larger systems also indicated that while the low voltage
solution with the lowest energy measure could 'often be found with an
initial guess in the direction of the eigenvector associated with the
smallest magnitude eigenvalue, no such local minimum valleys

appeared to exist out to other nearby low voltage solutions.

The promise of the energy contour search method was its

independence of the convergence characteristics of the Newton-
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Raphson power flow. However its inability to reliably determine the
local minima of the cost function on the energy contours greatly
decreases the usefulness of the method. In the next chapter an
efficient and reliable method of calculating the low voltage solutions

with the lowest associated energy measures is presented.
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Chapter 4 - Efficient Calculation of Low Energy
Solutions |

In order for energy methods to be used effectively, it is imperative that
an efficient method be developed for determining low voltage power
flow solutions, particularly those with low associated energy
measures. As was mentioned earlier, for an n bus power system, there
are believed to be up to 20 - 1 separate low voltage power flow
solutions. However as was seen in earlier chapters, energy measures
only need to be calculated for those solutions which are type-one. For
a small system these solutions can be determined quite rapidly using
the Simplified Method from Chapter 3. However the large size and
high degree of interconnections present in many modem utility
systems often require a models consisting of several thousand buses.
The use of the Simplified Method on such a large system would be
computationally prohibitive for on-line or even most study
applications. Therefore it is essential that a computationally efficient
algorithm be developed for locating the appropriate low voltage

solutions. Such an algorithm is developed in this chapter.

In the Simplified Method the solution for each bus i is calculated by
initializing the rectangular Newton-Raphson power flow with a low
mitial guess at bus i. If a solution exists, then the energy measure

associated with this solution can be calculated. In Chapter 3 these
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energy measures were shown to provide an indication of the voltage
security in the area of bus i. Experience indicates that if no solution
exists for a low initial guess at bus .i, then either the bus i area is
relatively invulnerable to voltage collapse, or an energy measure
exists for a nearby bus. The solutions with the lowest energy
measures indicate the most vulnerable areas of the system.
Conversely, the solutions with higher energy measures indicate the
more secure portions of the system. Due to the assumed slow
variation in the power system operating point, and since the energy
measures have been shown to vary smoothly with respect to changes
in system parameters, the voltage security of the system can be
assessed by only calculating the solutions with low associated energy
measures. This is normally only a small subset of the total system
buses. Thus a drawback of the Simplified Method is that in order to
determine this small subset of low energy solutions, it is necessary to

perform n-1 power flow solutions.

4.1 Determination of Low Energy Solutions by Solving
Equivalent Systems

An insight into the development of an efficient method of determining
the subset of low energy solutions is suggested by two characteristics

of these solutions. First, recall that by definition the energy measure
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is an integration from the operable solution to a low voltage solution.
Hence the lowest energy measures tend to be associated with the low
voltage solutions which are “"close” (in state space) to the operable
solution. This is not surprising since if voltage collapse were to occur,
it would be preceded by these two solutions coalescing. Second, the
deviation in the bus i solution voltages from the operable voltages
tends to be localized about bus i. Often for a large portion of the
systemn there is not a significant difference in the voltages between the
two solutions. Since the energy measure is an integration between the
two solutions, the portion of the energy measure associated with the
areas of the system where the two solutions are nearly identical is
quite small (i.e. the result of the integration of the power mismatches
in that portion of the system is quite small). This implies that the bus 1
energy can be approximated by a partial system solution. The degree
of this localization is dependent upon the system parameters,
particularly upon the location of sources of reactive power, since the

low voltage solutions are characterized by higher reactive flows.

A second insight into the improvement of the Simplified Method
comes from the interpretation of the energy measure associated with
the bus i solution as an indicator of the voltage security in the area of
bus i. For a utility to accurately represent the portion of the electrical
system for which it has operational control, its system model must

often include both a detailed representation of the their own system
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(known as the internal system) and a large portion of neighboring
electrical systems (known as the extemal system). The need for
modeling the external system arises because of the high degree of
interconnections in the transmission system; events in one utility's
system can often have a major impact on neighboring systems. Due
to restrictions on the overall size of the model, a large portion of the
extemnal system is often represented by some sort of equivalent system
(i.e. the individual transmission lines and aggregate substation loads
are no longer represented explicitly). Since the utility has no
operational control over the external system, and because it is only
represented in equivalent form, voltage security measures for many of
the buses need not be calculated. The search for low voltage solutions
can be restricted to buses in the intemal system and perhaps a few
neighboring buses in the external system. The set of buses to be
examined can be further reduced -by recognizing that the lowest
energy measures tend to be associated with the portions of the system
with large loads, which are often connected to the lower voltage level
buses. Higher voltage buses and generator buses are normally
relatively secure. The search for low voltage solutions can thus
concentrate on a set on candidate buses which are the lower voltage,

higher load buses of the internal portion of the system.

Therefore an alternative approach for rapidly determining the low

energy solutions is to first identify a small equivalent system



146

associated with each of these candidate buses. An estimate of the
energy can then be determined by solving this smaller equivalent
system. Full low voltage solutions are then only calculated for the
buses with the lowest energy measures for the equivalent systems.
The equivalent system is created by explicitly retaining bus i, along
with a set of neighboring buses, and the path set associated with these
buses [68]. By using adaptive reduction techniques [61], the
computational effort to create each equivalent system is minimal. The
energy measure can then be determined using the low voltage solution
of the bus i equivalent system and the operable solution of the
equivalent system (the bus voltages for the operable solution of the
equivalent system are identical to the voltages of the full system
operable soiution). The accuracy of the energy estimate is dependent
upon the number of buses retained and the method used to calculate

the equivalent portion of the system. In particular it is important that

~ nearby buses with reactive reserve (such as PV buses) be explicitly

retained. The engineering tradeoff therefore is between increased
accuracy and increased size of the equivalent (and hence increased
computation). If a bus i low voltage solution exists for the equivalent
system, an equivalent energy measure is calculated. Full low voltage
solutions are calculated only for those buses whose equivalent system
energy is sufficiently low. If the equivalent system. contains no bus 1

solution, then it is assumed that the full system also does not possess a
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bus i solution. This technique, referred to here as the EQV method, is

summarized as follows:

0.  Obtain the operable solution VS.

1. - Reorder and factor the bus admittance matrix (Ybus) matrix.

2.  Foreach candidate bus in the system (Screening Stage)

a.

Determine the set of buses to be explicitly retained in the
equivalent (including bus i), and their path set.

Using adaptive reduction techniques, build an equivalent
system.

As in the Simplified Method, calculate the low initial
guess at .bus i, V;l, using the closed form e‘xpressioil
contained in Appendix B [62], with the assumption that
the voltages at all other buses are fixed.

Form the power flow initial voltage guess for the
equivalent system with VJ? forj=1iand VJ‘.1 forj = i.

Solve the equivalent system using the rectangular
Newton-Raphson method.

If a solution exists calculate its energy measure. Store

the solution if the energy measure is below a

predetermined threshold.
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3. For each bus with a sufficiently small energy measure (Solution
Stage)

a. Form the power flow initial voltage guess using

equivalent system solutions for buses within the

S . . . .
equivalent and V i for j not in the equivalent.

b. Solve the full system using the rectangular Newton-
Raphson method.
C. If a solution exists calculate its energy measure. This

energy measure then provides a measure of voltage

security in the area of bus 1.

~ The practicality of the above method rests on its ability to rapidly and

accurately determine the set of low voltage solutions with low
associated. energy measures. This, in tum, depends upon the
equivalencing approach used. Ideally, the equivalent should have a
bus i solution if and only if the full network has a bus i solution.
Realistically, one would prefer errors where the equivalent system has
a solution when the full system does not (a false alarm), rather than
the equivalent not displaying a solution when a solution exists for the
full system (a missed solution). A second desirable property of the
equivalent is that if a solution exists, the resulting energy should

provide a good estimate of the energy for the full solution. A precise

estimate of the energy, while desirable, is not strictly necessary since

the equivalent energies are only used to determine the set of low
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energy buses. A third useful property is that ability to rapidly create
and solve the equivalent systems. The equivalent system should be

sufficiently small and maintain the sparsity of the original network.

A number of different equivalencing techniques are described and

tested in [63], and [64]. For standard equivalent usage (such as in a

contingency analysis application) the accuracy of a technique 1is

usually assessed by comparing the voltages and power flows of the
equivalenced system to those of the non-equivalenced system over a
number of severe disturbances (such as the loss of a heavily loaded
transmission line or a large generator). Whether an equivalent should
be used depends on the size and extent of the expected disturbance(s).
For sufficiently small disturbances the linearization methods from [63]
would work well. However the problem under consideration here
requires finding an alternative solution to the power flow equations,
and thus fundamentally reflects the nonlinear nature of the power
flow. Therefore a reduction of the bus admittance matrix (also known

a Ward equivalent [65]) was used rather than a linearization method.

To derive the Ward equivalent, let the set of system buses be
partitioned into two groups: Set E - the buses to be eliminated, and Set
R - the buses to be retained in the equivalent system. The bus

admittance equations can then be written as:
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} [Vj rj
- (4-1)
Yre Yrr I

with V and I being the vectors of phasor voltages and current

injections at each bus.

Eliminating set E, the equation can be rewritten as:
Ve = e 4-2)
where
-1 |
QRR = YRR - YRE YEE YER (4'3)

and

fr

-1
Tp - Yge Yo, Iz

_ Note that the reduction of the above equations only affects those buses

in the retained set R with original connections to the buses in set E.
These buses are known as the boundary buses. The portion of Y
associated with the non-boundary buses is unaffected by the

reduction.

There are a number of variations to the Ward equivalencing method.

