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Chapter 1 - Introduction

1.1 Voltage Instability in Power Systems

The availability of reliable and economical electrical power is vitally important to the well
being of our economy. Over the last few decades electrical systems throughout the
industrialized world have changed from relatively localized systems to large interconnected
systems with tens or hundreds of millions of customers who often receive power from
generators hundreds or even thousands of miles distant. This high degree of
interconnection makes it essential that the high voltage transmission system be operated in
both a secure and economical manner. A secure operating point is one where the system
can adequately supply the necessary power to all customers even in the event of statistically
likely contingencies (such as transmission line outages or loss of generators). The system
security requirement, however, is often contradictory to economically optimal operation,
which can require operation of the system near its limit in order to take advantage of

distant, low cost generation.

Traditionally the balancing of system security with economical operation has presented
utility operators and planners with the two problems of thermal loading and angular (or
transient) stability. The former problem requires that the current on each individual
transmission line or transformer be less than a limit derived from the thermal characteristics
of the device and occasionally the ambient conditions. The latter problem requires that the
system be able to return to a secure operating following a large scale disturbance (e.g. loss
of a generator). Many techniques, such as optimal powerflows, have been developed to
deal with these problems, However over the last few years, as the operating conditions for
large power systems have evolved, a new problem has been developing which is often

referred to as voltage instability or voltage collapse.

Voltage instability is a phenomenon characterized by the voltages throughout a large portion
of the high voltage transmission system gradually declining over a pcriod‘of minutes to
hours. Eventually, if system loading continues to increase, the voltages suddenly collapse,
resulting in either local or system-wide blackouts. To illustrate the basic mechanics of
voltage collapse, consider the system shown in Figure 1-1. The region on the left
Tepresents an area of the power system with excess generation capacity, while the region on
the right is characterized by high demand (load). Power is therefore transferred through the

transmission lines connecting the regions. This system is a rough equivalent to many large



power systems, which depend upon distant generation to serve large urban loads. Figure
1-2 shows the approximate voltage in the load area as a function of the amount of power
interchanged between the two areas. For low levels of interchange the sensitivity of the
voltage to amount of power interchanged is rather low, resulting in little drop in voltage at
the load end. However as the interchange is increased, the voltage sensitivity also
increases, first gradually, but then with increasing rapidity. The net effect is an
increasingly rapid drop in voltage. Eventually a critical power level is reached,
characterized by an infinite voltage sensitivity. An attempt to transfer more than this critical
amount of power results in loss of a stable operating point, and eventual voltage collapse.

High voltage
transmission
system connects
the areas

—_— JArea with

Power transfer

Figure 1-1: Electric Power System Simplification
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Figure 1-2 : Load Area Voltage as a Function of Power Transfer

A large scale voltage collapse induced blackout occurred in 1978 in France [1]. Over the
course of 26 minutes, voltages throughout the entire French high voltage transmission
system gradually declined from normal voltage of approximately 410KV to less than
340KV. The cause of this collapse was large power transfers between the French system
and other European electric systems. A more recent incident occurred in Tokyo during the
summer of 1987 [2]. Thcre, high load demand and the necessity of importing power from
distant generators caused a power outage of 8000 MW, affecting about 2.6 million people.
The time period of this collapse was about 20 minutes, again with the voltages gradually
declining throughout a large portion of the Tokyo system. Domestically, near-record loads
and high power transfers during 1987 caused voltages in the high voltage transmission
system in Illinois and Indiana to decline by as much as 12% over the course of hours [3].
Voltage security problems in this time frame have also occurred in the Northeastern U.S.,
with at least 8 incidents documented in 1988 [4].

Presently utilities assess the security of their systems on-line via security-constrained
optimal powerflow (OPF) programs [5] (by on-line we mean that the present state of the
power system is being analyzed, with results of the analysis available within seconds to
minutes). These programs try to optimize the system by recommending various controller
moves (such as changes in generator MW outputs, transformer tap positions, etc.) to




minimize system operating cost while insuring that there are no security violations.
Examples of security violations would include transmission line flows above some thermal
limit, or bus voltage magnitudes below sorme limit. Typically limits are determined a priori
off-line. While this approach has proved useful in dealing with problems of a thermal
overload nature, it is inadequate for a number of reasons in predicting the onset of voltage
instability. First, voltage instability problems have been shown to occur in systems where
voltage magnitudes never decline below levels that have traditionally been deemed
acceptable in off-line planning studies [6]. Thus since voltages never decline below their
limits (until the system totally collapses), they never become active constraints in the OPF
problem. Therefore no control action is initiated. Second, near the point of collapse,
voltage variations can be extremely sensitive to changes in load and other system
parameters [7]. Knowledge of the voltage level only at the current operating point may not
be sufficient since a small change in the system operating point could cause a large voltage
drop. Lastly, in order to avoid the high cost of constructing new lines, utilities would like
to operate their systems in such a manner as to maximize the capacity from their existing
transmission system. However to do this they need an indication of how close they are to
the point of voltage collapse. Current OPF programs provide no such proximity indicator.

The absence of an easily computable proximity indicator to voltage collapse has meant that
utilities must calculate system limits (such as maximum MW transfer) off-line using
powerflow programs. In [8] it is reported that engineers must run hundreds of powerflow
simulations daily using assumed future operating conditions in order to predict what these
limits should be. An obvious difficulty of such an off-line approach lies in predicting the
future conditions. Worst case scenarios are often assumed. This can result in either overly
conservative limits, which prevent the utilities from taking advantage of more economical
but more distant generation, or blackouts when the actual conditions are different from the
assumed conditions. The magnitude of this problem can be seen in [8] where one of the
larger utilities in the US reported that during 1987 they were not able to utilize their
available generators as economically as possible 74% of the time, and that in approximately
96% of these instances the problem was due to reactive (voltage) limitations in the

transmission system. Clearly a new approach to this problem is needed.

The goal of this thesis proposal is to develop a method based upon energy function
techniques which can accurately determine how close a power system is to the point of
voltage instability. The computational requirements of this method should be such that it

can effectively be used on-line to analyze a reasonably sized system.



1.2 Power system Stability

In order to motivate the use of energy function methods, the concept of power system
stability is briefly reviewed. Power systems are nonlinear, often slowly varying systems
which are subject to a number of disturbances. Such a system can be represented by the
following set of time-varying differential and algebraic equations:

x = fx, ¥y, u®)
(1-1)
0 = g(x(1), y(», u(v)
where
X - state variables (e.g. bus voltage phase angles)
y- algebraic variables (e.g. bus voltage magnitudes)
u- input variables (which includes the changing load/generation injections and

other disturbances)

A system of the form described by (1-1) is said to have an equilibrium point X, at time t; €
R, if for a fixed known input, u(+), f(x(t), y(v), u(t)) =0, vixt,. Thus the
mathematical definition 'requires that once the system reaches its equilibrinm point x, at
time t, it remains there ad infinitum. However for realistic power systems this is never the
case. The system state variables are subject to constant variation in response to both
sporadic large disturbances to the system (e.g. loss of a large generator) along with the time
variation in the loads of individual customers. However, this load variation is normally of
the form of a slowly varying average value (normally with its largest component having a
24 hour period) along with a small (a few percerit) random variation about this average
value. Research into aggregate load models has suggested that such small random effects
may be modeled by a white or colored noise term in the load [9]. Ignoring for the moment
the infrequent large disturbances, we can express u(t) as

u(t) = uslow(t) + usmall(t)

where



uslow - slowly varying average load component
psmall _ zero mean, "small" magnitude load variation

Tf the time scale of the problem of interest is sufficiently short, relative to the variation in
wslow(t), stability studies often make the assumption that

uslow(r) = {i (constant)
usmall(t) =0

and can therefore rewrite (1-1) as

fx(, ), &) = &9

VIR
Il

(1-2)
gx@®, y, H=  8R.9)

=
Il

Since {1 is now a constant, (1-2) is an autonomous system. Therefore if [Xo, $o] is an
equilibrium point of (1-2) at some time ty, we know that it is an equilibrium point at all time
thereafter. Then if the true systemn has a solution [x(+), y(+)] for some given u(*), we
would expect that for a given time § with an instantaneous input of u(t) = fi, x(%) and
y(?) from (1-1) should be "close" to X(1) and ¥(f) from (1-2). One approximates the
actual time varying input u(+) with a time invariant input by "freezing" u at a given time (3
We can then define a "frozen equilibrium" of (1-1) as [Xe.9ol, and then determine the
stability of the autonomous system relative to this equilibrium point. The approximation of
the actual time varying system by a time invariant system is often the "hidden assumption”
in most power system stability analysis. The validity of this assumption is dependent upon
how fast the system inputs are changing relative to the dynamics of the system and the time

scale of the problem.

If the time variation in usloW is truly "slow enough”, relative to the dynamics of the system,
and in the absence of any disturbances (usmall = Q), the system state would sit in a
negligibly small neighborhood of the frozen equilibrium point. This point would gradually
change on the time scale of usloW, and if the system is asymptotically stable, the state
would track this slow variation. As noted above, this is never precisely the case for an
actual system since the state is constantly being perturbed away from this equilibrium point
by various system disturbances. In addition to the time scale classification described



above, one can also classify disturbances as either small disturbances (modeled by usmall 5
0) or large disturbances. By definition, a small disturbance is an event for which the
system state remains in the neighborhood of the frozen equilibrium point and for which
linearized models are accurate. These small magnitude random load variations add a small
amount of "energy" to the system and thus are constantly perturbing the state away from its
equilibrium point. This energy is normally dissipated through damping in the system. The
classification of system stability related to small scale disturbances is known as steady-state
stability. Steady-state stability is typically determined by linearizing the system about the
equilibrium point of interest and then requiring that all eigénvalues have strictly negative
real parts. For an actual system at its normal operating range, this is a minimal
requirement. Once this eigenvalue requirement is satisfied, the effects of these small
random variations are usually considered negligible and are typically ignored in normal

power system analysis.

The large scale disturbances are events which suddenly drive the state far away from its
equilibrium point, and/or change the equilibrium by changing the system structure.
Examples of large scale disturbances are loss of generators, loss of a transmission line, or a
fault on the system. Following such an event the question to be answered is whether the
system will return to a frozen equilibrium point (which may be different from the pre-
disturbance equilibrium point). This classification of stability is known as transient
stability. For t < td (time when disturbance is applied to the system) the system equations

are assumed to be the following:

f(x(v), y(1), i) =0
g(x(1), y(1), i)

b
0

where 11 is a constant and the system is assumed to have reached its frozen equilibrium. At
t=td the disturbance is applied to the system, possibly changing i, f(+), and g(+). Fort=>
td the new equations are

fdx (), y(1), ud)
gd(x(®), y(1), ud)

=B
[

Note that in the general case a number of individual disturbances could be applied to the
system at separate discrete times (to model, for example, the action of line reclosers or
protective relays). However since ud is modeled as a constant during the time period



between disturbances, the system can be considered time invariant during this time
segment. This assumption that usloW(t) = constant and usmall(t) = 0 is typically valid since
the time frame during which the system either reaches a stable equilibrium point, or loses
synchronism (unstable) is seldom more than a few seconds. Thus the ultimate
determination of whether a system has transient stability is a function of the pre-disturbance
operating point and which large disturbances we choose to apply to the system. From a
more formal mathematical viewpoint, steady state stability implies the equilibrium of
interest is asymptotically stable. A transiently stable system and disturbance implies that
the initial state "resulting” from the disturbance is inside the post-disturbance equilibrium's
region of attraction. Clearly any system can be considered to be transiently unstable if the
disturbance is large enough (consider the disturbance defined to be the loss of all generation
in the system). Normally a system is called transiently stable if it can return to a stable
equilibrium point following any credible disturbance. However the key point is that,
except for a small number of discrete time disturbances, a time invariant u is assumed

throughout the problem.

Returning again to the problem of voltage instability, we first note that most reports of
voltage collapse seem to indicate that it was not directly caused by a large disturbance in the
system. This is one of the features that distinguishes voltage collapse from transient
stability. Instead the system operating point is moving (on a time scale of minutes to
hours), usually with gradually increasing loads, from a state of relative security to one of
~ vulnerability. Since voltage instability is driven by the time variation in u(t), clearly the
earlier assumption of a time invariant system is no longer possible. However this future
variation in u(t) is known only approximately at best. Additionally, as the system state
evolves in response to u(t), various automatic control system (e.g. LTC transformers and
generator reactive power outputs) will act upon the system, trying to hold the various state
values close to their setpoints. Thus the determination of a system's voltage stability
involves prediction of behavior in a nonlinear, time varying system whose input function is

only approximately known.

1.3 Review of Work hy Others in Voltage Collapse

As was mentioned earlier, utilities are continually confronted with the problem of how to
operate their systems in both a secure and economical manner. In order to solve this
problem, the typical utility must determine the settings of a few hundred controllers (e.g.



MW output of a generator, MW transactions with other utilities, voltage setpoint of a
generator, transformer tap position, etc.) in order to supply power to about 1000 time
varying aggregate loads (with each load normally representing hundreds or thousands of
customers) so that economy is maximized and security is maintained. In order to assess
system security, it is necessary that the utility have some measure to determine how close
the system is to voltage collapse. In this section the various methods appearing in the
literature and in standard industry practice of assessing this voltage security are reviewed.

