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Announcements

* Please read Chapter 13
* By April 9 do Problem Set A
e Schedule for the rest of the semester Is

Lab 10 week of April 7 consisting of time for the design groups to meet; all
groups need to turn in a brief progress report in lieu of a lab report

Lab 3 week of April 14 (optional, ungraded machine lab)

Lab 11 (project presentations) by the individual teams to their TA before the end
of classes (on or before April 29)

Exam 2 on Wednesday April 23 during class
Design project due at 9:30 am on May 1 (i.e., at the end of our final slot; no final)



Transient Limit Monitors

T

« During a transient contingency how fast the voltage recovers is a key metric
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Composite Load Models
T
« Many aggregate loads are best represented by a combination of different
types of load

- Known as composite load models

— Important to keep in mind that the actual load is continually changing, so any
aggregate load iIs at best an approximation

— Hard to know load behavior to extreme disturbances without actually faulting the
load
« Early models included a number of loads at the transmission level buses
(with the step-down transformer), with later models including a simple
distribution system model



CLOD Model
T

« The CLOD model represents the load as a combination of large induction
motors, small induction motors, constant power, discharge lighting, and

other
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Composite Load Model

Contains up to four motors or single phase induction motor models; also
Includes potential for solar PV

N
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System Bus

The internal model used by the transient stability numerical
simulation structurally does the following.

Creates two buses called Low Side Bus and Load Bus
Creates a transformer between Transmission Bus and Low

Side Bus
Creates a capacitor at the Low Side Bus
Creates a branch between Low Side Bus and Load Bus
Moves the Load from the Transmission Bus to the Load Bus
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A Concern: Fault Induced Delayed Voltage
Recovery (FIDVR)

* FIDVR is a situation in which the system voltage remains significantly
reduced for at least several seconds following a fault (at either the
transmission or distribution level)

— It 1s most concerning in the high voltage grid, but found to be unexpectedly
prevalent in the distribution system

AJ#

» Stalled residential air 3| I Y N )
conditioning units are a 5. | e
key cause of FIDVR — g '/ e T
they can stall within the T 7] | e
three cycles needed to $ S

C I e ar a fau I t Richard Bravo, SCE, presentation Time

at 2014 IEEE PES T&D Meeting

Image Source: NERC, Fault Induced Delayed Voltage Recovery (FIDVR) Advisory, July 2015 §)



Osclillations

An oscillation is just a repetitive motion that can be
either undamped, positively damped (decaying with
time) or negatively damped (growing with time)

If the oscillation can be written as a sinusoid then

g™ (a cos(at)+bsin (a)t)) =e“'C cos(wt +0)

—b
where C =V A® +B* and 0 = tan (;) The percent damping is just the
_ o damping ratio multiplied by 100;
The damping ratio is goal is sufficiently positive damping
—
S

i Ja? + @



Power System Oscillations
T
« Power systems can experience a wide range of oscillations, ranging from
highly damped and high frequency switching transients to sustained low
frequency (< 1 Hz) inter-area oscillations affecting an entire interconnect

* Types of oscillations include
~ Transients: Usually high frequency and highly damped
— Local plant: Usually from 1 to 5 Hz
— Inter-area oscillations: From 0.15to 1 Hz
— Slower dynamics: Such as AGC, less than 0.15 Hz
— Subsynchronous resonance: 10 to 50 Hz (less than synchronous)



Example Oscillations

The left graph shows an oscillation that was observed during a 1996
WECC Blackout, the right from the 8/14/2003 blackout

Observed COIl Power (Dittmer Control Center) ,
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Causes of Power System Oscillations

AJ
* The response of a simple system can be divided into its natural response
versus Its forced response

— The natural response tells how the system will response to an initial disturbance
without any additional (external) influences; this response shows the system’s modes

— A forced response Is associated with an external disturbance; if the external
disturbance is periodic then the system will oscillate at least partially at this
frequency

— Often forced oscillations are due to control failures

* Resonance occurs when a forced response Is at a similar frequency to one
of the system’s modes

* An power system can experience both types of oscillations
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Phasor Measurement Units (PMUs) and
SynchroPhasors

T

 [Initially a challenge with understanding power system dynamics was the
lack of high speed, synchronized measurements
— Supervisory Control and Data Acquisition (SCADA) measured the system analog

values every couple of seconds

« This has gradually changed over the last several decades with the now
widespread deployment of phasor measurement units (PMUSs) that are able
to use time synchronized measurements to accurately determine values at

rates of 30 times per second

11



Modes

AJ
A mode Is a concept from linear system analysis

— Electric grids certainly are not linear, but usually their response to small disturbances
IS approximated as linear

* A mode corresponds to one of the eigenvalues of the response or, for
oscillations, a complex pair of eigenvalues

* A mode has a frequency and damping; all parts of the system oscillate
with this pattern

* The mode shape tells how parts of the system participate in the mode

* There can be multiple modes in a system; power systems can have many
modes

12



Small Signal Analysis (SSA)
T

« Small signal stability is the ability of the power system to maintain
synchronism following a small disturbance

— System is continually subject to small disturbances, such as changes in the load
* The operating equilibrium point (EP) obviously must be stable

« Small signal analysis (SSA) is studied to get a feel for how close the
system is to losing stability and to get additional insight into the system
response
— There must be positive damping

13



Model-Based SSA

Assume the power system is modeled in our standard form as
x=T(xy)

0=9(xy)

The system can be linearized about an equilibrium point

Ak = AAx + BA If there are just classical generator models then D
y IS the power flow Jacobian; otherwise it also

0 =CAx+ DAy includes the stator algebraic equations.