Using the notation from [64], in the Ward Admittance method (WY
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method) all the bus injections in set E are first converted to equivalent
shunt admittances (i.e. Ig = 0). This method results in very large
shunts admittances at the boundary buses. For the traditional use of
an equivalent, these large shunts can be problematic since they make
the shunt power injections unnaturally sensitive to changes in the
boundary bus voltage magnitude. However for application here these
shunts can be beneficial since they result in a less "stiff” system which
tends to aid in convergence to the low voltage solution. In the Ward
Injection method the external system loads are not converted to shunt
admittances. Once QRR has been calculated, the constant power
injections at the boundary buses can be calculated without explicitly
determining fR since all the bus voltages are known. This technique is
known as the WI-1 method. In a variation of the Ward Injection
method, known as the WI-2 method, only the series elements in the
external system are represented. This is done because the low series
impedances of the external system result in an unrealistic aggregation
of all the shunts in the external network at the boundary buses.
Numerical tests reported later in this chapter indicate that the energies
associated with the WI-1 and WI-2 type equivalents approximate the
full solution energy more closely than the energies associated with the
WY type equivalents. However the WI-1 and WI-2 methods suffer
from more missed solutions than does the WY method. Therefore the

WY method is judged to be preferable for this application.
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In order to construct each equivalent, it is first necessary to determine
the set of buses to be retained. The existence of an equivalent system
solution, along with accuracy of the associated energy approximation,
depends upon the number, type and locatioh of the buses retained.

However as the number of retained buses increases, the time

necessary to solve the equivalent system also increases. In general,

the accuracy of the bus i system solution is increased by the retention
of additional buses nearby to bus i, and in particular by the retention
of nearby buses with reactive reserve (PV type buses). The high
sensitivity of the equivalent accuracy to the retention of nearby PV
buses is due to the high reactive losses in the transmission system.
These high losses (due to the high values of line reactance relative to
resistance) make it difficult to transmit reactive power. The difficulty
in transmitting reactive power over long distances is actually the main
cause of voltage collapse, since reactive power is usually available
elsewhere in the system. Since the low voltage solution at bus i is
characterized by high reactive flows in the vicinity of bus i, it is
important that the sources of this reactive power (i.e the nearby PV
buses) be retained. In the studies performed here, the algorithm uséd
to determine the set of retained buses explicitly retained all buses up
to the second neighbor of bus i, and all PV buses up to its fourth
neighbor. More sophisticated algorithms could, of course, be

developed.
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Once the set of retained buses has been determined, the equivalent
system network could be calculated using equation (4-3) directly.
This is viewed as computationally intractable because of the need to
calculate Y;E (an O(n3) operation). A more efficient method of
calculating QRR is to perform a partial factorization of Y [66].
However because the EQV Method requires calculation of a large
number of equivalents (one for each candidate bus), the adaptive
reduction technique [61] is more suitable computationally. In the
adaptive reduction technique, the Y matrix is assumed to have first

been factored into LU form:

[YEE Yer ) {LEE 0 } {UEE Ugr )
Yre Yrr Lge Lgr 0 Ugr
In [67] it is shown that
Yre Y;; Yer = (LpeUsp)(LgeUgp) ' (LegUes)
= LBEUEEU;EU_E}ELEEUEB
= LppUgs (4-5)

Thus once Y has been factored, ‘QRR from (4-3) can be calculated as

Yre = Yrr - LpgUgs (4-6)
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The multiplication of Lgg and Ugg can be performed quite quickly
since both matrices are usually sparse. The net result is the ability to
calculate QRR many times faster than performing a partial matrix
factorization. Intuitively adaptive reduction proves efficient because
most of the work necessary to calculate Q’RR has already been done
during the factorization of Y. Since the EQV Method requires the
calculation of a large number of equivalent systems, it is much more
efficient to factor Y once, and use (4-6) to calculate each equivalent
system, The use of adaptive reduction does not require that Y be
ordered so that set R (the set of retained buses) is physically last.
However it is necessary that it be possible to make set R conceptually
last. That is, during the factorization of Y, the calculation of the
elements of Lgg and Ugg must be independent of the calculation of the
elements of Yrr. This can be accomplished by augmenting set R to
include its path set. The path set for any bus can be determined

according to the following algorithm [68]:

1. Let i be the first bus in path.

2. Get the number of next element in column i of L (or row i of
U). Replace 1 with this number and add it to the path.

3. If k = last bus in L (or U) then exit; else Goto 2.

The path set of R is the union of the path sets for the individual buses

in R. The augmentation of R by its path set eliminates the need to
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reorder the buses. The elements in any path set are, of course,
dependent upon the original ordering used during the matrix

factorization.

In standard power system applications the buses are usually ordered to
minimize the number of fill-ins which will occur during the
factorization. The most popular ordering technique is Tinney Scheme
2 {69]. However in the EQV Method the use of a different ordering
technique is often preferable. This is because since the Y matrix only
needs to be factored once at the beginning of the algorithm, the
majority of the computation is spent in solving the equivalent systems.
However since the number of elements in each equivalent system
includes the original set R augmented by its path set, the total size of
the equivalent system can be reduced by minimizing the size of the
path sets. With a large number of equivalent systems to be solved in
the EQV Method, it is not beneficial to order Y to explicitly reduce
the length of the path sets for any small set of buses. Rather the
matrix shouid be ordered to reduce the average minimum length of the
path sets for all buses. In [70] the Minimum Degree Minimum Length
(MDML) algorithm is proposed to minimize the average length of the
path sets. The lengths of the factorization paths are decreased by
explicitly ordering the nodes to increase the width of the factorization

path graph. A comparison of the solution times for Tinney Scheme 2 -

versus the MDML algorithm is provided later in the chapter.
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The computational improvement of the EQV method versus
calculating a full system low voltage solution for each candidate bus
(i.e. those buses where voltage security measures are desired) is
dependent upon the size of the system. This is because the number of
explicitly retained buses in an equivalent system is only dependent
upon the local topology about the bus of interest. This set would
normally include about 10 to 20 buses. Thus for small systems (under
approximately 50 buses) there is little benefit in using the EQV
Method since the size of set R (the. set of explicitly retained buses and
their path set) is a sizeable portion of the total system size. But since
the number of buses explicitly retained is independent of total system
size, the percentage of total buses retained decreases as the size of the
system increases. The equivalent is not, however, totally independent
of the size of the original system. The equivalent must include the
path set of the explicitly retained buses. The path set is dependent
upon the ordering of the original system, and in general, increéses

with the number of buses in the original system.

4.2 EQV Method Experimental Results

The EQV method was tested on the standard IEEE 118 bus case.

Recall that the goal here is to provide a qualitative assessment of the
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voltage security of a slowly varying power system. The voltage
security is assessed by freezing the system at a given time and then
calculating the appropriate energy measures. The security of different
operating points can be compared by comparing their respective
energy measures. The objective of this section is to demonstrate that
the EQV Method provides an accurate and computationally efficient

method of determining the set of lowest energy measures.

As was the case for the Chapter 2 example, the loads at all buses in
the IEEE 118 bus case were again assumed to be a linear function of a
parameter k (k=1 for basecase). System generation was varied in
order to keep the real power delivered by the slack bus (bus 69)
constant. As k increases the system becomes more heavily loaded

until the point of voltage collapse is reached at k=3.0.

As the system load is increased, the number of low voltage solutions
tends to decrease. This variation in the number of low voltage
solutions identified with respect to k is shown by the upper curve in
Figure 4-1 (here all solutions were calculated using the Simplified
Method). However recall that only those solutions with low energy
measures (indicating areas of the system vulnerable to voltage
collapse) need to be calculated. The lower curve in the figure shows
the variation in the number of solutions with energy measures less

than 3.0 as the system load is increased. For low load levels, when
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the system is quite secure, there are only a few solutions with energy
values less than 3.0 (the lowest energy value for k=1 is 2.75). As the
system loading increases, the number of low energy solutions also
tends to increase, indicating that the system is becoming more
vulnerable to voltage instability in a number of areas. Still, the
number of low energy solutions remains quite moderate. Immediately
before voltage collapse there is only a single low voltage solution.
Voltage collapse occurs when this solution coalesces with the
operable solution. Figure 4-1 shows that regardless of system loading,
only a small number of low voltage solutions need to be calculated to
assess system voltage security. The applicability of the EQV Method
to the problem can be demonstrated by showing that it accurately
determines this subset of low energy solutions with reasonable

computational cost.
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Figure 4-1 : Variation in number of Low Voltage Solutions

In fhis section the energy estimates obtained using the three
equivalencing methods are compared to the Simplified method
energies. The accuracy of the EQV Method is demonstrated by
comparing these values. At k=1, 49 low voltage solutions were found
using the Simplified method, while 52 solutions were found using the
Ward Admittance method (WY), 49 solutions using the WI-1 method,
and 49 solutions using the WI-2 method. All three methods correctly
located the 20 low voltage solutions with the lowest energy measures.