Intuitively, the problem of determining proximity to voltage collapse can best be explained
by reference to Figure 1-3. The current stable, frozen equilibrium of the power system can
be thought of as being located at point p within a region called the feasible space. Each
point in the feasible space corresponds to a separate stable operating point, which
corresponds to some value of the input w. Note that the dimensionality of this space is the
same as the dimensionality of u. As uslow varies with time (both through customers
changing their loads and through actions of the controllers mentioned in the previous
paragraph), the location of p also varies. Surrounding the feasible space is the infeasible
space, which is defined as those values of u which do not possess a stable operating point.
If we assume that usmall = 0 and that the variation in usloW is very much slower than the
dynamics of the system, then the boundary between these two regions is quite distinct.
This is never completely true in practice and therefore we have some points, in the feasible
region close to the boundary, which although they possess steady-state stability, their
"energy wells" are shallow enough that even the small energy they receive from usmall jg
enough to drive them away from their equilibrium points. However, the assumption we
use for power systems is that the width of the "band" about the boundary containing these
marginally stable points is small compared to the variation in p caused by uslow,



Unfeasible region

Figure 1-3 : Time Variation in Power Systern Operating Point

Determining the voltage security of any operating point p can then be stated succinctly as
simply determining how close p is to the feasibility boundary. Two problems arise
however. First, computing the feasibility boundary is computationally prohibitive for all
but the simplest systems (this boundary is calculated in Chapter 2 for a very simple
system). Second, even if the boundary could be determined, one must determine which
portion of the boundary should be used when determining proximity of p to the boundary.
Intuitively one might think that the boundary point closest in a Euclidean norm would be
appropriate. However this point might correspond to an unreasonable u. For example u;,
corresponding to the MW output of a generator, is limited by the rating of that generator; it
would be unreasonable to assume that this component of u could be an arbitrary value.
With this context in mind, several of the techniques of determining proximity to voltage

collapse are examined.

Probably the most common technique used by utilities teday to maintain voltage security is
the use of various operational guidelines and/or heuristic rules of thumb. These are based
both upon studies performed days or months earlier using assumed system states and the
individual operators "best judgement”. An example operational guideline would be that
atility A can only import X amount of power from utility B when A's load is Y, B's load is
Z, and generator G in utility C is out of service. While these guidelines have certainly

proved useful in preventing some system problems, they have a number of fundamental
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flaws. The main problem is that the guidelines are based on assumed conditions which
never completely match the actual operating state. For example transmission lines or
generators might be out of service, load distribution might not match what was anticipated,
or neighboring utilities may be operating their systems in an unanticipated manner. Thus it
is up to the system operator to determine how the limits in the guideline should be modified
based upon actual conditions. Second, the guidelines do not provide any quantifiable
indication of how close the system is to the voltage feasibility boundary. Thus the operator
does not have a good idea of direction in which the state is moving, and how his actions are
affecting the voltage security of the system. This information is particularly useful when
unexpected operating states are encountered. Lastly, guidelines and rules of thumb can not
be easily integrated into existing security enhancement software, which could then be used
to restore the system to a secure operatihg point. Such software is normally based upon
either a linear programming technique [5] or a Newton's method optimization [10]. Thus
they are most easily adapted to use with easily differentiable voltage security measures.

A number of techniques have been developed which attempt to quantify how close the
system is to the point of voltage collapse. These proximity indicators can be broken down
into two groups: those that determine system voltage security by making assumptions
about the future system trajectory from the present state, and those that use only

information about the present state of the system.

The most straightforward of the former techniques is to simply make an assumption about
how the system inputs will change with time and then solve the powerflow problem at a
number of discrete timesteps until the simulated system loses its steady state solution (most
techniques test for lack of solution by a Newton-Raphson iteration failing to converge). In
essence a single point on the boundary is determined by making an estimate at the current
time = t, of u(t) for t > t,. The proximity to voltage collapse is then based upon the value

of t when the critical point on the boundary is reached.

In normal circumstances utilities often have a fairly good idea of how some of the
components of u(t), such as their own generation dispatch, their interchange with other
companies and their customer load distribution, will vary over the next few hours.
However there is often less certainty concerning the future variation of the generation,
interchange, and load of their neighboring utilities (with whom they may have a competitive
relationship). Additionally voltage collapse often occurs under abnormal circumstances

11



(such as under extremely high loads). In such situations the utility has little historical data
upon which to base a prediction of future variations in u(t).

A problem with ﬁ"’developing a proximity indicator based upon assumed future changes in
u is that the indicator could be highly sensitive to the accuracy of this prediction of u. For
example consider the case where the current operating point is close to the voltage stability
“boundary. If the assumed u(t) for t > t, moves the system state in a direction parallel to
this boundary, the current operating point could be judged as quite secure, However, if the
actual system moves in only a slightly different direction, the system could experience a
voltage collapse. Additionally, since the calculation of this indicator requires a time
simulation, it is not possible to calculate the effects of controller changes upon the
proximity indicator without repeating the entire simulation from the new assumed operating
point. This not only introduces additional inaccuracies due to again using an assumed u(t),
but is computationally objectionable since each proposed controller change requires solving

a series of powerflow solutions.

A number of improvements on this approach have appeared recently. In [11] the
computational burden is reduced by recognizing that since the critical point of voltage
collapse is characterized by singularity of the Jacobian, a critical point can be determined by
solving the powerflow equations with the explicit requirement of singularity of the Jacobian
matrix. This is accomplished by parameterizing u as a function of an arbitrary scalar t and
then solving directly for the value of t which results in a singular Jacobian. The
computational requirements of this method are quite modest (on the order of a single
powerflow solution) and thus the method could be used on-line. In [12] the distance to
voltage collapse is determined not by solving a series of powerflows, but rather through a
series of linearized approximations. Thus this technique also results in reduced
computational costs. Additionally, the results of various automatic control actions (such as
transformer tap movement and generator reactive saturation) which would occur along the
simulated trajectory can be included. However as with the -earlier method, the resultant
accuracy of both these techniques depends upon the appropriateness of the calculated
boundary point. Also, neither of these proximity measures is determined with an easily
differentiable function, and thus it could be difficult to calculate sensitivities of the

proximity measure to the actions of the various controllers.

In [13] an approach is presented which attempts to determine the closest point on the
feasibility boundary. This point is determined through an iterative process where each

12



successive value of u(t) is determined by moving in the direction of the gradient of the
determinant of the powerflow Jacobian. The boundary is assumed to be reached when the
value of the determinant is sufficiently small. By providing a result based upon the
distance to the closest boundary point, the technique is not dependent upon an assumed
u(t). However, the authors state that the calculation of VIJ! is very time consuming, with
the computational cost greater than O(n3) (where n is the number of buses in the power

system model).

The other major grouping of methods of assessing proximity to voltage instability are those
techniques which only use information about the present state of the electrical system. In
contrast to the previously discussed methods, they make no assumptions about future

system trajectories.

Many authors have proposed singularity of the Jacobian of the powerflow equations as a
test for the onset of voltage collapse. In particular, [14] recommends the use of the
smallest singular value of the Jacobian of the powerflow equations, denoted by Op,y, asa
proximity indicator. The singular value of the Jacobian matrix J is defined as the square
root of the smallest eigenvalue of (JTJ). As the system moves towards the point of voltage
collapse, O, decreases, eventually reaching zero when J becomes singular. The
proposed method of enhancing system security is to move controllers so that Gy, is
maximized while maintaining feasibility. In order to perform this optimization, it is
necessary to calculate the sensitivity of Gy, to each of the system controllers. This is done

using a singular value decomposition of the Jacobian matrix.

The advantage of this approach is that it is not necessary to make predictions about future
changes in the system trajectory. The proximity indicator is solely based upon the current
operating point, Additionally, the calculation of G, is not extremely computationally
expensive. This is because for a large system it is possible to take advantage of the sparsity
of (JTJ) when calculating ¢,j,. However the method does have a number of
disadvantages. First, the sensitivity of G,;, to changes in the system state can be high near
the point of voltage collapse, yet relatively low else where. This could cause problems as a
system gradually approaches the point of voltage collapse, since Gp,;, might vary slowly
initially, giving the operator a false sense of security. The value may only begin to rapidly
decrease when voltage collapse is imminent and it is too late for preventative controller

actions. An example of such a scenario is shown in [34]. Second, since Gy, is only

based upon the curtent operating point, important power system nonlinearities such as
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generator saturation and transformer tap limits are not considered. These effects can often
be crucial in determining the ultimate point of voltage collapse. Last, the computational
cost of computing the singular value decomposition of the Jacobian matrix is O(n3)

Therefore it is computationally prohibitive for a large system, at least on a serial machine,
In [15] a singular value decomposition algorithm is presented using large arrays of parallel
processors. Whether such an approach is workable in a utility control center has yet to be

determined.

A different type of indicator, which is also only based upon the current operating state, is
presented in [16]. The proposed qualitative measure varies from 0 (for a system with no
load) to 1 for a system experiencing voltage collapse. The measure is calculated by
partitioning the bus admittance matrix based upon load and generator buses. Then a partial
inversion of the matrix is performed in order to calculate the load bus voliages as a linear
function of their currents and the generator bus voltages. A security measure L; is then
calculated for each bus based upon these linearizations. The system security indicator is the

maximum of the Lj's.

This indicator has the advantage that it can be obtained with reasonable computational effort
and can be extended to large systems. One of the difficulties with the approach is that since
only current operating point information is used, the nonlinear effects of generators and
transformers can not be included unless the devices have already hit their limits at the
current operating point. Also it appears that it would be difficult to derive the effects of

controller actions on the measure in order to improve system voltage security.

A variation of the use of Jacobian singularity to determine proximity to voltage collapse is
presented in [17] and [33]. Rather than using the least singular value of the Jacobian, three
security measures are calculated. First, an estimate of the eigenvalue of the portion of the
Jacobian matrix associated with the reactive power equations at the load buses is calculated.
This eigenvalue estimate is based upon the flows in the system, and measures the reactive
power surplus or deficit of the transmission system. For a secure system the eigenvalue is
very large, becoming smaller as the system load is increased. Second, the ability of the
voltage control devices in a portion of the system to maintain voltage controllability is
determined. A system has voltage controllability if it is possible to both raise the voltage at
the load buses by increasing the generator voltage set points, and if decreasing the reactive
load causes an increase in the bus voltages. These sensitivity values are based upon
selective values of the inverse of the Jacobian matrix. Once ali the voltage control devices

14



within an area have reached their limits, the area no longer has voltage controllability. The
third security criteria is based upon the amount of reactive power which can be imported
into an area with a reactive deficiency. This value is a measure of the reactive transmission

reserve on the boundary of the voltage vulnerable area.

A third major grouping of voltage collapse proximity indicators are the methods based upon
multiple solutions of the system equations. As will be shown in later sections, these
methods can be thought of as a hybrid between the methods which dependent explicitly
upon an assumed future system trajectory, and those that use only current system state
information. Techniques utilizing multiple solutions include the energy based approach,
which is the subject of this thesis proposal, and the methods presented in [30] and [18].
The latter methods are based upon calculating a scalar index which can be interpreted as the
"angle" between two of the vector solutions of (1-2). These indices will be discussed in
greater detail in later sections. The former technique will, of course, be covered in great

detail in this proposal.

As has been shown, a number of different approaches have been put forth to determine the
voltage vulnerability of power systems. While many of these approaches have provided
insight into the voltage instability problem, no technique to date has provided the electric
utilities with an easily computable, accurate measure which can be used both to determine
how close a system is to voltage instability, and how to best increase the system voltage
security. In this thesis proposal a method based upon energy function techniques is

proposed to solve these two problems.
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Chapter 2 - Application of Energy Function
Methods to Voltage Collapse

2.1 Energy Function Methods Introduced

The problem of voltage instability is closely related to the study of the region of attraction
of an autonomous nonlinear system with an asymptotically stable equilibrium. One tool
which has proved useful in analyzing the region of attraction of such systems is
Lyapunov's direct method. Consider a set of differential equations of the form

x = f(x) (2-1)

Comparing this equation with (1-1) we note that u(*) is no longer explicitly identified and
the algebraic variables have been eliminated. This is not to say that u(*) is longer present,
but rather that it is modeled as a fixed known input. The idea behind Lyapunov's direct
method is that for a time invariant system of the form of (2-1), with an equilibrium point
XS, it is possible to develop sufficient conditions for the stability of x5, if one can define a
function © which is in some sense analogous to "energy" of the system. Typical
requirements on such a function are that 9(x5) =0 and © is a locally positive definite
function (1.p.d.f.) about the stable equilibrium over some region (Q). The energy
derivative along trajectories of the system is defined as

Bx) = VOx) [(x(D). (2-2)

Then if the system dynamics are such that 9(x) is always less than or equal to zero for all
(x € Q) (so that the energy is non-increasing with time) and eventually reaches zero, then
we expect that xS is asymptotically stable. Additionally, (Vx & £2) are contained within the
region of attraction of x8. These results can be stated formally as LaSalle's theorem [19]:

LaSalle's Theorem Suppose the system in (2-1) is autonomous. Let :R" — R be a
continuously differentiable 1.p.d.f., and suppose that for some 0T > 0, the set

Q . = component of {x & RI: B(x) < 0T} containing x5
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is bounded. Suppose ¥ is bounded below on - that B(x) <0 Vx e £, and that the set
S={xe Q. B(x) = 0}

contains no trajectories of (2-1) other than the trivial trajectory x(t) =xS. Then the
equilibrium point x$ of (2-1) is asymptotically stable.