Of the 52 solutions found using the WY method, four were false
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alarms, while one actual low voltage solution was missed (the energy
measure associated with this missed solution was quite high). The
WI-1 and WI-2 methods had no false alarms and no missed solutions.
Table 4-1 shows a comparison between the full solution energies and
those of the equivalent systems for the fifteen lowest values. Note the
rankings of the equivalent energies for all three methods correlate

quite closely to the ranking of the full solution energies.
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Bus # | # of buses Full WY W1 | WI-2
in Equiv. | Solution | Equiv. Equiv. Equiv.
Energy Energy Energy Energy
44 35 2,75 2.74 2.717 2.76
43 38 2.81 2.79 2.81 2.81
21 31 3.03 2.99 3.03 3.04
10 25 3.22 3,11 3.25 3.25
22 33 3.52 3.48 3.52 3.53
20 36 3.76 3.69 3.77 3.78
53 28 3.85 3.84 3.87 3.87
52 29 4.01 3.98 4.03 . 14.03
76 37 4.01 4.00 4.01- 4.01
1 28 4.75 4.48 4.86 4.88
101 |30 4.88 4.84 4.85 4.89
33 42 5.11 501 5.19 5.18
84 24 5.27 514 1527 5.31
74 143 _15.38 5.37 542 542
57 29 5.53 5.47 5.58 5.58

Table 4-1 : Comparison of Full Solution to Equivalent System
Energies for k=1

For the equivalent systems at k=1, the average percentage diffcrence
between the equivalent energies and the full solution energies was
1.6% for the WY method, 0.5% for the WI-1 method, and 0.5% for

the WI-2 method. The average size of the equivalent systems was
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34.5 buses. The WY method missed the solution at bus 14 (which had
a full solution energy of 6.86), and had false alarms at buses 4, 27, 64,
and 113 (with equivalent system energies of 11.1, 28.7, 20.8, and 17.6
respectively). The missing of the bus 14 solution is not significant
because of its high energy. In this system, with a load corresponding
to k=1, the conclusion is that all three methods of equivalencing do a

very good job.

As the load on the system is increased, the number of missed solutions
and false alarms also tehded to increase. For example at k=2, where
there are 31 Simplified Method solutions, there was one missed
solution and eight false alarms for method WY, nine missed solutions
and two false alarms for method WI-1, and three missed solutions and
two false alarms for method WI-2. Table 4-2 compares the energy of
the equivalent systems to the full solution energies for the fifteen

lowest values at k=2.
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Bus | # of buses| Full WY WI-1 WI-2
# in Equiv. | Solution Equiv. Equiv. Equiv.
Energy Energy Energy | Energy
44 |32 1.80 1.77 1.77 1.79
43 ]33 1.96 1.92 1.96 1.97
21 |28 2.31 2.23 2.24 2.26
53 127 2.62 2.58 2.64 2.65
10 [22 2.64 2.71 2.55 2.56
76 136 2.78 2.76 2.77 2.77
52 |28 2.84 277 2.88 2.88
1 26 3.28 291 2.99 3.06
101 | 28 3.55 3.43 No Solution | 3.54
107 |25 3.59 3.36 No Solution | 3.58
86 |20 3.61 3.54 No Solution | 3.59
33 141 3.85 3.73 3.86 3.82
84 |21 3.94 3.69 No Solution | 3.85
98 |46 4.30 4.22 4.28 4.29
74 [ 40 4.38 4.36 4.31 4.32

Table 4-2 : Comparison of Full Solution to Equivalent System
Energies for k-2 '

At k=2 the average pércentage difference between the equivalent

energies and the full solution energies was 3.3% for the WY method,
1.4% for the WI-1 method, and 1.4% for the WI-2 method. For the
WY method the missed solution was at bus &2 (which had a full
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solution energy of 5.76), while the only false alarm with relatively low
energy was at bus 13 (equivalent system energy of 3.50). As can be
seen from the table, the WI-1 method missed a number of the lowest
fifteen solutions, although it still managed to locate the lowest eight.
The WI-2 method missed the solutions at buses 82, 83 and 93 (which
had full solution energies of 5.76, 3.61, and 5.57 respectively).

As k was increased beyond 2.0, both the WI-1 and WI-2 method
increasingly missed significant low voltage solutions. For example at
k=2.48 the WI-1 method missed the lowest energy solution (at bus 44
with energy = 1.15), while at k=2.36 the WI-2 method missed the
third lowest energy solution (at bus 43 with energy = 1.54). The WY
method correctly located the top fifteen solutions for all values of k <

2.40 and the top five solutions for k < 2.48.

However even the WY had some difficulty locating all solutions as
the system moved towards the point of voltage collapse. One reason
for the increase in missed solution is that as the system becomes more
heavily loaded, local voltage sources reach their limits. The necessary
voltage support must then be supplied from increasingly distant
sources (PV buses). If these PV buses are not explicitly included in
the equivalent system then a missed solution may result. An example
of this occurs with the equivalent solution at bus 1. For k<2.52 both

the equivalent system and the full system have a bus 1 low voltage
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solution. But at k=2.52 the solution is missed. If, however, the
equivalent is augmented to include the PV generator at bus 42, the
equivalent solves with an energy of 1.87 (versus 1.64 for the full
solution energy). Nevertheless, since it is possible for the EQV
Method to miss significant solutions, it should be used in conjunction
with a method with more robust convergence characteristics. Such a
method, which will be referred to as the Fixed Boundary Bus Voltage
(FBBV) Method, is introduced in the next section.

The advantage of using the EQV method is its increased
computational efficiency over the Simplified Method. This is
demonstrated in Table 4-3. Values shown are for k=1, and times
given are in seconds. For reference, the necessary to calculate the
operable power flow solution from a flat start was 3.6 seconds on the

machine used.
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Simplified Equivalent
Method System Method
Order/Factor Ybus N.A. 1.0
Construct 117 equivalents for N.A, 154
screening _
Solution of 117 equivalent N.A. 138.1
systems and calculation of
screening energy _
Full Solutions (117 for 570.8 53.0
Simplified Method, top 10 for
ES Method)
Total 570.8 207.5
Table 4-3 : Comparison of Computation Times between Solution
Methods

In the Simplified Method the determination of the set of low energy
solutions at each time step required 117 power flow solutions of the
full 118 bus system (the 117 arises because low voltage solutions
were attempted at each bus except the slack). With the EQV method
the Ybus matrix first had to be re-ordered and factored. Then the 117
equivalent systems were constructed using adaptive reduction. As can
be seen from Table 4-3, the time to perform these first two steps was
relatively small. For cases where a number of studies are being
performed using the same Ybus (such as in an on-line environment),
most of the work of the first two steps need only be performed during
the first study run. The majority of the time was spend solving the

117 equivalent systems, being equal to about 24% of the time
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necessary to solve the full systems. This decrease was due to the
smaller size of the equivalent systems (average of 34.5 versus 118
buses for the full system). For larger systems the decrease should be
even greater since the sizes of the equivalent systems do not increase
in proportion to the increase in full system size. The last step in the
EQV method was performing full low voltage solutions for those
cases with low enough equivalent system energy. Because of the
relative accuracy of the equivalent system energies, full low voltage
solutions would, at most, need to be performed at a small number of
buses. In Table 4-3, full solutions were performed for the ten buses

with the lowest screening energy measures.

As was mentioned earlier, the reason the Ybus matrix is reordered to
decrease the size of the path set which must be included in the
equivalent system. While the Tinney Scheme 2 ordering algorithm
normally results in the least number of fills during matrix
factorization, it does not result in an ordering which minimizes the
average length of the path sets. In [70] a comparison is made for the
IEEE 118 bus system between the Tinney Scheme 2 algorithm and the
MDML (Minimum Degree Minimum Length) algorithm. For the
Tinney method the mean path for the buses of the matrix was 11.6
buses, with a standard deviation of 4.7, and a maximum path of 23.
However for the MDML method the mean path was just 8.2, with a

standard deviation of 2.2, and a maximum path of 12 buses.
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The practical result of using the MDML ordering algorithm is that the
equivalent systems are smaller, with a subsequent decrease in solution
times. For example if the Tinney Scheme 2 algorithm is used instead
of the MDML algorithm, the average size of the equivalent systems
increases from 34.5 buses to 37.3 buses, and the solution time

increases from 138.1 seconds to 149.8 seconds.

4.3 Fixed Boundary Bus Voltage Screening Method

The EQV method has the advantage that the equivalent system
energies closely match the full solution energies. However a
disadvantage is that it can occasionally miss low energy solutions.
Also because of the need to include the path set of the explicitly
retained buses, the size of the equivalent systems is not completely
independent of the original system size. To overcome these
drawbacks, this section introduces an alternative technique, referred to

here as the Fixed Boundary Bus Voltage (FBBV) method.

The idea behind the FBBV method is to approximate the energy of the
bus i solution by solving a smaller system consisting of bus 1 along
with some of its neighboring buses. Voltages at all other buses are

assumed fixed. Similar techniques have previously been used in
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contingency analysis to quickly determine which contingencies are

likely to result in violations [71], [72].

Bus i and its neighboring buses will again be referred to as the internal
system, while the remaining buses in the system will be referred to as
the external system. The buses in the external system which have
connections to the internal system will be referred to as the boundary
buses. During the solution. of the internal -system, the voltage
magnitudes and angles at all other buses in the system (i.e. the
external system) are assumed fixed at their operable solution values.
Since the voltage magnitudes are fixed in the external system, the
solution of the internal system only requires solving a system
consisting of the internal along with the fixed voltage boundary buses.
Thus the boundary buses function as "slack" buses during the solution,
with fixed V/ou and variable power injection P/Q. The simplest FBBV
system congsists of a solitary internal bus i. This is just the system
used to get the initial low voltage guess for the Simplified method; the
closed-form expression for the low voltage solution is given in

Appendix B.

Since the power injections from the boundary buses are free to vary,
the FBBV system is less constrained than the original system. This -
suggests that the FBBV system should have a bus t low voltage

solution if the original system possesses a bus i low voltage solution.
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Practically this should result in extremely few missed solutions, at the
possible cost of a large number of false alarms (for example an
internal system consisting of a single bus i always has a solution).
Since the method assumes fixed extemal bus voltages, obviously how
well the bus i solution of its FBBV system approximates the bus i
solution of the full system depends upon which buses are included in
the FBBV system. If the FBBV system solution exists, it is either a
false alarm, or its energy tends to over approximate the energy of the
full system bus i solution. Intuitively this energy over approximation
arises because allowing the P/Q output of the boundary buses to vary
results in a "stronger” system than the original system (i.e any
additional power needed by the internal system can be supplied at the

boundary buses, rather than from more remote sources).