Thus Q can be thought of as defining an energy “well”. Unless the system receives a
disturbance that pushes the state to a point with energy greater than 9, the state can not
escape the well and will eventually return asymptotically to xS. LaSalle's theorem can be
applied to power systems by first assuming that the system is time invariant. This
corresponds to freezing uslow(t) =i (constant) and setting usMall= 0. Then, assuming that
a suitable © function can be defined, we can think of the stable operating point of the
system as being close to the bottom of a time invariant energy well with the "depth” of the
well determined by both 11 and the system equations. The depth of the well gives us some
indication of the security of the current operating point since the greater the depth, the larger
the "kick" needed to escape the well. This depth can be measured by calculating the energy
associated with the lowest point(s) on the boundary of the well. A necessary condition for
such a saddle point is that V() = 0; it will be shown later that for the energy function
used here that these saddle points correspond to the unstable equilibrium points (UEPs) of
(2-1).

The use of energy functions has recently proved quite useful in determination of system
transient stability [20]. In that context, a large disturbance is first applied to the system,
which, in essence, gives the system some initial "energy". Following the disturbance, a
time invariant system model is assumed, so the existence of a time invariant energy well
follows. Using the simplest Lyapunov based criterion, if the initial energy following the
disturbance is less than that of the UEP of the post-fault system with the lowest energy, the
system will asymptotically return to its post-fault equilibrium point. Other more
sophisticated criterion make use of such concepts as the "controlling UEP" or "potential
energy boundary surface." These approaches recognize that a fault which yields a system
trajectory passing exactly through the lowest saddle point is a rare, worst case scenario.

In the voltage security problem, as noted earlier, the system has either not been subject to a
large disturbance, or has seemingly "settled down" following the disturbance. However
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the system is subject to a time varying input u(+) with a time scale of minutes to hours,
which is not known precisely beforehand. Therefore the operating point of the system is
moving in a "quasi-static” manner. The "frozen" equilibrium point only approximates the
true state of the system. At any fixed time t the shape of the energy well about the frozen
equilibrium point could be determined. However the key point is that this energy well is
also a function of time, since its boundaries are at least partially a function of the operating
point. As the systerm moves closer to the point of voltage collapse one would expect the
height of the energy well to decrease. This will be shown to be the case in later sections.
Eventually at the point of voltage collapse, where a stable solution no longer exists, the
height of the well would be zero. Thus while the system has always remained close to the
bottom of the well {close to its frozen equilibrium point), the shape of the well has changed
with time so that at voltage collapse the energy function about this point is no longer locally
positive definite. In actuality, however, shortly before this point the random load
variations, which have little effect on a normal, robust operating point, will dominate and
cause the state to escape from the now shallow well. Once the state leaves the potential
well about the operating point, the deterministic dynamics drive a very rapid decline in
voltage magnitudes until either the problematic portion of the system is isolated by
protective relaying actions, or the entire system collapses.

2.2 Derivation of Energy Function for Voltage Stability
Assessment

The energy function method will first be developed by examining the static powerflow in a
single line example. Consider the system shown in Figure 2-1. For simplicity the
transmission line will be assumed to be lossless so that the real power injection at bus 1
must equal the real load at bus 2. Furthermore assume that the load attached to bus 2 is
represented by a constant P-Q demand. The resulting power balance equations at bus 2 are:

P, +ByaVsin(e) =0 2-3)
Q, - BV - ByaVeos(e) =0 (2-4)

where
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V := bus voltage magnitude at bus 2

o := 8, - 81 phase angle difference between bus 2 and bus 1

Bus 1 Bus 2

Z = 0.1] l

P/Q Load

Generator

Figure 2-1 : One-line Diagram of Two Bus System

For By = -Bgy = 10.0, the locus of points in the o-V space satisfying these constraints for
a range of P and Q values are shown in Figure 2-2. A radial line with a fixed sending
voltage typically has two solutions for receiving end voltage. This is reflected in Figure 2-
2 by the fact that the P and Q constraints typically have two intersections, each
corresponding to a powerflow solution. However, as shown in Figure 2-2, for certain
critical values of P and Q, the two constraint curves become tangent, with only one
resultant solution. If either P or Q is increased further, the powerflow equations no longer
have a solution. At this point the Jacobian of the two power balance equations must be

singular.
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Figure 2-2 : Power Balance Constraints in ¢-V Plane

In order to develop the energy function approach, it is necessary to also introduce dynamics
to augment the algebraic powerflow equations. Note that the dynamics in this example do
not represent the most general models that can be accommodated by the method. The goal
here is to illustrate the basic methodology; the range of allowable models will be discussed
later. First assume that the real power demand at bus 2 is a constant plus a linear term
dependent on bus frequency. This follows the structural preserving model introduced for
transient stability analysis in [21]. Using the classical model for the generator, the system
equations are then given by:

My

@ + Dg - BypVsin(8;-87) - Py =0
-(P, +DiBy) = BypVsin(3,-8y)
Q= -ByyV2- Bj;Veos(8,-81)

Under the assumptions that [Pygl= I[Py | (generator mechanical power matches active load
demand) and B = By, and recalling the definition of o, these may be rewritten as:



® =MDo - M f(01,V) . (2-59)

&  =DlfaV)+ o @2-5b)

0 =VigoWw (2-5¢)
where

M, = Inertia constant of the generator

D}, D, = Damping of load and generator

(o, V) := Py + By, Vsin(a)
g(OL,V) = QL - B12VCOS(C€) - 322V2

Note that multiplication by V-1 in (2-5¢c) does not affect the desired solutions because
voltage magnitudes are always restricted to be strictly positive. The equilibrium of (2-5)
are the (o, V) intersection points pictured in Figure 2-2, in the =0 plane.

The mixed system of differential and algebraic constraints in (2-5) is not guaranteed to
define a globally well posed dynamical system. That is to say that for some feasible initial
conditions trajectories cannot be continued for all time, particularly when the voltage
magnitudes are very low [22]. However, using the technique from [22] the algebraic
equation is singularly perturbed to form a differential equation whose equilibrium is the
solution of the original equation. For (2-5¢), this becomes

eV =-V-lg(a,V) (2-5d)

where € is a small positive parameter that controls the speed with which trajectories of
voltage magnitude move towards values satisfying the reactive power balance. We will
show later that the model's ability to predict voltage collapse is independent of the choice of
this parameter. From an engineering standpoint, 2-5d may be interpreted as follows. The
reactive load demand is taken as an "independent input”, and the voltage magnitude
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responds to this input to maintain reactive power balance. The right-hand side of 2-5d is
the difference between the reactive power absorbed by the load and the reactive power
delivered to the load. When the load instantaneously demands more reactive power than
the system is supplying, (2-5d) predicts that the bus voltage drops until power balance is
re-established. The rate of this change is dependent upon &; for € sufficiently small it is
essentially instantaneous and the behavior is nearly identical to the original algebraic
equation. Note that the use of £ is not advocated for simulating system trajectories since
this would create an unnecessarily stiff set of differential equations to be solved. The point
of introducing (2-5d) is to obtain a single model that is physically reasonable over a wide
operating range of voltage, thereby facilitating the energy function analysis.

In order to develop the energy function for the system of equations given by (2-5a), (2-5b)
and (2-5d), we first write them in matrix form as

- B -1 i -1 i
o -Mg DgM'g Mg 0 - MgO) -
a | = Nrgl _Dil 0 f(a, V) (2-6)
A 0 o L | Lvigaw.
L € _

with Mg,D},Dg and € assumed to be strictly positive.

Defining A as the 3 by 3 matrix from the right hand side of (2-6), x = [ o V]T, and
letting O(x) be defined as the vector function of the right-hand sides of equations (2-5a),
(2-5b) and (2-5d), we can derive a Lyapunov function for this system using the following

theorem;
Theorem 2.1 [23]

Suppose the system of the form x = 6(x) has a strictly stable linearization at the

equilibrium point x8. Further if there exists a constant matrix A € R™0, guch that

a) det(A) = 0;
b) (A+AT) <0, i.e., (A+AT) is negative semi-definite;
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c) A-18(x) = Vi(x) is a gradient function, or equivalently,

2
V23(x) = d al;}‘(zx) = A']%Qis Symmetric

Under these conditions the integral

X -1 T :
B(x) - = j JA "B(x) ] dx (2-7)
XS

defines a Lyapunov function for the system of (2-1), i.e., 8(x) is locally positive definite

about x5, and

B(x) = [VBX)]T O (x) = %[Vﬁ(x)]T (A+AT)Vi(x) < 0.

For the power system under consideration, the initial stipulation that (2-6) have a strictly
stable linearization at the equilibrium point x8 is met by definition because only systems
which have steady state stability are studied. The first requirement that det(A) = 0 can be
shown to be true by straightforward calculation. Second, (A+AT) can be shown to be
negative semi-definite by noting that it is a diagonal matrix whose diagonals are all <0.
Lastly,

M, 0 0

-1 08(x) 0 BpaVeos(o) sin(ct)

0 sin() WL - By,

is a symmetric matrix, implying that A-16 (x) is a gradient function. Therefore it is
possible to define 0(x) by (2-7). By definition 9(x) is dependent not only upon X but also
upon x8 and can be characterized as an "energy difference" between the two states.
However since the power systems under consideration here are assumed to have only a
single stable equilibrium point of interest (the normal operating state of the system), for
notational simplicity this dependence on x$ will be made to be implicit. Note also that since
A is nonsingular, equilibrium of (2-6) only occur at those points where
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Vo (x) =Alox)y = 0.

Formally, the previous definition of the Lyapunov function 9(x) is sufficient to show
stability of xS in the sense of Lyapunov, but not asymptotic stability. This is because we

have not precluded the set
Q. = component of {x € R : §(x) £ ¢} containing x$

from containing trajectories of (2-1) where B(x) = 0. If such a trajectory were to exist, the
value of 9(x) would never decay to zero, indicating that x is not converging to x5.
However if (A-I:AT) is negative definite, then Q_ does not contain any trajectories where
B(x) = 0 (other than the trivial trajectory x(t) =x5), and asymptotic stability can be shown
by LaSalle's theorem. This will be the case if all the diagonal elements of A are sirictly less

than zero.

For the two bus system under consideration here, with an equilibrium point (0,65,VS), the
Lyapunov function 9(®,,V) is given in closed form by:

How,o,V) = %Mgco2 - BysVcos(o) + B1aVicos(c®)

1 1 \
- 3BV + PBn(VY’ + Pr(e-09 + Q In (09 (2-8)

Using (2-8) it is possible to calculate the energy difference between any peint in the
(m,0,,V) space and the stable equilibrium point x8. For example, if we let P = 200MW and
Q = 100MVAR, the per unit stable equilibrium point (i.e. the standard powerflow solution)
is (0,-13.52°,0.855). This solution can be verified by straightforward substitution into (2-
6); note that the equilibrium point is independent of the values of the elements of A. Figure
2-3 plots the contours of this energy difference in the @ = 0 plane. Similar plots could, of
course, be produced for w = 0.
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To determine the depth of the energy well, it is necessary to calculate the value of the
"nearest” saddle point, where V8(x) = 0. Geometrically, this is the first point x,
satisfying V3(x) = 0, encountered by expanding constant contours of ¥ from x5. As
noted earlier, this can only occur at equilibrium points of (2-6). For the simple two bus
system under consideration here, it is shown in [24] that such a system only has at most
two equilibrium points and therefore at most one saddlepoint. The equilibrium points
correspond to the intersection of the two constraints shown in Figure 2-2. For the example
loads of the previous paragraph, this second equilibrium is at (0, -49.91°, 0.261). The
energy difference for this system this then found using (2-8) to be 0.8608.

The steady-state stability of each of these equilibrium points can be calculated by linearizing
the system about each point and then determining the eigenvalues. The linearized equations

are given by
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Define the above matrix as A. An analytic calculation of the individual eigenvalues of the
above system would be quite difficult. Nevertheless, a number of properties concerning
the stability of the above system can be determined analytically. Throughout the following
analysis it will be assumed that My, Dg, D and € are all strictly positive. The requirement
that the generator inertia and damping constants, M and Dy, are strictly positive is satisfied
for realistic generator models. The requirement that the load parameters, Dy and ¢, are also

M, SR

-D

1 of(a, V)

1 of(e, V)

1 T ov

AVigo, 1 13V ige V)]

Awm

Ao

L -1 -1 of(a, V)
. 'Mng M, —oa
®
) -1 of(a, V)

V. 1

B 0 £ do.

E

av

AV

(2-9)

strictly positive is based upon realistic load models and is normally satisfied in practice.

Note that at an equilibrium point [where g(c.,V) = 0 by definition],

oV iga, V)] _ 198 V)
S = VR

Define

;  doLV)
1~ 7 oa

- of(a, V)

Iy — v

Ja = ag(ot,V)
37 7 da

Determinant of Jacobian of (2-3) and (2-4) = Powerflow

Jacobian
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¢ = Dy +(vey'yy

0y = (M, Dg@iVe) ' + My (Ve))
The characteristic equation of A is then given by
- - 1 1
23 + (c1+Mg1Dg) A2 + (Mnggc1+(D1Ve) LeMJIDA + ol (292)

The roots of the characteristic equation (2-9a) then determine the matrix's eigenvalues. The
Routh-Hurwitz stability criterion can be used to determine the stability of the system [39].
Define the Routh array for (2-9) as

Column 1 Column 2
1 MID,c+M T +Dve) T )
g “g-1T g 71 1Ve) pt
-1
(c 1-1-1\/[g Dg) Ca pr

-1 -1 -1 -1 -1 -1
(l\/Ig DgC1+Mg Jl) (Cl+Mg Dg) + (ClDl - Mg W(Ve) pr

-1
C1+I\/[g Dg

calpt



Proposition (sufficient conditions for system stability)

A necessary and sufficient condition for stability is that there are no changes of sign in the
elements in the first column of the Routh Array. Since the element in the first row is 1, all
the elements in this column must be positive. The following are sufficient conditions for

the stability of system (2-9):

- Mg, Dg, Dy, V and ¢ are all strictly positive.
J; and J4 positive

J5* I3 be non-negative

pr >0

BowoN e

Proof

The first element in row 2 is positive by assumptions 1 and 2. This is because J;, I4 ,[p,
V and € positive implies ¢; > 0. A sufficient condition for the first element in row 3 to be
positive is that J, * J3  be non-negative. The denominator is positive by the previous

argument. The numerator can be rewritten as
-1 -1 -1 -1 2 -1 -1 -1 -1
(Mg DgC]_+Mg Il) Mg Dg + Mg DgCI + 1\’1g Il Dl Jl +CID1 (VE) ]Pf +

M (Ve) Ty, - 1\/1;(*\!:;)'1 TJs + My (Ve) Tl

Canceling the second and third to last terms results in an expression with all terms strictly :

positive except for the last term, which is non-negative by assumption 3. The first element
in row 4 is positive by assumptions 1 and 4. ¢

From (2-3) and (2-4) it can be seen that assumption 2 is satisfied if the angle across the
transmission line is less than 90 degrees with B, positive and B,; negative. These

assumptions are almost always satisfied in practice. Assumption 3 is always satisfied for

the lossless case under consideration here because

of(o,V) vl dg(o, V)
2 oa,
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" Therefore we can conclude that for a "normal" (defined as when assumptions 1 through 3
hold) lossless two bus system, a sufficient condition for stability is that the determinant of

the powerflow Jacobian is positive.
Proposition (sufficient conditions for system instability)
The following are sufficient conditions for instability of system (2-9):

1. Mg, Dy, Dy, V and e are all strictly positive.
2. pr <

Proof

By the Routh-Hurwitz stability criterion, the number of sign changes in elements of the
first column of the Routh array determines the number of eigenvalues with strictly positive
real parts. Since the first element in the first row is positive ("1"), we only need show that
at least one element in the first column is negative. Since Jps <0 by assumption 2 and c; >

0 by assumption 1, the first element in the last row is negative. ¢

Proposition (system [2-91 can only lose stability by eigenvalues passing through origin)

Provided My, Dg, Dy, V and € are all strictly positive, the system from (2-9) can not have
purely imaginary eigenvalues (other than the trivial case of eigenvalues at the origin) when
there are no other eigenvalues in the right half plane. Equivalently, the only way the
system can lose stability is for an eigenvalue to pass from the left half plane through the
origin into the right half plane.

Proof

Assume the opposite, that the system loses stability by a pair of complex conjugate
eigenvalues moving into the right half plane, not passing through the origin. At the point
where they cross the imaginary axis, IA [ # () since |A| is equal to the product of the
matrix's eigenvalues and we have assumed that the system does not have a zero
eigenvalue. However a necessary and sufficient condition for |A] #0is that Jpe# 0 since



1 -1 -1 -1
Al =Ty (MéDg(DlVe) + M (V) )

Howeverif Iye >0 all the eigenvalues have negative real parts, contradicting the original
assumption that a pair of complex conjugate eigenvalues are on the imaginary axis.
Conversely if Jpr <0 the system is unstable, contradicting the assumption that a stable
system is losing stability. Thus we've established a contradiction since we originally
assumed that pr,,# 0. ¢

Therefore for the two bus lossless system the stability of the equilibrinm point can be
determined by the sign of the determinant of the powerflow Jacobian. For the second
equilibrium point (0, -49.91°, 0.261) from above, the determinant of the Jacobian is -17.3,
so the equilibrium point is unstable. This unstable equilibrium point (UEP) will be referred
to as the low voltage solution. Since from (2-2) B(x) = 0 at an equilibrium point, the value
of the energy difference at this UEP, 8(0, -49.91°, 0.261), can be used to measure the
depth of the energy well.

The ability of the energy difference to predict vulnerability of a system to voltage collapse
for the two bus system will be examined next. The question to be answered is for a given
P/Q load value, how much more load can be added before voltage collapse occurs. As was
mentioned earlier, the system will loss steady state stability when the Jacobian of the two
power balance equations is singular. Geometrically, this singular solution occurs when the
active and reactive power constraint curves are tangent to one another. If either P or Q is
increased further, the curves no longer intersect, and the powerflow has no solution.

For the 2 bus system it is possible to derive the algebraic expression describing the locus of
points in the (P,Q) space where the Jacobian is singular. First observe that the Jacobian for

the system is
ByyVcos(o) By;Vsin(or)

By Vsin(o) -2B55V - BigVeos(o)

Points of singularity are identified by setting the determinant to zero, yielding the constraint
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det(J) = V (-2B19ByyVeos(o) - (B19)2) =0
Ignoring the case of V =0, the determinant is zero for all (e, V) pairs satisfying

Vcos(o) = m—;

Since each point in the (o, V) space maps to only one point in the (P,Q) space, the locus of
points which satisfy the above equation can be plotted in the (P,Q) space. These points are
shown in Figure 2-4. Note that the boundary between the feasible and infeasible regions is
only a function of the system parameters B and Byy . Since the boundary is defined as
the set of loads whose constraint curves are tangent, each point on the boundary has only a
single powerflow solution. Hence the energy difference associated with these points is
identically zero since the upper and lower limits of the integral in (2-7) are equal. For each
point contained within the feasible region, an energy difference can be calculated by first
determining both the normal operating point solution and the low voltage solution, and then
calculating the energy difference using (2-7). The contours of these energy differences are
shown in Figure 2-5. Since those points in the infeasible region do not contain a stable
equilibrium point, there is no corresponding energy well, and thus the energy difference is

not defined.
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Figure 2-4: Locus of Points where Powerflow Jacobian is Singular
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Figure 2-5 : Contours of Energy Function ¥ in P-Q Space

32



Interestingly, the energy contours in Figure 2-5 are both parallel to the feasible region
boundary and fairly evenly spaced. Recognizing this, various frozen equilibrium points
(operating states) could be ranked, according to their proximity to the feasible region
boundary, by their corresponding energy difference. The usefulness of this method's
ability to rank operating points is illustrated in the following example. Consider a fairly
typical scenario where P(t) and Q(t) are slowly varying functions of time which are not
known a priori. Also assume that the operating point is sampled at a rate so that relatively
small variations in P and Q occur between sample periods. At each sample period we'd
like to calculate a proximity index which tells us how close the system is to voltage collapse

so that corrective action can be taken if needed.

For such an approach to provide useful results, a number of criteria are needed of the
proximity index. First, we need to know beforehand what value of the index corresponds
to voltage collapse. Therefore a simplistic approach of watching the voltage magnitude at
the Ioad bus would not work since we have no idea beforehand of the voltage magnitude at
which voltage collapse will occur. The energy method provides this functionality since
voltage collapse occurs by definition when the energy difference is zero. Second, in order
for the proximity index to adequately predict how close a system is to voltage collapse, it
must vary in a smooth, ideally linear, manner with respect to changes in the system (i.e.
does not exhibit discontinuous changes in value for small system changes). The energy
method has this characteristic since the contours in Figure 2-5 are fairly uniformly spaced.
Third, the index should be relatively insensitive to the assumed path the system will take
from the current operating point (for which the index is to be determined), and the point
where the system is assumed to reach the feasible region boundary. This insensitivity is
needed because this path is known beforehand only approximately at best. Strong
dependence upon an assumed path can result in inaccurate rankings of various operating
points. Consider the case where the current operating point is close to the boundary, but
the assumed path is parallel to this boundary. This operating point would be ranked as
quite secure, even though a slight variation in the actual path from the assumed path could
result in loss of steady state stability. Since in the energy method the contours are parallel
to the feasible boundary, this criteria is also tmet. Lastly, the computational time to calculate
the index must be suitable for on-line use. The scalar energy difference is determined by
simply solving for the current operating point (08, VS) and for the unstable equilibrium
(oM, YY), and then calculating the energy difference.
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Therefore, at least for the 2 bus system, the energy difference provides a suitable indicator
of proximity to voltage. Completing the example from the penultimate paragraph, Figure
2-6 shows how the energy difference varies as the load at bus 2 is increased so that the P/Q
ratio remains constant at 2. The near linearity of the variation of the energy difference to
change in load allows the sampling rate to be quite slow (approximately every 10%
increment in load) and still yield excellent results.
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Figure 2-6 : Energy Measure versus Load Level for Two Bus System

For the lossless system previously studied it is possible to define an energy function which
is truly a Lyapunov function. That is one in which energy is continuously nonincreasing
along all trajectories, and the stable operating point is a local minimum of . This is no
longer the case when losses are considered. Consider the realistic extension of (2-3) and

(2-4) to include transmission line losses:

P +ByaVsin(a) + GyaVeos(e) + GoaV2 = figeey(o,V) = 0

(2-10)

Q- By V2 - BypVeos(ar) + Gy Vsin(or) Blossy(OL,V) = 0

Equation (2-6) could then be re-written, substituting fl,s, and goq, for f and g

respectively. In trying to derive a Lyapunov function for this system of equations, we note
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B

thatkrheorem 2.1 can no longer be applied to obtain a Lyapunov function becau(sc
A-19F(x)/9x is no longer symmetric. In general for the case of a multimachine power
system with losses, no global Lyapunov function has yet been found [25]. Instead the
lossless Lyapunov function (2-8) is used to approximate the behavior of the system. Since
losses are included in system differential equations, but not in B9, the derivative of © along

all trajectories

Mgm

‘B(X)= [Mgﬂ) f{a,V) V'lg(a,V) ] A flossy(asv)

-1
—V glossy(asV)J

can no longer be guaranteed to be non-positive. Therefore @ is no longer formally a
Lyapunov function; for the remainder of this proposal the term energy function will be used
instead. Also since we are only interested in the value of ¥ at equilibrium points where ©

= 0 by definition, © will no longer be written as a function of .

Another consequence of including losses in the system model is that 8(aS,V$) no longer
defines a local minimum of the 1 function as defined in (2-8). A necessary condition for a
local minimum of 9 at (a8, VS) is that V&(os,VS) = 0. However

f(0s,VS) flossy(05, VS) Gz Veos(a)
V3 as,Vs) = = }
V'lg(as,vs) V-lglossy(as*vs) V-lGlesin(oc)
is no longer O since
flossy(CtS, V)
= 0

glossy(assvs)

by definition of an equilibrium point and Gy, # 0 for a lossy system. This difficulty can be
resolved at the stable operating point (05, VS) by redefining f and g used in (2-7) to be
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P+ B1, Vsin(a) + Gz VScos(a) + Goa(VS) 2 f(a,V)

(2-11)

Q - By, V2 - ByaVeos(a) + Gy Vosin(os) g(oLV)

Since the added terms in (2-11) are constants with respect to the variable of integration in
(2-7), the vector function remains exactly integrable (i.e. no path dependence). With the
addition of these constant offset terms, the gradient of the energy function at the stable
equilibrium point is now identically zero. Note also that although the only explicit
dependence of ¥ upon the system transfer conductances is through these offset terms, U is
implicitly dependent upon the transfer conductances since both of the limits of (2-7) eflect
the influence of transfer conductances.

Using the redefined power balance equations (2-10), the revised energy function for the
two bus system (2-8) is now

B(@,0,V) = Mger” - B1Veos() + ByVicos (o) - BV + 5BV
+

Pr(o-o) + Qqln (\%) + (G1aVicos(o®) + Gop(V®) 2) (a0

+ Gy Visin(o®) (%) (2-12)

As was done earlier, the revised energy function can be used to calculate an associated
energy difference for any feasible load point (P,Q) in a system which includes
transmission line losses. For example Figure 2-7 plots the energy contours of the system
used for Figure 2-5 but with the addition of G153 = -Gpp = -5.0. As was the case with the
earlier figure, the energy contours are again both parallel to the feasible region boundary
and fairly evenly spaced. Thus we can conclude that the energy approach provides a good
index of proximity to voltage collapse in a two bus system, even when transmission line
losses are included. In the next section the approach is extended to an arbitrary sized

system.
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Figure 2-7 : Contours of Energy Function ¥ for Two Bus System with Losses
2.3 Application to Multiple Bus Power Systems

The two bus system model used in earlier sections is, of course, much too small to analyze
all but the simplest of power systems. Today it is quite common for utilities to include
several thousand buses in their power system models in order to accurately model the
behavior of their electrical systems. In this section the application of the energy function
method to system with more than two buses will be discussed.