The advantages of the FBBV method are the lack of missed solutions,
and the property that internal system size is independent of the
original system size. The latter property holds because there is no
need for the internal system's path set. The localized nature of voltage
problems, due to the high reactive losses in the transmission system,
often results in a fairly accurate energy estimate from the solution of a
rather small system. Of course the severe approximation of ignoring
the external portion of the system produces estimates that are usually

not as accurate as those found using network reduction. However in
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an initial search for low voltage solutions, high accuracy is not as

important as avoiding missed solutions.

The FBBV method was tested on the IEEE 118 bus system, using the
same voltage collapse scenario from the previous section of
parameterizing all the loads as a function of k, and then gradually
increasing k. For test purposes the equivalent systems consisted of
bus i and neighboring buses extended out to a specified level. Five
sizes of equivalent systems were tested. The level O system consisted
of just bus i, the level 1 system consisted of bus i and its first
neighbors, the level 2 system of bus i and its first and second
neighbors, etc. The average size of the equivalent systems was 1 bus
for the level O systems, 4.0 buses for level 1, 10.6 buses for level 2,
21.1 buses for level 3, and 34.5 buses for level 4. These equivalent
systems were chosen to demonstrate that quite good results were
possible, even when a simplistic method of determining the equivalent
system buses was employed. More sophisticated algorithms of
determining which buses to include in the bus i FBBV system could
be used. An example would be to explicitly include more distant

reactive power sources.

The variation in the number of low voltage solutions with respect to k
for each size of FBBV system is shown in Figure 4-2. As expected, a

low voltage solution exists for every level O system. But as the size of
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the FBBV systems is increased, the number of low voltage solutions
decreases. Notice that by just solving a level 2 system (with an
average size of only 10.6 buses) almost half of the candidate low
voltage solutions can be eliminated. Also note that there were
virtually no missed solutions. Table 4-4 shows a comparison between
the energies of the FBBV systems versus those of the full solution for

the 15 buses with the lowest values at k=1.
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Bus# | Level 0 | Level 1 |Level2 | Level3 | Level 4 | Full
Energy | Energy |Energy | Energy |Energy | Solution
Energy

44 6.06 3.66 3.01 2.87 2.74 2.75

43 4.51 3.54 3.18 2.82 3.05 2.81

21 9.11 3.98 3.70 3.05 3.01 3.03

10 14.5 6.13 4.21 3.73 3.81 3.22

22 7.04 471 1418  |3.93 3.52 3.52
20 9.34 5.96 3.83 4.08 3.76 3.76

53 |s5.82 504 |421 {395 [387 _|385

52 |oa1 1529 465 1406 (392 |401

76 9.28 561 |5.04 4.08 4.11 4,01

1 13.2 7.27 5.50 5.21 5.12 4.75

101 | 7.15 5.40 5.07 4.75 4.75 4.88

33 6.91 6.32 6.23 5.09 5.19 5.11

84 8.37 5.97 4.94 4.95 5.03 3.27

74 12.4 7.56 6.74 5.52 5.46 5.38

57 8.07 6.87 5.59 5.61 5.50 5.53

Table 4-4 : Comparison of FBBYV System Energies to Full System
Energies

The average percentage difference in energy values between the
FBBYV solutions and the full system solutions at k=1 was 36.1% for
the level 1 systems, 14.8% for the level 2 systems, 4.7% for the level

3 systems, and 3.4% for the level 4 systems. While these values are
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not as low as the average differences for the equivalent systems from
Table 4-1, the correlation is still close enough for effective screening
of solutions. Recall that the goal of screening is to rapidly locate
candidate low energy buses. Buses could be eliminated at each level
in the screening if they had no solution at the previous level
Additionally, the bus search order could be prioritized based upon
their energies at each level. Buses with sufficiently low energies
could be retained, while those with sufficiently large energies
eliminated. Once the number of candidate buses has been sufficiently
reduced, the EQV method could be used to obtain accurate energy
estimates. Full low voltage solutions would then only be performed
for the few, if any, buses with extremely low EQV energy measures,
or if there was suspicion of a missed solution (i.e. very low FBBV

without an equivalent system solution).

The central reason for using a screening method is to decrease the
computational time to determine the low energy solutions. Table 4-5
shows the times to perform the screenings for each of the various
levels for k=1.0. Only solutions. with energies less than a cutoff value
were passed on to the next level. Again, for reference, the flat start

operable power flow solution time was 3.6 seconds.
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Level O | Levell |Level2 |Level3 [Level4d
Cutoff energy 9 8.0 6.0 5.0 4.0
Number of 117 99 26 17 13
Solutions _
Solution time in | 4.4 17.5 8.6 10.1 154
secs.

Table 4-5; FBBV Solution Statistics for k=1

The FBBV method reduced the number of candidate buses from 117
to 13 in the time necessary to perform about 14 full power flow
solutions. The EQV method equivalents could then be built and
solved for these 13 in the time necessary to perform a few more power
flow solutions of the full system. The accuracy of these equivalent
solution energies (shown in Table 4-1) would mean that it would
probably be unnecessary to solve any full low voltage solutions. Thus
the voltage security of the system can be determined in the time
necessary to perform about 15 to 20 power flow solutions of the full

system.,

Two methods have been introduced in this chapter for rapidly
determining the set of low voltage solutions with low associated
energy measures. Both methods reduce the solution time by solving
equivalent systems, rather than the full power system, for each
candidate bus. In the EQV method the equivalent systems are

calculated using the Ward Admittance technique with adaptive
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reduction. It was shown that the equivalent system energies closely
match the full system energies. However the sizes of the EQV
- equivalents are not completely independent of original system size,
and can occasionally result in missed low energy solutions. The Fixed
Boundary Bus Voltage (FBBV) screening method overcame these
shortcomings by just solving a subsystem of the original system. The
solution technique consisted of fixing the bus vol.tages are the
subsystem boundary buses. The FBBV method has the advantages of
very few missed solutions and fast solution times, ihdependent of the
original system size. The energy approximatioﬁs, however, are not as
accurate those from the EQV method. Therefore the preferred
technique is to use the FBBV method to rapidly eliminate those buses
with either no solution or a high energy solution. The EQV method
can then be used to provide rapid estimates of the energy of the
remaining solutions. The computational suitability of this approach

for on-line use is demonstrated in Chapter 5.
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Chapter 5 - Enhancement of Voltage Security

The thesis has, thus far, discussed the application of an energy based
method for assessing the vulnerability of electrical power systems to
voltage collapse. In this chapter it is shown that energy function
techniques not only provide a viable method for assessing, but also for

enhancing the voltage security of a large power system.

5.1 Application of Energy Based Controller

Sensitivities

Once a power system is found to be vulnerable to voltage instability
and ultimately to voltagé collapse, a method must be provided for
enhancing the security of the system. This voltage security
enhancement can be accomplished by changing the setting of the
various controllers available on a power system. These controllers
normaily include the real power (MW) output and voltage magnitude
setpoint of generators, the tap positions on load tap changing (LTC)
transformers, tap positions for phase shifter transformers, variation in
the amount of shunt capacitors connected to the system, and (as a last
resort) removal of customer loads. However, in order to operate their
systems effectively utilities must also take into account economic
considerations, and other security constraints such as transmission line

and transformer flow limits. Therefore any technique of enhancing
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voltage security should be capable of integrating into existing
techniques for enhancing the overall security and economics of system

operation.

Linear programming (LP) optimization methods have proven effective
in solving the problem of minimizing system operating costs, subject
to the constraint that no security limits are violated [73], [6]. In these
methods constraints enter the problem by first calculating the linear
sensitivity of the constraint to the system controllers.  These
sensitivities then form a row in the LP tableau. In a similar manner,
the availability of a closed form differentiable expression for the
energy function also allows for the derivation of controller
sensitivities through a first order Taylor expansion. These sensitivities
could then be integrated into an LP optimization method such as the
one presented in [6]. Similar analytic sensitivities have been
previously derived for the transient stability energy function. In [74]
numerous simulations of actual power systems have shown that such
first order sensitivities can often be successfully used to improve
system transient stability. In this section the calculation and use of the
sensitivities of the energy measure to various controllers are

discussed.
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{ | The sensitivity of the energy measure given in (2-16) to the controllers
is first derived. To facilitate this derivation, let the variables used in

(2-16) be partitioned as follows:

xS, x4 - State variables (voltages and phase angles at all
buses except for the slack) at the stable and
unstable equilibrium points;

u - Control variables (generator real power output and
set point voltages, transformer tap positions, etfc.);

p - Uncontrolled parameters (e.g. line conductance

and susceptance terms).