Before delving into a discussion of the application of energy functions to multiple bus
systems, it is important to clarify one point. For the two bus system the calculation of the
high and low voltage solutions was straightforward. And there was at most one low
voltage solution. However this, in general, is no longer the case for systems with more
than two buses. Throughout this section we will make the assumption that both the high
voltage solution, and the appropriate low voltage solutions of the powerflow equations are
available. The former assumption is justified since the current operating point is normaily
either available on-line from the state estimator, or known in a planning study. The validity
of the latter assumption will be touched upon in this section, but will be examined in much
more detail in section 3.
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Since we are only studying the properties of equilibrium points where @ = 0, we will focus
on those terms in the differential equations of (2-5) remaining when @ = 0 [26], i.e.

o =f(a,V) (2-13a)
eV =Viga,V) (2-13b)
where
¢ = Constant positive diagonal matrix of parameters for singularly perturbed
system model

The powerflow equations at each bus, f; and gj, can be written as

n n
PV - 385l Vil [vjlsin(oi-o - 2 Gigl vil [ vjlcosoiop (2-14a)

fi(e,V) =
j=1 j=1
n n
g V) = Qv + 2Bijl Vil [Vilcosai-op - 2.Gijl Vil | vyl sin(os-05)  (2-14b)
j=1 j=1
where
Bij, Gij - Susceptance and conductance between buses i and j
Vi - Voltage magnitude at bus i
Ol - Voltage angle at bus i
P (V) - Real power injection into the network at bus i (thus

generation is positive while load is negative)

Reactive power injection into the network at bus 1

Q:i(Vy
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Thus (2-14) is simply an extension of (2-10) to an arbitrarily sized network. As is
common in standard powerflow analysis, the voltage magnitude and angle are fixed at a
single bus, known as the slack bus. For convenience bus n is chosen as the slack, with its
angle setto 0. The voltage angle at bus i, &, is then defined with respect to the slack bus
voltage angle. Normally the unknowns in the above equations are the voltage magnitudes
and angles. They are solved for using the well-known Newton-Raphson iteration formula.
Since equations (2-14) are sparse, spare matrix techniques can be used, resulting in quite
reasonable computational solutiorrtimes. Solution times on the order of a few seconds for

a thousand bus model are common.

In a similar manner to what was done for the two bus case, an energy function ¥ can be
developed using (2-7) when P(V)) is assumed to be independent of the voltage magnitude,
and Q(V,) is an arbitrary polynomial or exponential function of bus voltage. In [27], it is
shown that for a lossless system ¥ is formally a Lyapunov function. However the
difficulty again arises that when the system model does contain losses (aS,VS) no longer
defines a local minimum of ©. As was done for the two bus case, this difficulty is resolved

at the stable operating point (¢S, V) by redefining f and g used in (2-7) as

n n
(0, V) =Pi(Vy) - ZlBij Vil vl singos-og) - 2.Gij | Vi |15 [cos(og-0)  (2-159)
j= =1

n n
g V) =Qi(Vi) + 2Bij| Vil | Vjlcostsrap) - 2651 Vi | V] lsineg-ag)  (2-15b)

j=1 =1 -
Since at (0t8,VS) equations (2-15) are identical to (2-14), the gradient of the energy
function at the stable equilibrium is now identically zero. The revised form of the energy

function can then be expressed in closed form as [28]:
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n n
B(x1) ='%2 2 Bileli]| |VJ‘-J|cos(a?-a}1)
=l j=1
D
t 7. ZBu]ViSHVlcos(ocla)
i=l j=1
n V;J
2 j gi:(ci)dx - P (al-08)
=1 %
n n
Z ZG1]|V HV]cos(oc a)(a si)
i=1 | j=1
5 S ' u S
- 21 (Vf )121 Gij| Vi |V} [ sin(es®-oi®)(V; - V) (2-16)
1= =

In deriving (2-16), the integration in (2-7) was assumed to be between the stable
equilibrium point (5, V5) and an unstable equilibrium point (o®,V¥). This was done since
we are only concerned with the value of the energy function at the equilibrium points. For
notational simplicity the dependence of 9(x") upon the stable operating point x3 will not

be explicitly identified.

The evaluation of the summation terms in (2-16) is straightforward. Again since the
equations are sparse (i.e. many of the Bj; and Gj; terms are identically zero), the

computational cost for calculating these sums is small (much less than that of a single

powerflow solution).

For those buses with just load, the integral term can be quite easily evaluated when the
reactive load is a polynomial or exponential function of bus voltage. For example, if the

reactive load at bus 1 is constant, then the integral evaluates to
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At the generator buses in the system generally the voltage magnitude is specified rather than
the reactive output. The reactive injection at the generator bus then is assumed to vary in
order to hold its bus voltage within a small tolerance of the given specified voltage (voltage
setpoint). Exciter saturation is modeled by representing the reactive output of the generator
as a function of terminal voltage, with saturation to specified upper and lower limits. With
this model, the mathematical framework for treating voltage regulating generators is
identical to that for voltage dependent reactive loads. A typical reactive power output
versus terminal voltage characteristic is shown in Figure 2-8.

Al o

Figure 2-8 : Generator Reactive Qutput versus Terminal Voltage

If the reactive output of a given generator has not yet reached a limit at either the high or
low voltage solution, then the deviation from this voltage setpoint is assumed to be very
small. Thus the resulting integral term is negligible because the limits of integration are
very close. However it is quite common for a number of generators to be pushed to their
limits in the low voltage solution, while the generators are still regulating in the high
voltage solution. In that case the integral term is well approximated by

41



(2-18)

The rationale for this approximation is that along the integration path from the high solution

Vis to the low solution Viu , the reactive output of the generator would rapidly saturate once

the voltage had moved outside the small tolerance about its setpoint (Figure 2-8), and thus
may be considered as a constant. Note that in this case (2-18) is the same as (2-17). This
is to be expected since the generator bus is saturated along most of the path of integration

and thus would behave as a constant reactive power source.

As the first step in complexity beyond the two bus system, consider the system shown in
Figure 2-9. The system consists of a strong generator bus (an infinite or slack bus), with
two separate load buses connected through lossy transmission lines. This system could be
a rough representation of a large generating area supplying power to two separate urban
centers. Since mathematically the system is simply equivalent to two independent two bus
systems, it is clear that there are at most four powerflow solutions (both load buses at the
high solution, one high and the other low, or both low) for this system.

Buses 1 and 2 are completely isolated by slack generator

Bus 1 Bus 3 Bus 2
P/Q Load Slack Generator P/Q Load

Figure 2-9 : One-line Diagram for Double Radial System

Then using (2-16) an energy difference between the operable high voltage solution and
each of the low voltage solutions can be calculated. The independence of the two load
buses allows for a straight forward interpretation of the energy measures. The two enérgy
measures found using the solutions with one bus high and the other low can be used as a
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proximity indicator to voltage collapse at each respective bus. Since the two loads are truly
independent, the risk of voltage collapse at each bus is also independent. Hence a
proximity indicator is needed for each. The energy measure calculated using the solution
with both buses low is simply the sum of the other two indicators and thus could be
interpreted to represent the risk of voltage collapse occurring simultaneously in both areas.
The independence of the loads makes the probability of this occurring much less likely and
therefore the proximity indicators of interest are the first two. Therefore the low voltage
solutions of interest for this system are the first two. As was mentioned earlier, in this
section we will assume that the appropriate solutions (and thus energy measures) are

known.

The next logical extension of this system is to couple the two loads by adding a third line
between them (Figure 2-10). Further assume that there is a generator at bus 1, which is
initially off-line. The problem is then to determine the system's vulnerability to voltage
collapse when it is characterized by a given load distribution (Py, Q1,P,,Q,). In this
section the applicability of the energy method to providing such a‘ measure is
demonstrated.

Z = 0.03 + 0.2]

Bus 3 Bus 1 Bus 2

Z = 0.03 + 0.15] |

P/Q Load P/Q Load

Z = 0.02 + 0.1]

Local generation
(initially off-line)

Slack Generator

Figure 2-10: One-line Diagram for Three Bus System

To determine the voltage vulnerability of this system using the energy approach it is ‘first
necessary that the appropriate low voltage solutions be calculated. Theoretically for an n
bus power system there are believed to be at most 2"1 solution§of the powerflow
equations [29], [30]. However for a large system there are normally substantially fewer
solutions, and only a small subset need to be determined. The technique used here is to
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only consider those equilibrium points which are of type-one. A type-one equilibrium
point is one in which a single eigenvalue of the linearized system about that equilibrium
point is positive. Since the right-hand side of (2-13) consists of a positive diagonal matrix
multiplying the powerflow equations, the number of positive eigenvalues can be
determined from the Jacobian of the powerflow equations (2-14). The motivation for this
approach comes from [31] where it is shown that the system always loses steady state
stability by a saddle-node bifurcation between the stable equilibrium point (SEP) and a
type-one UEP. The remainder of this chapter will justify this approach.

Returning again to the three bus system, with the assumption of constant load power factor
(making Q; and Q, dependent variables), Figure 2-11 plots the energy contours of the
feasible region in the (P;,Py) space. As was the case in Figure 2-5, the energy contours
are parallel to the feasible region boundary and fairly evenly spaced. This again suggests
that the energy measures provide a method of ranking the operating points (frozen

equilibrium points) of the system.

300

| 0.0 - Energy Contours
Infeasible region

MW load at bus 2

0 50 100 150 200 250 300
MW load at bus 1

Figure 2-11 : Energy Contours for Three Bus System in P;-P; Space

However the construction of Figure 2-11 was not as simple as for the two bus case. Since
in a multi-bus power system there is often more than one low voltage solution, there are
correspondingly often more than one energy measure. For a three bus system there are at
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most a single SEP, two type-one UEPs, and a single UEP of type greater than one. This
can be illustrated by plotting the voltage magnitudes at buses 1 and 2 as the system load is
varied. For an initial load of 20 MW and 10 MVAR at each load bus, four solutions are
possible. Figure 2-12 shows the solutions trajectories in the (V,,V3) space as the load at
both buses is increased at the same rate, maintaining a constant power factor. The initial
starting voltage points are labeled 1,2,3 and 4. Table 2-1 lists the four associated
eigenvalues of each initial equilibrium point. As can be seen, solution one is an SEP, while
solutions two and three are type-one UEPs, and solution four is a type-two UEP.

Table 2-1 - Solution Eigenvalues

Solution Eigenvalues

1 199 +3.9] -199-39 -66+11j -6.6- L1

2 5.6 -0.5 -2.1 -4.3

3 -8.6 -6.5 4.0 -0.5

4 4.4 -0.5 -0.6 2.0

L0

L direction of increasing load

~ 1 < —

w 0.8

3

L

=

L 061

= )

=

m B

3]

E 04 \

o \ . —a— Trajectory 1

"—2’ ] _ —m—— Trajectory 2

= 02 = Trajectory 3
§ ————— Trajectory 4

0.0 T T T T T T T T T Y T T T

00 0.2 04 0.6 0.8 1.0

Voltage magnitude at bus 1

Figure 2-12: Variation in Voltage Magnitudes as Load is Increased
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As the load is uniformly increased at buses 1 and 2, trajectory 1 moves downward to the
left, indicating that the voltages at both buses are falling. This is reasonable behavior for a
power system without voltage regulation. Eventually the voltage collapse point is reached
(labeled point 5); at this critical point the Jacobian becomes singular and no further increase
in load is possible. The power system has lost its stable equilibrium point; the deterministic
dynamics of the system would then cause voltage collapse. Correspondingly, as the load is
increased from its initial value, the solutions associated with the three low voltage solutions

also move in the directions shown.

However at a load level significantly less than the load associated with the critical point, the
solutions associated with trajectories 3 and 4 coalesce. For further increases in load these
two solutions no longer exist. By the implicit function theorem [32] at the point where the
two solutions merge the Jacobian must be singular. This occurs at a load of Py =Py = 67
MW. As the load is further increased, trajectory 2 continues upward, eventually meeting
with trajectory 1 at point 5.

The number of powerflow solutions is dependent upon the loading of the system. In
general as the loading of the system increases the number of solutions tends to decrease.
As was demonstrated, these solutions vanish (and appear) in pairs. As the system
approaches the voltage collapse critical point, the number of solutions goes to two. These
two solutions eventually coalesce at the critical point. This occurs at a load of Py =P, =

192 MW

An alternative way to show this voltage collapse scenario is Figure 2-13, which plots the
energy difference between the stable solution and the three low voltage solutions versus
load. Since there are initially three low voltage solutions, there are three energy measures.
However as the loads increase, the upper two energy measures vanish when the solutions
associated with trajectories 3 and 4 from above coalesce. Thereafter there is only a single
energy measure for the system. As was assumed earlier, the energy measure for the non-
type-one equilibrium is always larger than that of the type-one equilibriums. The final

critical point is reached when the energy difference is zero.
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Figure 2-13 : Energy Measures for each Low Voltage Solution versus Load

The near linearity of the lower energy measure curve in the figure is due to the evenly
spaced contours of Figure 2-11 parallel to the feasibility region boundary. To construct
Figure 2-11 for those loadings with more than one associated energy difference, the lowest
energy difference was chosen (which was always associated with a type-one equilibrium).
When there was only a single low voltage solution (such as in the example above for loads
greater than 67 MW) then that energy measure was used. Figure 2-14 shows the energy
contours associated with each of the type-one equilibriums.
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Figure 2-14 : Energy Contours for Each Type-one UEP

For those cases where there are more than a single type-one equilibrium, it is necessary to
determine which of the possible energy measures are appropriate to use. This selection
process can be illuminated by briefly discussing some properties of the low voltage
solutions. At the point of bifurcation between the SEP x0 and a type-one UEP x! (where
x0 = xI = x¥), the SEP loses asymptotic stability with its Jacobian having a zero
eigenvalue, Al =0, A slight perturbation in the state would then result in voltage collapse
according to the deterministic dynamics of the system. In [31] it is shown that the initial
direction of the voltage collapse is along the eigenvector v! = v* comresponding to the zero
eigenvalue of the Jacobian at x1. The magnitudes of the individual components of v1
indicate how rapidly the voltage or angle at each individual bus will initially decline.
Generally the magnitude of this initial voltage drop or angle slip is significant only at a
subset of the system buses. This indicates that if voltage collapse were to occur via a
bifurcation of x0 and x!, this subset would lead the rest of the system in collapse.
Therefore while voltage collapse is characterized by loss of a steady state equilibrium for
the entire system, its initial effects are normally apparent only at a subset of the system
buses. Since these buses are usually electrically close to each other, the subset is referred
to as an area. Notationally this area will be referred to as area(x!) .  Thus we can talk
about voltage collapse occurring in only an area of this system, while tacitly remembering

that voltage instability is a system wide phenomenon.
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Now assume that the system has not yet reached the point of bifurcation (x0 and x!
separate). Assuming that the system varies quasi-statically, whether x¥ and x1 will
coalesce depends upon the variation in usiow(t). Since x! is a type-one equilibrium, we can
calculate the Jacobian's eigenvector v! associated with thcb Bositive eigenvalue. Numerical
testing indicates that the relative sizes of the componentsw] are fairly insensitive to the
distance between x0 and x1 (recall that the energy difference is used as a distance function).
Even while the two solutions are quite far apart, the components of vl approximate how
the system would collapse if the variation of u(t) was such that x0 and x1 eventually
coalesced. Thus 9(x1) can be said to provide a proximity indicator to voltage collapse in
area(x!). When a system has more than a single type-one UEP, a separate energy
difference could be calculated for each area(x). Each energy measure 9(xi) could be
interpreted as a proximity indicator to voltage collapse occurring in area(xl). Such an
approach is needed since in an actual system there may be more than one area vulnerable to
voltage collapse. As an example, Table 2-2 shows the variation in the components of the
eigenvectors associated with each of the two type-one solutions for the three bus system for

various loadings at buses 1 and 2.

Table 2-2 - Low Voitage Solution Eigenvector

Load - MW Eigenvalues Eigenvector Energy Measures
(associated with positive eigenvalue)

P; Py x! x2 vl v2 B(x1) BH(x2)

180 180 - -10.08 - -0.16 - 0.10
-0.58 -0.31
1.40 0.72
-0.58 0.60

50 50 5.35 -8.32 -0.87 0.11 4.32 2.72
-3.63 -6.28 -0.48 -0.12
-1.44 3.90 0.03 -0.87
-1.13 -1.15 -0.12 -0.50

20 20 3.60 -8.61 -0.87 0.13 5.36 3.61
-0.48 -6.46 -0.45 -0.10
-2.06 3.99 0.08 -0.88
-4.30 -0.48 -0.10 -0.47

At the first load level in Table 2-2 of 180 MW, the system is heavily loaded and is close to
voltage collapse. The first two rows in the eigenvector v2 are the components
corresponding to the voltage angle and magnitude at bus 1, while the next two rows
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correspond to the voltage angle and magnitude at bus 2. Based upon the relative size of
these components, we can conclude that if voltage collapse were to occur through a
bifurcation between this UEP solution and the SEP solution, the largest initial change in
voltage would occur at bus 2. Area(x2) could be defined as containing just bus 2. Then
9(x2) provides a proximity indicator to voltage collapse occurring at bus 2. Since there are
no other solutions at this level of loading, we conclude that the vulnerable part of the
system is bus 2. Referring to line parameters in Figure 2-10, this agrees with engineering
judgement since bus 2 is more electrically distant than bus 1 from the point of voltage
support (the slack bus). As the load is decreased to 50 and 20 MW, the largest components
of v2 are still those associated with bus 2 and hence 9(x2) continues to provide a proximity

indicator to voltage collapse occurring at bus 2.

For the lower load levels there is a second UEP x1.  Since the largest components in its
eigenvector v! correspond to bus 1, we can likewise define area(x1) as just containing bus
1. Then 9(x1) provides a proximity indicator to voltage collapse at bus 1. The
components of the eigenvector are relatively insensitive to changes in the system loading.
Again, because of the system structure and the equal loading at buses 1 and 2, the energy
difference for voltage collapse at bus 2 is lower than the energy difference for voltage

collapse at bus 1.

For the energy measure to provide an accurate indication of system proximity to voltage

instability, it is important to include the effects of the various automatic controls of the
system. Power systems normally contain a number of automatic controllers which attermpt
to maintain various system variables within predefined limits. Examples of such controls
are excitation systems on generators, which regulate the generator terminal voltage; speed
governors on generators, which maintain a constant system frequency; automatic
generation control (AGC), which regulates the interchange of power between utilities; and
load tap changing transformers (LTCs), which regulate the transformer voltage. These
controllers also have limits on their control ranges. Once a control has reached its limit, it
is no longer able to regulate its control variable. In normal operation most controls are
within their regulation range. However, it is not uncommon (even in normal operation) for
some controllers to be at their limits, The time constants on these controllers vary, but are
typically on the order from under a second (generator excitation systems) to a few minutes
(LTCs). Since the time scale of the voltage collapse problem under consideration here is on
the order of tens of minutes to hours, it is important to include the effects of these

controllers.
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The applicable dynamic ranges of these controllers can be intrinsically included in the
energy measure by assuming that they regulate both at the stable solution and at the low
voltage solution. Limits on controller action must also be enforced at both solutions. The
low voltage solution could be quite unrealistic if control limits are not enforced. This could
cause the energy difference to provide an unreliable measure an proximity to voltage
collapse (this is demonstrated in the example of the next paragraph).

The next example demonstrates the important property of the energy 1"Tf:.tl?nction; its ability to
incorporate saturation of the generator excitation system. Using’three bus system from
Figure 2-10, assume that the generator at bus 1 is now on-line but is only supplying
reactive power for voltage support, holding its terminal voltage at 1.0 per unit. This
system is a slightly more detailed representation of the type of system prone to voltage
collapse. A large load local (buses 1 and 2) is being supplied mostly from distant
generation (slack at bus 3). However some local voltage support is being provided
(generator at bus 1). Voltage collapse will normally not occur until the local voltage
support has saturated and is no longer able to maintain its setpoint voltage. Voltage
regulation is modeled here by allowing the reactive output of the generator at bus 1 (Qgp) to
vary within some limits (Qg1[max,min]) in order to hold its bus voltage constant, This is
known as PV mode. When the reactive power has reached its maximum or minimum, the
generator's exciter is assumed to have saturated, and the generator's reactive output is
subsequently held constant. This is known as PQ mode.

One would expect that the more maximum reactive power the generator can provide, the
greater the load which can be tolerated, and the subsequently the more secure the system
for any particular load. Figure 2-15 shows that this is indeed the case. Using the voltage
collapse scenario from the previous example (bus 1 load = bus 2 load), the lowest curve
shows how the energy measure would vary if there was zero output from G (in other
words the generator is off-line) and is therefore a repeat of the lower curve from Figure 2-
13. The next three curves show how the energy function varies as the maximum var output
of generator 1 is increased in increments of 100 MVAR. During the sequence of
powerflow/energy calculations, the voltage at bus 1 was held at 1.0 per unit as load ramped
"up until Qg reached its limit. Thereafter the var output was held at its maximum, with the
generator switching from PV to PQ. Table 2-3 shows how the generator reactive output

and energy difference vary as the maximum reactive limit was changed.
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Table 2-3 - Generator Reactive Limits

Load MW Bus 1 MVAR Generation .

busl bus2 SEP UEP Max MVAR Energy
150 150 0 0 0 0.55
150 150 100 100 100 0.92
150 150 192 200 200 1.26
150 150 192 300 300 - 1.54
6
l Var limit = 0 MVAR
5 -
° . Var limit = 100 MVAR
a *] Var limit = 200 MVAR
Q
E 34 Var limit = 300 MVAR
>
s 24
=
1] J
1 -
1] r T v T T T
0 50 100 150 200 250 300

MW load at buses 1 and 2

Figure 2-15 : Effect of Generator MVAR Limits on Energy Measure

As would be desired, the energy measure increases as the maximum reactive limit of the
unit is increased. Note that the limits on available var support are taken into account even
when the current system operating point does not push generators to these limits. This
property is important since one would like an accurate determination of system voltage
security before local generators have saturated (at which point it may be too late to prevent
voltage collapse).

Intuitively, the ability of the energy measure to incorporate reactive limits of non-saturated
units is because the low voltage solution tends to push the var source to its limit. The var



limits thus reduce the height of the potential energy boundary that the system must cross to
experience collapse. If the generator regulation status at the low voltage solution was
incorrectly always assumed to be that of the high voltage solution (PV or PQ), the energy
curve could exhibit discontinuities. This is shown in Figure 2-16 for the case with var
limits of £ 300 MVAR. The reason for the discontinuities is apparent from a plot of low
voltage generator reactive output vs system load (Figure 2-17). As Figure 2-15 indicates,
such discontinuities are eliminated when var limits are enforced independently at both

solutions.

Bus 1 generator hits its upper
reactive power limit

Energy measure

¢ T T T T T T T T T 1 r
0 50 100 150 200 250 300

MW load at buses 1 and 2

Figure 2-16 : Energy Measure versus Load when Var Limits are not
Enforced at Low Voltage Solution
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Figure 2-17 : Generator Reactive Output versus Load for Low Voltage Solution

The energy method can also be applied to larger systems. As with the case of the three bus
system, energy differences are calculated between the stable solution and the appropriate
type-one UEP solutions. These energy differences then provide a measure of how close
the system is to voltage instability. The following exarmple illustrates the usefulness of the
energy method on a larger system. The New England 30 Bus system (NE30) used in [33]
and [34] was chosen since it is the standard system for testing voltage instability proximity
measures. The following voltage collapse scenario shows that the variation in the energy
difference is proportional to changes in the system operating point. The reactive load at bus
11 (Qqp) was increased until voltage collapse occurred, while keeping all other loads and
generator MW outputs fixed. This is scenario number 1 from [33]. The two curves in
Figure 2-18 represent the energy differences between two type-one UEPs and the stable
solution as the reactive load at bus 11 is increased (until voltage collapse occurs). The
upper left-hand curve corresponds to the energy difference associated with voltage collapse
in the area centered on bus 12. The lower right-hand curve corresponds to the energy
difference associated with voltage collapse in the area centered on bus 11, For low load
levels only the bus 12 low voltage solution exists; for load levels at Qy; between about 450
and 550 MV ARs both solutions exist; while for high loads only the bus 11 low voltage
solution exists. Because only the reactive load at bus 11 is being increased in this scenario,
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it is not unsurprising that voltage collapse should ultimately be characterized by a
bifurcation between the low voltage solution associated with bus 11 and the stable solution.

Low voltage solution in
bus 12 area

rd

Low voltage solution in
bus 11 area

Energy measure
=t
1

0 v T T T T T T T r T Y
1] 200 400 600 800 1000 1200 1400
Reactive load at bus 11 {(MVAR)

Figure 2-18 : Energy Measure Curve for 30 Bus System

As was the case with the smaller systems, the proximity indicator is defined as the
minimum q_f the gnergy measures. Note that the minimum values varies in a proportional
(approximafely liﬁcar) manner to the variation in the system operating point. Figure 2-18
may be compared to the plots of other proximity measures in [34] for the same voltage

collapse scenario.

By monitoring the variation in the energy measure over time, the system operator would
have a good idea of when corrective control actions are needed to increase system voltage
security. For example again assume that all loads are fixed, except for the reactive load at
bus 11; Figure 2-19 plots the variation in Qp; as a function of time, Figure 2-20 plots the
corresponding variation in the energy measure. Since the system loses its stable operating
point anytime the energy difference is zero, a number of criteria could be used to notify the
operator when voltage collapse is impending. One simple notification criterion would be
anytime the minimum energy difference falls below a given tolerance. If the tolerance was
% = 0.5, this would occur for the system in Figure 2-20 at hour 14. Another criterion
would be anytime the value of ¢ divided by the decrease in the energy with respect to time
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was less than a time tolerance. That is, if the energy continues to decrease at the present
rate, voltage collapse would occur in less than the tolerance amount of time. By setting this
tolerance to a large enough value, the operator should have time to take correct action to
avert a voltage collapse. A discussion of how the energy method could be applied to
enhance system security is provided in [28].
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56



57

ailnsealy ABraug

16

12
Hour of Day

8

Figure 2-20 : Daily Variation in Energy Measure



CHAPTER 3 - LOW VOLTAGE POWERFLOW
SOLUTIONS

In this chapter the properties of, and solution techniques for low voltage solutions are
discussed. As was seen in chapter 2, in order to apply energy methods to the voltage
collapse problem, it is crucial that the appropriate low voltage solutions can be found with
reasonable computational effort. First the properties of the two powerflow solutions for
the two bus system are briefly discussed. Then the properties of low voltage solutions of
multiple bus system are discussed. Finally algorithms are proposed for finding the

appropriate low voltage solutions of large systems.