The parameter dependence of the energy function can then be

! expressed as:
l B(u,p,x5(u,p),x"(u,p)) (3-1)

J! ‘ ' For the derivation to follow, it is important to stress that the control
parameters enter the energy function both explicitly and implicitly; the
} | implicit dependence comes through the motion of the equilibria under
the effect of controller changes. With this observation in mind, the

f
1 first order sensitivity of the energy function with respect to changes in

a control variables u; is calculated by applying the chain rule
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If the system model is such that the energy function ¥ formally
defines a Lyapunov function for the system equations (i.e. if the
system equations neglect losses), one would expect that % would have
a zero first derivative with respect to the state variables at all
equilibrium. Under these conditions, the second and third terms of
(5-2) would be identically zero. This is not the case for realistic
models which include transmission line real power losses; the second
and third terms must be included. Note also that even though the
gradient of ¥(x) was made identically zero at xS by the addition of the
conductance terms in (2-15), 008/dxS is not zero. This is because the

added terms that locally correct for conductance,

o s S S 8
- .%Gijlvil le |cos(oci-0tj)
J=

in (2-15a) and

n
- > Gy | ViS | VJS| sin(oa?-oc;)
j=1

in (2-15b), are themselves a function of x5.
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Sensitivities can be derived for any of the following types of controls:
generator MW/MVAR/voltage setpoints, load MW/MVARs,
transformer tap positions, MW transactions, phase shifter taps, and
shunt capacitance variation. Computationally the cost to calculate
each controller sensitivity is quite modest (on the order of a forward
and backward substitution of the power flow equations)., with most of
the effort expended on the calculation of d¥/dxs and ¢9/dx". For
illustrative purposes, the sensitivity of the energy function to changes
in generator real power output (MW) is examined in the following

example.

With x = [a |V|]T, the sensitivity of the energy with respect to the real

power output of the generator at bus j is given by

do u s T 0%°
PG~ (o - )+ [°7] 9P,

P T IS )

x¥ dPg;
The first term in (5-3) is due to the explicit dependence of the energy
measure upon the power injection at bus j. However since it is just
the difference in the voltage phase angle at bus j between the low
voltage solution x¥ and the operable solutions X8, it is known directly.
The latter two terms are due to the implicit dependence of ¥ upon Pg;;
that is, changing the real power injection at bus j changes the solutions

xU and x5 and hence changes the energy measure . The vectors
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00/0xs and 9U/JxVU are sparse, with nonzero components only at
locations corresponding to bus j and its first neighbor buses. The
vectors 9x5/0Pg; and JxV/dPg; can be calculated quite efficiently
using sparse vector methods [68]. Therefore once xS and x! are

known, the computational cost of evaluating (5-3) is quite minimal.

As an example of the application of generator MW controller
sensitivities, consider the IEEE 118 bus case from Chapter 4, with
loads again modeled as a linear function of a parameter k. The aim of
this example is to demonstrate that the use of controller sensitivities
provides a good mechanism for increasing system voltage security.
Assume for illustration that the system is operating at k=2.6, and that
the voltage security criteria for system operation is that no low voltage
solutions have energy measures less than 1.0 (this voltage security
criteria could be determined through off-line studies and would
depend upon the expected variation in the energy measure). At this
load level, only the energy measure associated the bus 44 solution is

less than 1.0, with 8=0.9239. Further assume that the only control

actions available are changing the generator MW outputs.

The first step to increase the system's voltage security is to use (5-3)
to calculate the sensitivity of this energy measure to a per unit (on 100
MVA base) change in the generator MW outputs. The generators

with the largest magnitude sensitivities are listed in Table 5-1.
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Generator Bus Current MW Outplit Sensitivity of energy
Number to increase in
_ _ | generator MW output
10 450.0 -0.0419
46 116.1 0.2013
49 333.5 0.0794
54 209.9 0.1085
55 194.3 0.1034
56 0.0 (0.1084
59 478.8 0.0490
113 - 264 -0.0373
Table 5-1 : Sensitivity of Bus 44 Energy Measure to Generator MW
Variation

In an application environment, the selection of which controller(s) to
move would require the consideration of a number of different criteria
(such as the relative economics of the generator, and the effect of
variation in the generator's output on other system variables such as
transmission line flows) in addition to the sensitivity of the energy
measure. However to simplify the example assume that these factors
are ignored; the objective is to increase the energy measure with the
minimum amount of change to the generators' outputs. In this case,
only generator 46, which has the highest sensitivity, is initially

selected. The amount to vary generator 46's output to increase the
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energy measure from 0.9239 to 1.0 can be approximated using its

sensitivity value of 0.2019:

1.0-0.92
APG4s6 - ¢ 00‘20?939)*100MW = 37.7MW

The accuracy of the estimation of APg46 depends upon how well the
linear sensitivity approximates the actual variation in the energy
measure with respect to the generator 46 output, A comparison
between this linear approximation and the actual energy variation is

shown in Figure 5-1.
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Fig 5-1 : Energy Variation with respect to Generator 46 MW Output

As can be seen, the linear approximation is fairly good. The actual

new energy value when the output of generator 46 is increased by
APG46 to 153.8 MW is 0.99. A second iteration of the above steps at

the new value of Pggg results in 0(x) = 1.00 when Pggg = 160 MW.
To show that voltage security has actually been improved, Figure 5-2
compares the variation in the bus 44 energy measure with the
generator 46 changes to the unmodified system for increasing k. With
the redispatch of generator 46, the value of k when at the system loses

its steady state operating point has increased by approximately 0.05.
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The parallel path of the two plots indicates that change in the energy
measure at k = 2.6 provides a good indicator of the increase in system

security.
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Figure 5-2 : Energy Measure Improvements with Redispatch

In (5-4), equation (5-3) has been modified to include a term to account
for the variation in a generator's reactive power limits with respect to

changes in real power output.
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Recall from Chapter 2 that a fast generator exciter model is employed
- the generator reactive power output is assumed to vary, within a
range between an upper and a lower limit, in order to hold its bus
voltage constant. Generator exciter saturation is imposed when its
reactive output reaches one of these limits; the generator is switched
from being modeled as PV to PQ. These reactive power limits are,
however, normally a function of the real power output of the
generator. Figure 5-3 shows a typical relationship between the real
power output of a unit and its reactive limits. Since systems
vulnerable to voltage instability are often characterized by a number
of units operating at their reactive power limits, it is important to
include the effects of redispatch of real power on the unit's reactive
capability when calculating the real power sensitivity. Scenarios
where system voltage security is enhanced by backing down the real

power output of a saturated unit in order to increase its reactive
capability can thus be properly modeled. The value of aQ(PGj)limit /

oPg; from (5-4) is then the slope of the upper curve in Figure 5-3 if

the generator is operating at its maximum reactive power limit, the
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slope of the lower curve if the generator is operating at its minimum

reactive power limit, or zero if the generator is not saturated.
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Figure 5-3 : Typical Generator Reactive Capability Curve

Sensitivities for other types of power system controllers could be
derived in a similar manner. Voltage security could then be integrated
into existing LP optimization methods by requiring that the energy
measure for an area of the system always be above a specified
threshold. This threshold could be determined using off-line studies.

Anytime the energy measure fell below that threshold the energy
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constraint would become active. Controller sensitivities could then be
calculated; these sensitivities would then form a row in the LP
tableau. A system with a number of areas vulnerable to voltage
instability (i.e one with a number of separate energy measures below
their thresholds) could have a separate row in the LP tableau of the
controller sensitivities for each energy measure. Thus energy
techniques could prove useful not only for monitoring, but also for

enhancing system voltage security.

5.2 On-line Use of Energy Method

In order to demonstrate that the energy method could be used in an
on-line environment, a realistically sized system of 415 buses and 609
lines was tested. The test system was divided up into 203 internal
buses and 212 extemal buses, with the assumption that voltage
security was only monitored for the internal buses. The test objective
then was to monitm" the voltage security as the system state evolved
over the course of 24 hours. Figure 5-4 shows an assumed typical
daily variation in the internal system load. The internal generation
was also varied, using panicipation factors, to maintain constant

interchange with the external portion of the system.
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Figure 5-4 : Daily Variation in 415 Bus Internal Load

System voltage security can be assessed by tracking the variation in
the energy measures as the system state changes with time. A
decreasing energy measure would indicate iﬁcreased vulnerabili.ty to
voltage instability in a portion of the system. Since the systemn loses
its stable operating point anytime an energy measure is zero, a number
of criteria could be used to notify the operator when voltage collapse
is impending. One simple notification criterion could be when an
energy measure falls below a given tolerance. The value of this

tolerance could be determined in off-line studies, and would depend
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upon the network being studied and the amount of parameter variation
(e.g. load or generation injections) expected. Another criterion could
be to monitor both the energy measures and their rate of change.
Then anytime an energy measure is decreasing at a rate such that it
would reach zero in less than a specified time tolerance, corrective
action could be taken. By setting this tolerance to a large enough

time, the operator should have time to take correct action.

The rate at which the voltage security measures are reevaluated
depends upon the expected time scale of the variation in the power
system parameters. Since in the voltage collapse problem the system
is assumed to move from a state of relative security to one of
vulnerability over a time period of tens of minutes to hours, a rate of
once every five minutes was chosen for evaluation of the voltage
security. This is congruous with the periodicity of many utility state

estimators.

For on-line use of energy methods, the low energy solutions must be
determined as efficiently as possible. For this study, a low energy
solution is defined as one with an energy measure less than 2.0,
Using the :results from Chapter 4, the following algorithm was
employed:
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0. Operable system state assumed to be available from state

estimator.

1. Use Fixed Boundary Bus Voltage (FBBV) screening
method to rapidly determine candidate set of low energy
solutions. All systems with energy measures less than
2.0 are assumed to be members of set and precede
directly to step 3; those systems with energy measures
between 2.0 and 4.0 proceed to step 2 for further

screening. All others buses are assumed to be secure.

2.  For those systems with sufficiently low energies, more
accurate estimates are obtained by building and solving
the EQV systems. Again, systems wiﬁl energies less
than 2.0 precede to step 3. Those systems with energies
between 2.0 and 3.0 are monitored, but no full solution is

calculated.

3.  For all systems with energies less than 2.0, full system
solution energies are calculated. These values are then

monitored.

Starting at midnight, when the load was 7190 MW, Table 5-2 shows

the solution times necessary to determine the initial system voltage
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security. For reference, the time necessary to calculate the operable

power flow solution on the machine used was 12.3 seconds.