In Chapter 2 the powerflow equations (2-14) were written with the complex voltages
expressed in polar form. This method was chosen in order to exploit the physical meaning
of bus voltage magnitude and angle in the derivation and use of the energy function.
However, these equations could also be rewritten with the voltages expressed in
rectangular form of V; = ¢; + jf;. The equivalents to (2-14) are then

n

fie.f) =P; - 2, {ei (ejGij- jBij) + fi (FGij + B (3-1a)
i1
n

gie.H =Qi- 2, {fi (¢iGi- By - ei (§Gi; + By (3-16)
=

Experience has shown that the rectangular form of the powerflow equations is the preferred
representation for computing the low voltage solutions. Therefore the rectangular

representation will be primarily used in this chapter.
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3.1 Powerflow Solutions of Two Bus System

For the 2 bus system shown in Figure 2-1, where the slack voltage is assumed to be ey +j
f1, (3-1) simplifies to the real and reactive mismatch equations at the load bus:

- P L ®= Goo (e% + f%) + Azes + Bofa (3-2a)
Qu=Baa (el +£2) +Boez - Aof (3-2b)
where
erfr = Real and imaginary load bus voltages
Ay = e1G12 - f1B12
By = e1Bi2 + £1G12

It is then possible to solve directly for e and f [24]

- b+ (b2-4ac)
€2 = (2&) (3-3)
fa = oey + B

where
o - Go2B2 - BosAo
B22B2 + G22A2
B < ig 2201 + B2oPL
22B2 + G22A2

a = Gop(1+a2)
b = 20pGy2 + A2 + By
c = Goob? + BaB + PL

Thus we conclude that (3-2) has at most two solutions. If b2 > dac then there are two
solutions (recall that each solution can be thought of as a point of intersection of the two



power balance constraints from [3-2]). If b2 = 4ac then there is only a single solution (the
two power balance constraints become tangent). At this point the powerflow Jacobian is
singular. If b2 < 4ac then the system of equations has no solution (the power balance

constraints never intersect).
3.2 Powerflow Solutions of Multi-bus System

The determination of the appropriate low voltage solutions is of crucial importance in
applying the energy function method to the voltage instability problem. As was mentioned
earlier, for an n+1 bus power system, there are believed to be at most 2" separate
powerflow solutions. If it was necessary to attempt to find all these solutions, the energy
method would be computationally intractable for all but the smallest systems. In this
section the properties of, and solution algorithms for the low voltage solutions of multi-bus

systems will be examined.

3.2.1 Simplified Solution Method

The earliest algorithm to calculate all of the low voltage solutions of a system was presented
in [24]. The algorithm presented can be summarized as follows:

1. Obtain the stable operating point powerflow solution \'Ad

2. Using the quadratic algorithm from section 3.1, calculate the low voltage
"solution” for each load bus assuming that the voltages at all the other buses
are fixed. This calculation is not performed at buses which have voltage
regulation (PV buses) or at the system slack. Denote this voltage as V;J.

3. Select either Vis or V;l as initial voltage guesses for the rectangular Newton-

Raphson algorithm. Form all of the 2(n-M) - 1 possible combinations of
initial voltage guesses (where m is the number of PV buses).

4. Compute powerflow solutions using the rectangular Newton-Raphson
algorithm for each of the 2(n-m) - 1 initial voltage guess permutations. The
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optimal multiplier method [35] is used to prevent the powerflow from

diverging or oscillating.

Using this exhaustive search technique, the authors were able to demonstrate that the
number of actual solutions in most systems was substantially less than the maximum
number. For example for a lightly loaded eleven bus system with two PV buses, out of the
255 possible solutions only 57 existed. As the loading on the system increased the number
of solutions decreased, so that there was only a single low voltage solution immediately
before loss of the stable equilibrium solution. However in order to find this small number
of solutions, it is still necessary to test the 2(0-m) injtial guesses if the above algorithm is

used.

Fortunately a "simplified" algorithm was also presented which substantially decreased the
number of necessary initial guesses. The simplified algorithm is essentially the same as the
exhaustive method, except that rather than forming all of the 2(n-m) _ 1 initial voltage guess
combinations, only the n-m combinations coﬁesponding to using Vi“ at a single bus are

calculated. Using this method only 8 solutions had to be calculated for the sample system.
Again, the number of simplified solutions which actually exist depends upon the loading of
the system. For a more heavily loaded system, such as the New England 30 bus (with Qq;
= 1200 MVAR), there are only 3 simplified method solutions (corresponding to low initial
voltage guesses at buses 1, 11 and 28).

Testing suggests that the solutions obtained by the simplified method correspond to the
type-one UEPs mentioned in the previous chapter. Recall that loss of voltage stability, if it
were to occur, would take place by a bifurcation between the SEP and a type-one UEP.
Therefore it is only necessary to calculate an energy difference between the SEP and the
solutions obtained by the simplified method. Additionally, the voltage collapse areas
defined in Chapter 2 are centered on the bus with the low initial voltage guess. For
example in Table 2-2, x1 was found using a low initial guess at bus 1, while x2 was found

with a low initial guess at bus 2.
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3.2.2 Improvements to Simplified Method

In general not all n simplified low voltage solutions exist. However, it would still be
computationally prohibitive (for a large system) to have to perform n powerflows in order
to determine which of the solutions exist and are pertinent. In this section various

enhancements to the simplified method are discussed.

Let xi € R2n denote the simplified low voltage solution calculated with a low initial
voltage guess at bus i. Recall that the voltage vector X can be represented in either
rectangular or polar coordinates. When the rectangular form of the powerflow equations is
used, x is partitioned as x = [eq, f}, €, f3, ... ,&y, fpls when the polar form of the
equations is used, x is partitioned as x = [a, Vi, &, Va, ., Oy, Vgl Since each
solution xi is hypothesized to correspond to a type-one UEP, we can calculate the
eigenvector associated with the positive eigenvalue of the Jacobian of (2-15) (polar
representation). From the discussion of Chapter 2, it was seen that the magnitude of the
eigenvector components define an area denoted area(xi) . The energy measure 9(x1) is
then interpreted as a proximity indicator to voltage collapse occurring in area(x!) .
Experimentation indicates that if solution xi exists, bus i is within area(x!) and often has

the largest corresponding eigenvector components.

For example consider the voltage collapse scenario shown in Figure 2-18. For high values
of load at bus 11, the energy difference was found by initializing the powerflow with the
voltage at bus 11 low. Hence we would expect the eigenvector assoctated with the positive
eigenvalue of the low voltage Jacobian should have its largest components at bus 11. The
eigenvector components are shown in Figure 3-1 for a reactive load at bus 11 of 1300
MVAR. The largest component was at bus 11 (the eigenvector was normalized so that the
largest component was 1.0), with the next largest components at the first neighbors of bus
11 (buses 6, 10, and 12), Figure 3-2 shows the eigenvector components when the load is
decreased to 800 MVAR. Again the largest component was at bus 11, with significant
other components at its first and second neighbors. As the load at bus 11 is decreased,
eventually the low voltage solution found by initializing with bus 11 disappears. However
a new solution, found by initializing the powerflow with bus 12 low, appears. Figure 3-3
shows the components for this solution's positive eigenvalue eigenvector when the load at
bus 11 is 400 MVAR. As would be expected, the largest component is now at bus 12. It
should be emphasized that it is not necessary to calculate the Jacobian eigenvectors in order
to calculate the low voltage solutions. The eigenvectors were only shown here to
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demonstrate that the simplified solution xi can be used to determine the risk of voltage

collapse initiating in the area roughly centered around bus i.
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This interpretation of the simplified method solutions suggests two methods of decreasing
the number of buses which must be checked. First, in order to accurately model the
interconnected electrical system, most utilities must include in their models (both planning
and on-line) a large portion of the system (sometimes exceeding 50 percent of the total
buses) which they do not own, operate, or have detailed real-time information. Therefore it
is not necessary that the voltage vulnerability, and hence the corresponding simplified
solutions, of these areas of the system be calculated. Second, vulnerability to voltage
collapse is usually greatest in those portions of the system which have large loads and are
electrically distant from voltage support. These areas can normally be rapidly determined
through simple heuristic algorithms. These buses could then be checked first with the
simplified method. Additionally, simplified solutions do not usually exist for those buses
which do not contain load (such as those in the high voltage transmission system).

Using these two methods the number of buses which must be checked is initially decreased
from n to n*. The most straightforward way to calculate the pertinent solutions would be to
perform Newton-Raphson powerflows using in turn each of the n* initial voltage guesses.
For the subset of low voltage solutions which exist, nU, an energy measure could then be
calculated for each, and the comresponding voltage vulnerability of the areas ranked.

However due to the nature of the low voltage solutions this would not be the most
computationally efficient approach. The simplified method starts from the solved high
voltage solution, and then only changes the voltage at a single bus i. This means that the
nonzero mismatches initially occur only at bus i and its first neighbors, and that the
elements of the high voltage Jacobian which must be initially changed are also only those
associated with bus i and its first neighbors. Sparse vector methods [36] could then be
used to perform the first iteration very efficiently. The computational order of updating the
factored Jacobian (assumed to be available from the high voltage solution) is then
proportional to the union of the factorization paths of i and its first neighbors. The length
of these paths is normally quite small, even in large systems. The voltage correction
vector Ax can then calculated using a fast forward and full back substitution. An initial
approximation of the energy measure for a low initial guess at bus i is then Bi(x-AX).
These values could be ranked, with only those with an initial energy below a given

threshold processed in more detail.
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Experience has shown the deviation of the low voltage solution from the high voltage
solution is normally localized about the bus with the original simplified method low voltage
guess. This means that even if the entire system is solved for with a Newton-Raphson
powerflow, the mismatches at most buses will be close to zero throughout the entire
iterative process. The magnitude of energy difference provides a measure of the distance
between the two solutions. Those solutions of most interest (characterized by a small
energy differences) also tend to be the most localized solutions. This property can be
exploited through techniques such as the zero mismatch (ZM) approach proposed in [37].
In the ZM approach rather than computing mismatches and voltage correction for the entire
system, these operations are restricted to buses that have significant mismatches.
Determining this subset of buses is not, however, always straightforward. For the first
iteration it would just be bus i and its first neighbors. In subsequent iterations the subset of
buses could be limited to those whose incident transmission lines experienced large

changes in real or reactive power.

3.3 Optimal Multiplier Method

A new method of finding a low voltage solution for a system was recently presented in
[38]. This technique exploits the convergence characteristics of the Newton-Raphson
method when the powerflow equations are expressed in rectangular form (3-1). In order to
explain this technique, it is necessary to first discuss the optimal multiplier theory originally
presented in [35].

The powerflow equations in rectangular form (3-1) can be expressed as a set of quadratic

equations having no first order terms:

X1x1
X1x2

H 0(x) = A ' (3-4)

xin

XnXp_
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where A is a constant matrix of the susceptances and conductances from (3-1), s € R2n s
the vector of the bus real and reactive power injections, and x € R27is the vector of bus
voltages expressed in rectangular coordinates. For any guess of xk, using a Taylor series
expansion about 6(xk), the value of s can be expressed exactly (since A is constant) as

s = 0(xk) + J(xK) Ax + O(Ax) (3-5)

The standard method of solving using the Newton-Raphson powerflow is then to ignore
the third term and obtain an approximation of Ax as

Ax = Jxk) 1 (s - 6x%) (3-6)

The best direction to move to minimize the norm of the mismatch is then given by Ax. The

new voltage guess is then determined by
xk+l=xk - Ax
where |L is normally unity. However because (3-5) is exact, it is possible to solve directly
for the value of i which minimizes the norm of the mismatches in the direction Ax. This
analytic expression for [t is derived by first defining a cost function as
h=la-pa+p2e|?2 (3-7)

with

a=s-08(xk =-J(xKAx
¢ =—-0(Ax)

Then solve for

ch
oL g3u3 + gop? + gu +go = 0 (3-8)

where

gnp==-2a%a

67



gy =asa+2as-c
gy =-3as<c
gz=2cec

Since (3-8) is a cubic equation, it has three roots. The roots are either three real numbers,
or one real and two imaginary numbers. For the latter case, (3-7) only has a single local
minimum value in the direction of Ax. The value is a minimum because unless a and ¢
are zero (which means we are at the solution), (3-7) goes to infinity as | goes to Zeo. For
the case of three real roots, there will be two local minima of (3-7) and a single local
maximum in the direction of Ax. Define it as the smallest (or only) real root of (3-7), and
L5 and L4 as either the imaginary roots or as the middle and largest real roots.

In [38] an interesting convergence property of the Newton-Raphson powerflow method
using rectangular coordinates is reported. When a pair of multiple solutions of the
powerflow equations are located close to each other, the powerflow tends to converge in
the direction of the line containing the two solutions. If the convergent loci are exactly on
this line, it is then possible to calculate the two solutions directly using the optimal
multiplier, since each solution is a global minimum of (3-7) (note that even though the
solutions are distinct, each is still a global minimurmn since the value of (3-7) is equal to zero
at each solution). The authors provide no mathematical explanation as to why the method
works, but rather provide a number of test results supporting their hypothesis.

However it is possible to prove that once an iterant xX is an element of the line passing
through two solutions, all subsequent elements of the iteration sequence [x1],12 k, will
also be elements of this line. Define x§ and xU as two distinct solutions of the powerflow
equations (3-1), with x5 being the stable high voltage solution, and x! the unstable low
voltage solution . The line through xS and xV is defined as the set

L={xIx=(1-A)x5+Ax",A e R}

x5=xX + B
xt! = xk - oB
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where xk and B are vectors of the same dimension of x, xX e L, xk = x%, xk = x1, and o

e R.