Algorithm | Description Solution Time
Step # in Seconds
1 Level 1 FBBV Screening : Of 203 buses 25.1
tested, 41 had solutions with energy less
than 10.0.
1 Level 2 FBBV Screening : Of 41 buses 6.9

from level 1, 37 had solutions with
energy less than 8.0.

1 Level 3 FBBV Screening : Of 37 buses 11.9
from level 2, 26 had solutions with
energy less than 6.0.

1 Level 4 FBBV Screening : Of 26 buses 13.4
from level 3, solutions for buses 83 and
144 had energies less than 2.0 (and
proceeded directly to step 2), while 12
had solution energies between 2.0 and
4.0.

2 Build and solve 12 equivalent systems 50.7
(for buses with FBBV level 4 screening
energy between 2.0 and 4.0.

3 Calculate full low voltage solutions and 30.0
energies for buses 83 and 144.
Total time: 144.0

Table 5-2 : 415 Bus System Solution Times
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During step 1 all of the 203 internal buses were checked for low
voltage solutions using the four level FBBV screening method from
Chapter 4. At the end of step 1, the number of candidate buses had
been reduced from 203 to 14. Of these 14, 2 had screening energies
less than 2.0, and proceeded directly to step 3; the remaining 12 were
further analyzed using the EQV method. Of these 12, 7 had EQV
solution energies between 2.0 and 3.0. These solutions were stored
for future monitoring, but because of their relatively high energy no
full solution was calculated - the accuracy of the EQV solution was
assumed to be sufficient. Full low voltage solutions were calculated
for the two buses with energies less than 2.0. The total time to assess
the system voltage stability was 144.0 seconds, or about the time

necessary to do about 12 full system power flow solutions.

An advantage of using the method on-line is that the slow variation in
the system state makes it unnecessary to repeat the above algorithm at
each time interval. This is because the set of low energy solution

buses tends to remain relatively constant from one mterval to the next.
The most likely members of the set of low energy solutions at the next
time period are the members from the current period. Therefore the
entire set of buses could then be searched for new low energy
solutions at a much slower frequency, perhaps once every half hour,
or by checking one sixth of the buses at each time period. This would

reduce the computational cost of monitoring voltage security at each
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time period to being equivalent to just a few full power flow solutions.
As an example, Table 5-3 compares the low energy solution values
between midnight and 1:00 a.m. During this time period only the
solution at bus 175 changes from having an energy less than or equal
to 3.0 to greater than 3.0. Of course if there were a major perturbation
to the system state (such as an unexpected outage of a large

generator), all buses could be searched.

Bus # Midnight Energy 1:00 a.m. Energy
144 1.21 1.29
83 1.55 1.64
195 2.46 2.53
196 2.60 _ 2.64
5 2.73 2.78
8 2.80 2.86
176 2.93 2,98
175 3.00 3.05

Table 5-3 : Low Energy Solutions at Midnight and 1:00 a.m.

Figure 5-5 shows the daily variation in the energy measures. During
the times of low load at night the energy measures are relatively high,
indicating secure system operation. As the load increases, the energy

measures either drop, indicating increased risk of voltage instability in
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an area; or vanish, indicating that two vulnerable areas have merged.
By monitoring the change in these energy measures, the voltage
security of the system is assessed. If an energy measure fell below a
given threshold, voltage security could be increased by using the
technique from the previous section (provided that there are available

controllers to move).
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Figure 5-5 : Daily Variation in 415 Bus Energy Measures

The goal of this thesis has been to develop a technique, suitable for
on-line implementation, of assessing, and when necessary, improving

system voltage security. In this section the actual use of the energy
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function techniques on a realistically sized system has been
demonstrated. It has been shown that the voltage security of such a
system can be effectively monitored and when necessary enhanced
with computational requirements on the order of a few power flow
solutions, thus allowing for use of the method in an on-line

environment.
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Chapter 6 - Summary

In this thesis a method of assessment and enhancement of the voltage
security of electrical power systems using energy techniques has been
presented. Such a method is needed because efficient power system
operation is becoming increasingly constrained due to the threat of
voltage instability or collapse. The lack of an effective means of
assessing voltage security can result in either wide-scale blackouts, or

overly conservative and more costly operation.

The energy method presented here is based upon the use of
Lyapunov's direct method, which provides a means for assessing the
stability of systems of nonlinear differential equations. While the
conditions required for existence of a true Lyapunov function are only
strictly satisfied in an idealized (lossless) power system model, it is
still possible to develop a closed form energy function which
approximates a true Lyapunov function, even when power systein

models which include losses are employed.

Using this energy function, the voltage stability of an area of the
power system can be quantified by evaluating the energy difference
between the system's operable power flow solution, and one of the
alternative solutions of the power flow equations, referred to here as

the low voltage solutions. Separate energy differences can be
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calculated for each type-one low voltage solution, with each energy
difference providing a measure of the voltage security in the portion of
the system corresponding to the largest magnitude components of the
eigenvector associated with the positive eigenvalue of the power flow
Jacobian. As the system movés towards the point of voltage collapse,
the energy measures have been shown to vary smoothly with respect
to changes in the state of the power system, even when the reactive
power limits on generators are included. Voltage collapse is preceded
by the coalescence of the operable solution and a type-one low voltage

solution; at this point the energy difference is zero.

The type-one low voltage solutions can usually be determined using a
rectangular Newton-Raphson method, with an initial low voltage
guess at a single bus. Analysis of the components of the eigenvector
associated with the positive eigenvalue indicates that the energy
measure associated with this bus provides an indication of the voltage
stability in the area of the bus with the low initial voltage guess. Thus
the voltage security in the vicinity of bus i can be determined by
initializing the power flow with a low initial voltage guess at bus i,
without having to calculate the eigenvector. Determination of this
solution is, however, dependent upon the convergence characteristics
of the Newton-Raphson power flow. An alternative method of
determining the low voltage solutions expands the constant contours

of the energy function about the operable power flow solution in order
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to determine the local minima of the norm of the power flow
mismatches. However a shortcoming of this technique is its apparent

inability to reliably determine the local minima of this function.

Use of the energy method in an on-line environment requires the rapid
determination of the low voltage solutions with the lowest associated
energy measures. Two methods of solving this problem have been
presented, with both methods reducing the solution time by solving
equivalent systems, rather than the full power system. In the EQV
method the equivalent systems about each bus are calculated using the
Ward Admittance technique with adaptive reduction. However while
the equivalent system energies closely match the full system energies,
the sizes of the EQV equivalents are not completely indépendent of
original system size, which limits the computational benefits of the
method. Additionally it can occasionally miss existing low energy
solutions. The Fixed Boundary Bus Voltage (FBBV) screening
method overcame these shortcomings by just solving a subsystem of
the original system, without the need to create an equivalent. The
solution technique consisted of solving the subsystem, with the
voltages of the boundary buses fixed at the operable solution values.
This results in a solution of a smaller and less constrained network.
Thus the FBBV method has the advantages of very few missed
solutions and fast solution times, independent of the original system

size. The energy approximations, however, are not as accurate those
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from the EQV method. The preferred technique is to use the FBBV
method to rapidly eliminate those buses with either no solution or a
high energy solution. The EQV method can then be used to provide

rapid estimates of the energy of the remaining solutions.

Lastly, once the set of low energy solutions have been determined, the
sensitivities of the energy measures to the various system controllers
can be calculated in a computationally tractable manner. Voltage
security could then be integrated into existing methods of security
enhancement by requiring that the energy measures always be above a
predetermined threshold. 1t the energy measures fell below the
threshold, controllers could be improved in such a manner as fo
improve system voltage security without causing any other types of
security violations. In conclusion, this thesis has presented a
computationally feasible method, suitable for on-line use, using
energy methods for monitoring and improving the voltage security of

an electrical power system.
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This appendix contains the 118 bus system data in IEEE common data

format.
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0.0 0.0 00
0.0 00
0.0 66.0 20.0

11101.000 0.0 0.0 0.0
11120980 0.0 0.0 0.0
11120991 0.0 0.0 0.0
11120.958 0.0 68.0 27.0
11101.000 0.0 47.0 11.0

0.0
0.0

0.0 5164

0.0
0.0
-12.0
-6.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

e e e e e Nl e T T e B e T S S e R e e R e N e e S e o T e T i el i e s e i e B e T e R e e Y e e e e T ]

1.00 00 00
0980 240 -8.0
1.00 0.0 00
1.00 0.0 00
1.00 0.0 00
0.970 300.0 -300.0
1.00 0.0 0.0
0.985 300.0 -300.0
1.00 0.0 0.0
1.00 0.0 00
1.00 0.0 0.0
1.005 100.0 -100.0
1.00 00 00
1.00 00 00
1.025 2100 -85.0
1.00 0.0 0.0
1.00 0.0 00
1.00 0.0 00
1.00 00 00
0.955 300.0 -300.0
0952 230 -80
0.954 150 -8.0
1.00 0.0 00
1.00 00 00
0.985 180.0 -60.0
1.00 0.0 00
0.995 300.0 -100.0
0998 20.0 -20.0
1.00 00 G0
1.00 0.0 00
1.005 200.0 -67.0
1.050 2000 -67.0
1.00 0.0 0.0
1.00 00 00
1.035 9999.0-9999.0
0984 320 -10.0
-1.000 0.0 0.0
0.980 100.0 -100.0
0.991 100.0 -100.0
0.958 %0 -6.0
1.0060 00 0.0
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00
00
00
00
00
00
0o
00
00
0o
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

OO0 COOCOOCOOOCLOOoOCCOOCODOOOOCOCOOODOOOOOOOCOOCO



— ey

B

11120.943 0.0 68.0
11121.006 0.0 61.0
11101.000 0.0 71.0
11101.000 0.0 39.0
11121.040 0.0130.0
11101.000 0.0 0.0
11101.000 0.0 54.0
11101000 0.0 11.0
11101000 0.0 11.0
11120.985 0.0 24.0
11101.000 0.0 21.0
11121015 0.0 0.0
11101.000 0.0 48.0
11121.00500 0.0
11120.985 0.0 78.0
11120980 0.0 0.0
11120990 0.0 65.0
11101.000 0.0 12.0
11101.000 0.0 30.0
11101.000 0.0 42.0
11101.000 0.0 38.0
11101.000 0.0 15.0
98 98 11101.000 0.0 34.0
99 99 1112101000 0.0
100 100 11121.017 0.0 37.0
101 101 11101.000 0.0 22.0
102 102 11101.000 0.0 5.0
103 103 11121.010 0.0 23.0
104 104 11120971 0.0 38.0
105 105 11120965 0.0 31.0
106 106 11 101.000 0.0 43.0
107 107 11120952 0.0 28.0
108 108 11101.000 0.0 2.0
109 109 11101000 0.0 8.0
110 110 11120973 0.0 39.0
111 111 11120980 0.0 0.0
112 112 11120975 0.0 25.0
113 113 11120993 0.0 0.0
114 114 11101.000 0.0 8.0
115 115 11101.000 0.0 22.0

76 76
77 77
78 78
79 79
80 80
81 81
g2 82
83 83
84 B84
85 85
86 86
87 87
88 88
89 89
90 90
91 91
92 92
93 63
94 94
95 95
96 96
97 97

36.0
28.0
26.0
32.0

0.0
0.0
0.0
0.0

26.0 477.0

0.0
27.0
7.0
7.0
15.0
10.0
0.0
10.0

0.0
0.0
0.0
0.0
0.0
0.0
4.0
0.0

0.0 607.0

42.0
0.0
10.0
7.0
16.0
31.0
15.0
9.0
8.0
0.0

-85.0
-10.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-42.0

18.0 252.0

15.0
3.0
16.0
25.0
26.0
16.0
12.0
1.0
3.0
30.0
0.0
13.0
0.0
3.0
7.0

0.0
0.0
40.0
0.0
0.0
0.0
-22.0
0.0
0.0
0.0
36.0
-43.0
-6.0
0.0
0.0

116 116 11121.005 0.0 0.0 0.0-184.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

P—"P—lr—‘t—lh—‘k-‘)—‘b—ll—i)—lbdv—éb—‘b—'-)—lb—‘b-‘r—lb-—ib—‘b—')—ii—‘l—ﬂl—‘h‘h—*b—‘l—'b—‘i—'i—‘i—‘#—lhib—‘b—‘b—‘hdhﬂi—l

0943 230 -8.0
1.006 70.0 -20.0
1.000 00 00
1.000 00 00
1.040 280.0 -165.0
1.000 0.0 0.0
1.000 0.0 0.0
1.o00 00 0.0
1.000 00 00
0985 230 -8.0
1.00¢ 00 0.0
1.015 1000.0 -100.0
1.000 0.0 00
1.005 300.0 -210.0
0.985 300.0 -300.0
0.980 100.0 -100.0
0.990 9.0 -3.0
1.000 0.0 00
1.000 0.0 00
1.000 00 00
1.000 0.0 00
1.000 00 0.0
1.000 00 00
1.010 100.0 -100.0
1.017 155.0 50.0
1.000 00 00
1.000 00 00
1.010 40.0 -15.0
1.000 23.0 -8.0
1.000 23.0 -8.0
1.000 0.0 00
0.952 200.0 -200.0
1.00060 0.0 00
1.000 0.0 0.0
0973 23.0 -80
0.980 1000.0 -100.0
0.975 1000.0 -100.0
0.993 200.0 -100.0
1.000 0.0 0.0
1.000 0.0 0.0
1.005 1000.0-1000.0
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00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
a0
00
00
00
00
00
60
00
00
00
00
00
00
00
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117 117 11101.000 0.0 20.0 8.0
118 118 11 101.000 0.0 33.0 15.0

-99%

BRANCH DATA FOLLOWS
1 2 1110 00303
1 3 1110 0.0129
3 5 1110 00241
5 6 111000119
6 7 1110 0.0046
8 9 1110 0.0024
8 5 1110 0.0000
9 10 1110 0.0026
4 11 1110 0.0209
5 11 1110 0.0203
11 12 1110 0.0059
2 12 1110 0.0187
3 12 1110 0.0484
7 12 1110 0.0086
11 13 1110 0.0225
12 14 1110 0.0215
13 15 1110 0.0744
14 15 1110 0.0595
12 16 1110 00212
15 17 1110 0.0132
16 17 1110 0.0454
17 18 1110 00123
18 19 1110 00112
19 20 1110 0.0252
15 19 1110 00120
20 21 1110 00183
21 22 1110 0.0209
22 23 1110 0.0342
23 24 1110 0.0135
23 25 1110 0.0156
26 25 1110 0.0000
25 27 1110 0.0318
27 28 1110 0.0191
280 29 1110 0.0237
30 17 1110 0.0000
8 30 1110 0.0043
26 30 1110 0.0080

0.0999
0.0424
0.1080
0.0540
0.0208
0.0305
0.0267
0.0322
0.0688
0.0682
0.0196
0.0616
0.1600
0.0340
0.0731
0.0707
0.2444
0.1950
0.0834
0.0437
0.1801
0.0505
0.0493
0.1170
0.0394
0.0849
0.0970
0.1590

0.0492-

0.0800
0.0382
0.1630
0.0855
0.0943
0.0388
0.0504
0.0860

0.0 0.0 1 1.000 0.0
0.0 0.0 1 1000 0.0
0.0127 00000 1.0
0.0054 00000 1.0
00142 00000 1.0
0.0071 00000 1.0
0.0027 00000 1.0
05810 00000 1.0
0.0000. 00000 0.985
0.6150 00000 1.0
0.0087 00000 1.0
0.0087 00000 1.0
00025 006000 1.0
0.0079 00000 1.0
0.0203 00000 1.0
0.0044 00000 1.0
0.0094 00000 1.0
0.0091 00000 1.0 .
00313 00000 1.0
0.0251 00000 1.0
0.0107 0000CG0 1.0
00222 00000 1.0
0.0233 00000 1.0
0.0065 00000 1.0
0.0057 00000 1.0
0.0149 00000 1.0
0.0050 00000 1.0
0.0108 00000 1.0
0.0123 06000 1.0
0.0202 00000 1.0
0.0249 00000 1.0
0.0432 00000 1.0
0.0000 00000 0.96
0.0882 00000 1.0
0.0108 00000 1.0
0.0119 00000 1.0
0.0000 00000 0.96
0.2570 00000 1.0
04540 00000 1.0
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000 00
000 00

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000



17
29
23
31
27
15
19
35
35
33
34
34
38
37
37
30
39
40
40
41
43
34

45
46
46
47

42 .

42
45
48
49
49
51
52
53
49
49
54
54
55

31

31

32
32
32
33
34
36
37
37
36
37
37
39
40
38
40
41
42
42

43
45
46
47
48
49
49
49
49
49
50
51
52
53
54
54
54
55
56
56

1110 00474
1110 0.0108
1110 0.0317
1110 0.0298
1110 0.0229
1110 0.0380
1110 0.0752
1110 0.0022
1110 0.0110
1110 0.0415
1110 0.0087
1110 0.0026
1110 0.0000
1110 0.0321
1110 0.0593
1110 0.0046
1110 0.0184
1110 0.0145
1110 0.0555
1110 0.0410
1110 0.0608
1110 0.0413
1110 0.0224
1110 0.0400
1110 0.0380
10 0.0601
10 00191
10 0.0715
10 0.0715
10 0.0684
10 0.0179
10 0.0267
10 0.0486
110 0.0203
1110 0.0405
1110 00263
1110 0.0730
1110 0.0869
1110 00169
1110 0.0027
1110 0.0049

11
i1
11
11
11
11
11
11
1

0.1563
0.0331
0.1153
0.0985
0.0755
0.1244
0.2470
0.0102
0.0497
0.1420
0.0268
0.0054
0.0375
0.1060
0.1680
0.0540
.0605
0.0487
0.1830
0.1350
0.2454
0.1681
0.0901
0.1356
0.1270
0.1390
0.0625
0.3230
0.3230
0.1860
0.0505
0.0752
0.1370
0.0588
0.1635
0.1220
0.2890
0.2910
0.0707
0.0096
0.0151

0.0199
0.0042
0.0587
0.0126
0.0096
0.0160
0.0316
0.0013
0.0066
0.0183

0.0028

0.0049
0.0000
0.0135
0.0210
0.2110
0.0078
0.0061
0.0233
0.0172
0.0303
0.0211
0.0112
0.0166
0.0158
0.0236
0.0080
0.0430
0.0430
0.0222
0.0063
0.0094
0.0171

-0.0070

0.0203
0.0155
0.0369
0.0365
0.0101
0.0037
0.0019

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000 1.0
00000 1.0
00000 0.935
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0
00000 1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000



56
50
36
51

54

56
56
35
59
59
60
60
61
63
63
64
38
64
49
49
62
62
65
66
65
47
49
68
69
24
70
24
71
71
70
70
69
74
76
69
75

57
57
58
58
59
59
59
59
60
61
61
62
62
59
64
61
65
65
66
66
66
67
66
67
68
69
69
69
70
70
71
72
72
73
74
75
75
75
77
77
77