Then since (3-5) is an exact Taylor expansion and (3-4) is a set of quadratic equations with

no first order terms, we can write,

s = 0(xk) + J(xK)B + 6(B)
s = 0(xk) - 0 J(xK)B + 0 20(B)

Assuming that J(xX) is nonsingular, the new direction Ax from the Newton-Raphson
powerflow is given by (3-6). We must then show that Ax is tangent to L. or equivalently
that Ax = AB where A € R. Since from (3-6)

ax = 3! (s - 00 = B + Jx) ™ 0(B)
we can write
Ax =B + Jx&10@B) = - oB + 02Jxk)~laB)
Solving for J (xk)_IB(B) in terms of B we get
1+

Jak~lom) = =B

Provided ot # 1 we can write Ax as a linear function of B

)
Ax = B+tlp o 2t0-07y
1-02 1-02

Because Ax is tangent to L, the new point xk+!1 = xX + Ax is also an element of L. ¢

As an example of the optimal multiplier method, consider the three bus system from Figure
2-10. For a load of 150 MWs at both buses 1 and 2, the system has the two solutions
shown in Table 3-1. ‘
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Table 3-1 - Three Bus System Solutions

Bus Number High Solution Low Solution
e f e f
1 0.7979 -0.1665 0.5203 -0.1778
0.7347 -0.2127 0.1909 -0.1887
3 1.0 0.0 1.0 0.0

To calculate both solutions, the standard Newton-Raphson algorithm is first performed,
with the optimal multipliers being calculated each iteration. The first five columns of Table
3-2 shows these values, along with the maximum mismatch, for each iteration. To
illustrate that the solution is actually converging along the line through x and xY, the last
column in Table 3-2 shows the angle (in degrees) between the vector from xU to x5 and the
vector from x5 to xK. Since the angle is converging to zero, xX is also converging towards

the line through x5 and x4,

Table 3-2 - Newton-Raphson Iterations for Three Bus System

Iteration Mismatch ! Lo K3 Angle
0 150.00 1.036 1.347 £1.45 41.3
1 43.78 1.153 4.581 6.741 8.4°
2 5.82 1.027 20.42 36.05 5.7°
3 0.16 1.001 684.7 1321.0 3.3°
4 1.2¢-6 1.000 9.22e5 1.23e6 1.7°

For those iterations in which three real optimal multipliers are obtained, the cost function h
(3-7) has two local minimums in the direction Ax. These local minimums occur at xK —
iL;AX (normally the high voltage solution) and x¥ — p3Ax (normally the low voltage
solution). The value of the cost function h(x! — AAX) (after the first iteration from Table
3-2) is plotted in Figure 3-4 as a function A. As would be expected, the local minima occur
at A = 1.1 (u) and 6.7 (u3). Since the angle between the solutions is not yet close to zero,
the value of h((x! — p3Ax) is rather high. However as the angle between the solutions
goes to zero, the value of the h((xX — [13Ax) also tends towards zero.
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Once the high voltage solution has been solved with sufficient accuracy, a guess of the low
voltage solution is then given by

x10 = x — p3Ax (3-9

The error associated with this estimate is a function of how close the angle between the
solution vectors is to zero. The value of the low voltage solution can then be computed
precisely using the standard Newton-Raphson algorithm with x%0 as the initial guess.

Since the cost of calculating the optimal multipliers is negligible compared to the cost of the
rest of the Newton-Raphson algorithm, the optimal multiplier method provides a quick
method of determining an initial guess of a low voltage solution. The accuracy of the value
from (3-9) appears to be a function of how close the relative closeness of the two solutions.
When the three bus load at bus 1 and 2 was 190 MWs (close to the critical load of 192
MWs), the value of h(x10) was just 0.001 MVA. However as the load was decreased
(causing the solubions to move apart), the value of h(x19) increased, reaching 6.6 MVA for
a load of 150 MW and 37 MVA when the load was 100 MW,
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‘The optimal multiplier method can be used on arbitrary sized systems. However a problem
develops when a generator's reactive output is saturated at one solution (the generator is
modeled as PQ) while still regulating at the other solution (PV). Because of the type
switching of the generator from PV to PQ (or vice versa), the matrix A from (3-4) is no
longer identical for both solutions. Therefore the two solutions are no longer both defined
as minima of (3-7). Nevertheless, this perturbation is not too severe, xU0 can often still
provide a fairly good starting guess to locate the low voltage solution.

3.4 Energy Contour Search Method

An alternative technique to determining the closest UEP is to expand the constant contours
of the energy function 9 until the first point x" satisfying 8(x") = 0 (where 0 corresponds
to the real and reactive powerflow mismatch equations defined in [3-1]) is encountered.
This is equivalent to a minimizing the norm of the powerflow mismatch equations, subject
to the constraint that energy is eqnal a given value.

Starting from the stable operating point, where 9 =0 = c0, the value of the target energy
contour would be defined as c! = c0 + Ac, where Ac would be a problem dependent
(possibly user specified) value. Then the following minimization would be performed:

min { h(x) such that 9(x) =cl }
where

hx) = 3060 7000) = 71 60 I3

Following the minimization, the value of h(x) would be compared to a tolerance. If h(x) is
less than the tolerance, then a low voltage solution (hopefully the closest) has been found.
Otherwise, the value of ¢ is again incremented, ci+! = ci + Ac, and the process is repeated.

The actual minimization is performed using the iterative generalized reduced gradient
method. At each loop k within the iteration the following three steps are performed. First,
the vector X € R2" is partitioned into the dependent and independent variables y and z
respectively, where y is a scalar. Let the values of y and z be given by
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Next, the equation 9(yk+1,zK) = cl is solved treating yk+) as an unknown, and zK as fixed.
This is a simple one dimensional nonlinear problem. This problem can often be solved
quite rapidly using an iterative procedure in which 0(yk+1,zK) is approximated using a

second order Taylor expansion

k 7k 18%(yk zk
WD sy + - L ) (3-10)

13(),k+1,zlc) =cl = ﬂ(yk,zk) +
The value of Ay can then be determined by the quadratic equation (if [3-10] has no real
solution, then x must be repartitioned with a different variable chosen for y). Then yktl =
yk + Ay. Since the Taylor expansion is not exact, an iterative approach is needed.
However experience has shown that seldom more than one or two iterations are needed.
The calculation of 39/dy is straightforward since V0(x) is just the powerflow mismatch
equations neglecting transfer conductances, with the reactive mismatch j scaled by le.

The calculation of 928/0y2 is correspondingly similar to the calculation of a diagonal
element of the powerflow Jacobian and is computationally dependent only upon the first

neighbors of y.

Once the value of yk+1 is determined and hence a point on the contour 9(x) = i located,
the reduced gradient direction is given by

Az = - (?T: ag;l [‘}3]‘1 ‘}:) ' (3-11)

where

& T Lm

J,x) = ?rg= the powerflow Jacobian, without the column corresponding to y.



Then zk+1 = zk + 1Az where |l is a scalar "step-size" parameter. Ordinarily the value of 4
which minimizes h(x) would have to be determined using a line search method such as the
Fibonacci or golden section techniques. However because of the structure of h(y,z+uAz),
it is possible to determine W analytically using the optimal multiplier method from the
previous section (3-7). However because the direction of movement, Az, is no longer

defined by (3-6), (3-7) has to be rewritten as

h=[la+ub+p2|2 - (3-12)
with

a=s-0(xk)

b =J,(x)Az

¢ =—0(Ax)

The coefficients of (3-8) are then redefined as

go=ab

gy =bb+2asec
g2 =3 bec
g3=2c¢¢

As before, the roots of the cubic equation are used tb determine the minimum(s) of (3-12)
in the direction Az.

Consider the application of the energy contour search method to the two bus system from
Figure 2-1. Figure 3-5 shows the contours of the energy function in the e,-f space and is
therefore just a mapping of Figure 2-3 from the V,-ay space into the e5-f; space (although
the values of the contours plotted were changed). Since there are only two unknowns, €,
and f,, both y and z are scalars. Let y = e, and z = f5. For convenience in iflustrating the
method, Ac is chosen to be 0.43, which is one half the energy of the unstable equilibrium

point.
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The value of y! is calculated using equation (3-10) iteratively. Figure 3-6 compares the
value of & as a function of y with the quadratic approximation of (3-10) for the first
iteration. After the first iteration, the value of ﬁ(yl,zo) was (.368, while after the second
iteration it was 0.4298. Since 10.43 - 0.4298| was below the convergence tolerance, the
next step was the calculation of Az using (3-11). Then the cost function was minimized in
the direction Az. The upper half of Table 3-3 shows the values of y (ep) and z (fp) after
each iteration, along with the values of the cost function and energy difference after both
the y and z portions of each iteration. After three iterations the algorithm had converged
close enough to the minimum of h(x) subject to the constraint that 8(x) = 0.43. The value
of ¢2 was then set to 0.86 and the process repeated. The lower half of Table 3-3 shows the

results of these iterations.
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Table 3-3 Energy Contour Iterations for 2 Bus System

Iteration y (eq) z (fy) Cost y Cost z Oy B,
desired energy contour = (.43
0 0.831 -0.200 0.000 0.00
1 0.462 -0.243 0.598 0.493 0.43 0.41
2 0.452 -0.243 0.485 0.485 0.43 0.43
3 0.452 -0.243 0.485 0.485 0.43 0.43
desired energy contour = 0.86
0 0.452 -0.243 0.485 0.43
1 0.201 -0.207 0.092 0.018 0.86 0.85
2 0.174 -0.201 0.003 0.001 0.86 0.86
3 0.169 -0.200 0.000 (0.000 0.86 0.86
1.0
o 087 o« ——— Quadratic approximation
e
e
& 061
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%; 0.4 Actual energy
0
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Figure 3-6 : Energy Function and Quadratic Approximation
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The energy contour method provides an alternative to the earlier methods, which are
dependent upon the convergence characteristics of the Newton-Raphson powerflow. The
advantage of this method is that if the minimum of the cost function can be found for each
contour, the method would provide a straightforward way of determining the most

pertinent low voltage solutions, namely those with the lowest energy differences.

However the application of the energy contour method does present at least two challenges.
First, it is possible that the constraint set ® = ¢ may contain a number of local minimums
of the cost function. An example of such an occurrence is shown in Figure 2-18 for a
loading of approximately 520 MVARs at bus 11. There are two low voltage solutions
which have identical énergy values of approximately 7.30. The problem in using the
constant contour method is determining whether a given minimum is actually the global
minimum. If the value is not the global minimum, it is possible that a low voltage solution
with the same energy has been missed. Testing on larger systems seems to indicate that the
(local) minimum which is found depends upon the initial choice of the dependent variable
y. This is not unsurprising since the initial direction of movement is dictated by the choice
of the dependent variable. Second, the computational requirements of the method, and its
success in locating the closest low voltage solution, is dependent upon the energy contour
stepsize Ac chosen. In the preceding example where the energy value was known
beforehand, Ac was chosen for convenience to simply be one-half the energy value.
However in an actual problem the choice of Ac is much more difficult. If Ac is too small
the computational cost of the method could become excessive. However if Ac is too large
it is possible that the method could skip over low voltage solutions.
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Chapter 4 - Con'clusions and Proposals

This report has discussed the application of an energy based method for assessing the
vulnerability of electrical power systems to voltage collapse. Proximity of a power system
to voltage collapse is determined from the energy difference between the stable operating
point and one or more unstable equilibrium points. This energy difference provides
smoothly varying measure of proximity to voltage instability which could be used to
determine when a power system is in danger of voltage collapse. The computational cost

of the method appears to be tractable.

There are, however, a number of directions for further research before the method is
mature enough for implementation in a utility control center. First, a computationally
efficient algorithm needs to be developed for locating the pertinent low voltage solutions of
the system. A number of possible solutions to this problem were presented in Chapter 3.
Further testing of the improvements to the Simplified Method presented in 3.2.2 needs to
be performed. The method needs to implemented on a larger system to determine the
computational costs involved and to examine modifications for optimal performance. The
Optimal Multiplier method in section 3.3 also offers promise of being able to rapidly
determine the closest low voltage solution. Key questions which need to be researched
include how close two solutions must be before the method works and how the method
could be altered to handle limits on system controllers. The Energy Contour Search
method from section 3.4 also offers opportunity for further research. The severity of the
problem of the nonuniqueness of the energy contour cost function minima needs to be

determined, with possible refinements to the algorithm to alleviate this problem examined. .

Also a method needs to be determined to choose appropriate values of the energy contour

stepsize Ac. .

The second major area of future research concerns modifications to the system models and
energy function to include more detailed system devices and dynamics. In particular the
effects of high voltage DC (HVDC) lines, generator excitation systems, and time delays in
on-load tap changing transformers need to be researched. HVDC lines, which are used to
transport large amounts of power over long distances, can have a substantial impact upon
the voltage behavior in the surrounding AC systems. Additionally their fast-acting control
systems offer potential to mitigate some system voltage instability problems. Research is
needed to determine how the system model and energy function should be modified to
accommodate HVDC lines. A second possible area for expansion of the system model is a
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more detailed representation of generator excitation systems. Excitation systems are used
to regulate the generator voltage. The voltage stability of an electrical system is dependent
not only upon the electromechanical models, but also upon the effects of the generator
gxcitation systcins. However, whether the effects of these systems need to be modeled in
greater detail for the time frame of the voltage instability problems considered in this report
needs to be determined. Another system device which merits further research is the on-line
tap changing transformer. The ability of transformers to change their tap ratios to regulate
voltages has already been included in the system models. However there are often time
delays on the order of a few minutes before these controllers respond to voltage changes.
Since this delay is close to the time frame of the voltage collapse problem, their effect on

system stability needs to be investigated.

Third, more research is needed into the modeling of power systems at the low voltage
solutions. As was mentioned earlier, a number of effects such as controller limits have
-already been included in the model. Whether the models need to be expanded to include
additional effects of operating at voltages substantially below their normal operating ranges
needs to be determined. For example the load models used in the examples throughout the
report have assumed that load is independent of bus voltage. While valid for some load
types over the time period of the study, more detailed load models will probably have to
include voliage dependence.

Finally, the energy method should be demonstrated on systems larger than the 30 bus
example used here. The application of the method to larger systems will motivate
computational improvements in calculating the appropriate low voltage-solutions.

The work to date on the application of an energy based security method to the problem of
voltage instability in power systems appears successful. However significant theoretical
and computational questions remain before the method is mature enough for actual

implementation in a utility control center.
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