11
A1
11

10 0.0343
10 0.0474
10 0.0343
1110 0.0255
1110 0.0503
1110 0.0825
1110 0.0803
1110 0.0474
1110 0.0317
1110 0.0328
1110 0.0026
1110 0.0123
1110 0.0082
1110 0.0000
1110 0.0017
1110 0.0000
1110 0.0090
1110 0.0027
1110 0.0180
1110 0.0180
1110 0.0482
1110 0.0258
1110 0.0000
1110 0.0224
1110 0.0014
111.0 0.0844
1110 0.0985
1110 0.0000
1110 0.0300
1110 0.1022
1110 0.00882
(0.04880
0.04460
0 0.00866
0 0.04010
0 0.04280
0 0.04050
0 0.01230
0 0.04440
0 0.03090
0 0.06010

e e N s

0.0966
0.1340
0.0966
0.0719
0.2293
02510
0.2390
0.2158
0.1450
0.1500
0.0135
0.0561
0.0376
0.0386
0.0200
0.0268
0.0986
0.0302
0.0919
0.0919
0.2180
0.1170
0.0370
0.1015
0.0160
0.2778
0.3240
0.0370
0.1270
0.4115
0.03550
0.19600
0.18000
0.04540
0.13230
0.14100
0.12200
0.04060
0.14800
0.10100
0.19990

0.0121
0.0166
0.0121
0.0089
0.0299
0.0234
0.0268
0.0282
0.0188
0.0194
0.0073
0.0073
0.0049
0.0000
0.1080
0.0000
0.5230
0.1900
0.0124
0.0124
0.0289
0.0155
0.0000
0.0134
0.3190
0.0355
0.0414
0.0000
0.0610
0.0510
0.00439
0.02440
0.02222
(0.00589
0.01684
0.01800
0.06200
0.00517
0.01340
0.05190
0.02489

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.96
1.0
0.985
1.0
1.0
1.0
1.0
1.0
1.0
0.935
1.0
1.0
1.0
1.0
0.935
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
0006000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
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77 78 1110 0.00376 0.01240 0.00632 00000 1.0 - 000000
78 79 1110 0.00546 0.02440 0.00324 00000 1.0 000000
77 80 1110 0.01700 0.04850 0.02360 00000 1.0 000000
77 80 1110 0.02940 0.10500 0.01140 00000 1.0 000000
79 80 1110 0.01560 0.07040 0.00935 00000 1.0 000000
68 81 1110 0.00175 0.02020 040400 00000 1.0 000000
81 8 1110 0.00000 0.03700 0.00000 00000 0.935 0000060
77 82 1110 0.02980 0.08530 0.04087 00000 1.0 000000
82 83 1110 0.01120 0.03665 0.01898 00000 1.0 000000
83 84 1110 0.06250 0.13200 0.01290¢ 00000 1.0 000000
83 85 1110 0.04300 0.14800 0.01740 00000 1.0 000000
84 85 1110 0.03020 0.06410 0.00617 00000 1.0 000000
85 86 1110 0.03500 0.12300 0.01380 00000 1.0 000000
86 87 1110 0.02828 0.20740 0.02250 00000 1.0 000000
85 88 1110 002000 0.10200 0.01380 00000 1.0 0006000
85 89 1110 0.02390 0.17300 0.02350 00000 1.0 000000
88 89 1110 0.01390 0.07120 0.00967 00000 1.0 0000060
80 90 1110 0.05180 0.18800 0.02640 00000 1.0 000000
89 90 1110 0.02380 0.09970 0.05300 00000 1.0 000000
91 90 1110 0.02540 0.08360 0.01070 00000 1.0 000000
g9 92 1110 0.00990 0.05050 0.02740 00000 1.0 000000
80 92 1110 0.03930 0.15810 0.02070 00000 1.0 0060000
91 92 1110 0.03870 0.12720 0.01634 00000 1.0 000000
92 93 1110 0.02580 0.08480 0.01050 00000 1.0 000000
92 94 1110 0.04810 0.15800 0.02030 00000 1.0 0000CGO
93 94 1110 0.02230 0.07320 0.00938 00000 1.0 000000
94 95 1110 0.01320 0.04340 0.00555 00000 1.0 0000060
80 9 1110 0.03560 0.18200 0.02470 0000010 000000
82 96 1110 0.01620 0.05300 0.02720 00000 1.0 000000
94 96 1110 0.02650 0.08690 0.01150 00000 1.0 000000
80 97 1110 0.01830 0.09340 0.01270 00000 1.0 000000
8 98 1110 0.02380 0.10800 0.01430 00000 1.0 000000
80 99 1110 0.04540 0.20600 0.02730 00000 1.0 000000
92 100 1110 0.06480 0.29500 0.03860 00000 1.0 000000
94 100 1110 0.01730 0.05800 0.03020 00000 1.0 000000
95 9 1110 0.01710 0.05470 0.00737 0000010 000000
9 97 1110 0.01730 0.08850 0.01200 00000 1.0 000000
98 100 1110 0.03670 0.17900 0.02380 00000 1.0 000000
99 100 1110 001800 0.08130 0.01080 00000 1.0 000000
100 101 1110 0.02770 0.12620 0.01640 00000 1.0 000000
92 102 1110 0.01230 0.05590 6.00732 00000 1.0 000000
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101 102 1110 0.02460 0.11200 0.01470 00000 1.0 000000
100 103 1110 0.01600 0.05250 0.02680 00000 1.0 000000
100 104 1110 0.04510 0.20400 0.02705 00000 1.0 000000
103 104 1110 0.04660 0.15840 0.02035 00000 1.0 000000
163 105 1110 0.05350 0.16250 0.02040 00000 1.0 000000
100 106 1110 0.06050 0.22900 0.03100 00000 1.0 000000
104 105 1110 0.00994 0.03780 0.00493 00000 1.0 000000
105 106 1110 0.01400 0.05470 0.00717 00000 1.0 000000
105 107 1110 0.05300 0.18300 0.02360 00000 1.0 000000
105 108 1110 0.02610 0.07030 0.00922 00000.1.0 000000
106 107 1110 0.05300 0.18300 0.02360 00000 1.0 000000
108 109 1110 0.01050 0.02880 0.00380 00000 1.0 000000
103 110 1110 0.03906 0.18130 0.02305 00000 1.0 000000
109 110 1110 0.02780 0.07620 0.01010 00000 1.0 000000
110 111 1110 0.02200 0.07550 0.01000 00000 1.0 000000
110 112 1110 0.02470 0.06400 0.03100 00000 1.0 000000
17 113 1110 0.00913 0.03010 0.0038¢ 00000 1.0 000000
32 113 1110 006150 0.20300 0.02590 00000 1.0 000000
32 114 1110 0.01350 0.06120 0.00814 00000 1.0 000000
27 115 1110 0.01640 0.07410 0.00986 00000 1.0 000000
114 115 1110 0.00230 0.01040 0.00138 00000 1.0. 000000
68 116 1110 0.00034 0.00405 0.08200 00000 1.0 000000

12117 1110 0.03290 0.14000 0.01790 00000 1.0 000000

75 118 1110 0.01450 0.04810 0.00599 00000 1.0 000000

76 118 1110 0.01640 0.05440 0.00678 00000 1.0 00000 0
-999

INTERCHANGE DATA FOLLOWS 4 ITEMS
11-610.07 1.0

20 0 1.0

-999

TIE LINES FOLLOW 65 ITEMS
69 2 47 11

69 2 49 11

69 2 68 11

69 2 70 11

69 2 75 11

69 2 77 11

-999

END OF DATA




This generator participation factors used in this thesis are

Gen. # Relative Participation

1
6
12
18
24
31
34
40
46
54
59
70
73
76
85
90
92
104
110
113
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Gen. # Relative Participation

4
8
15
19
27
32
36
42
49
55
62
72
74
77
87
91
99
105
112
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This generator participation factors used in this thesis are

Gen. # Relative Participation

1
6
12
18
24
31
34
40
46
54
59
70
73
76
85
90
92
104
110
113
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Gen. # Relative Participation

4
8
15
19
27
32
36
42
49
55
62
72
74
77
87
01
99
105
112
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Appendix B

This appendix contains a derivation of the closed form expression for
calculating the two solutions of the voltage at bus i when all other bus
voltages are assumed fixed. Starting with the power flow equations at

each bus in rectangular coordinates:

n
P, = Y [ei(gGy-fjBip +1f Gy + ¢iBy) } (B-1)
=1
n |
Q = X (fi(eGy- By - & (iGyj + e5Byy) ) (B-2)
=1

rearranging terms the equations can be rewritten as

2 2
P; = Gj (ei + fi y+e C+1f;D (B-3)
‘ 2 2
QG = Bl +f)+fC-D (B-4)
where
3
C = Z(ejGij - ijij)
j=1 j#i
Il
D = Z(ijij + ejBij)
j=1 j&A

Multiplying (B-3) by Bj; and (B-4) by Gy
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2 2

PiBjj =  ByGy(e; +1;) +¢Bji C+£ByD (B-5)
2 2

QiGii =  -BjiGii(e; +1;) + £ G;iC - 6; GD (B-6)

Summing (B-5) and (B-6) and then solving for f; we get

PiBj + QiGji = By C +fi ByD +f; GjC - ¢; G;iD (B-7)

f; = oe; + P (B-8)
GiiD - B;iC
o = B;;D + G;C
_ BiBii+ QiGji
B - ByD + G;C

Substituting (B-7) into (B-3) to eliminate fj, it can be rewritten as

P = G ((1+ 0a2) ei2 + 20Be; + B2} +

g; C + (ae; + B)D | (B-9)
0 = Gy(l+o2) e12 + (20BG;; + C + aD) e; +

(B2G; + BD - Py (B-10)

The two voltage solutions can then be determined by solving for e;

using the quadratic formula and using (B-8) to solve for f;.
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