Eliminating Ay gives
We won’t be covering model-based SSA in 460
Ax=(A-BD'C)Ax=A_ Ax

14



Small Signhal Analysis and

Measurement-Based Modal Analysis
e U e b as e MO Ay T

« The alternative to model-based SSA is to use measurement-based modal
analysis to determine the observed dynamic properties of a system

— Input can either be measurements from devices (such as PMUSs) or dynamic
simulation results

~ The same approach can be used regardless of the measurement source
* Focus in this section is on the measurement-based approach

15



Ring-down Modal Analysis

AJ
Ring-down analysis seeks to determine the frequency and damping
of key power system modes following some disturbance

There are several different techniques, with the Prony approach the
oldest (from 1795); introduced into power in 1990 by Hauer,
Demeure and Scharf

Regardless of technique, the goal is to represent the response of a
sampled signal as a set of exponentially damped sinusoidals (modes)

& x 100

\/ ol + o’

g
y(t) = Z Ae"‘t COS(a)it + ¢| ) Damping (%) =
=1
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Goal: Extracting Modes from the Signals

AJ
« The goal Is to gain information about the electric grid by extracting
modal information from its signals

— The frequency and damping of the modes is key

* The premise 1s we’ll be able to reproduce a complex signal, over a
period of time, as a set a of sinusoidal modes

— We’ll also allow for linear

detrending s
0.1t + cos(2m2t)

17



Example: Summation of Two Damped Exponentials

AJ#

This example was created
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Example: One Signal

This could be any signal; image shows the result of the original

signal (blue) and the reproduced signal (red)

X
Start Time Used  End Time Used  Time Window | |
3.000000 10.000000
| | | | Contingency |MyTransientContingency |
Object |Gen ‘Busi_16.50''1' |
Field |T‘55peed |
Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)
[ 9 Trend | 100 [ 0.0000617] | 0.0]
[ 1 BB A %8 5% d 8, | Records = et~ Columns - B~ |- W8~ B~ 4 no~ BB Options -
Modes for Selected Signal Update Auto 10012
Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode 1.001
Include End Frequency |Damping Lambda ’
Reproduce 1.0008
1[YES 0.00166 0.0000643 111,15 41,13 017 39.67 -0.465
2|VES 0.00114 0.,0000256 0.00 28.28 0.000 100,00 -0.543 1.0008
3|VES 0.00057 0,0000488 69,05 24.01 1.364 4,83 -0.427 10004
4|VES 0.0000167  0.000243 -180.00 6.02 0.000 -100.00 0.383 '
SIVES g~ 0.0000223 000000445 -59.64 0.553 2.017 6.99 -0.888 1.0002
1
0.9995
0.9996
0.9924
3 5 g 7 10
¥ — Raw Signal W -- Reproduced Signal
oK Cancel

®
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Verification: Linear Trend Line Only

Result Analysis Signal

O X
Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10 |
3.000000 10, 000000
| | | Contingency |My Transient Contingency |
Object |Gen 'Bus1_16.50''1 |
Field |T‘55|:|eed |
Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear) C (guadratic)
ljl Trend | 1.00| [ 0.0000617| | 0.0]
ED T B Al %8 5% 64 88 Records - sSet~ Columns ~ B~ 3~ W8~ BH- 3 fg- Bl oOptions -
Modes for Selected Signal Update Auto 10012
Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode 1.001
Include End Frequency |Damping Lambda ’
Reproduce| 1.0008
1 1”0 o 0.00166 0.0000643 111.15 41.13 017 39.67 -0.465
2|NO 0.00114 0.0000256 0.00 23.28 0.000 100.00 -0.543 1.0008
J[MO 0.00097 0.0000438 69.05 24.01 1.364 493 -0.427 10004
4| MO 0.0000167  0.000243 -130.00 6.02 0.000 -100.00 0.383 :
5| NO 0.0000223 00000445 -55.64 0.553 2017 6.99 -0.888 1.0002
1
0.9993
0.99095
0.99094
5 6 7 10
W — Raw Signal [v == Reproduced Signal
oK Cancel

®
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Verification: Linear Trend Line + One Mode

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10

| 3.000000| | 10.000000

Contingency |My Transient Contingency

Object |Gen 'Bus1_16.50''1

Field |T‘55|:|eed

Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear)

C (guadratic)

ljl Trend | 1.00| [ 0.0000617| |

0.0|

HECD

Modes for Selected Signal

17 By Ak %8 5% #% 8 Records~ Set~ Columns » By~ 8- B &

Z0RT
- 4
RELD

Update Auto

Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode
Include End Frequency |Damping Lambda
Reproduce|
1JYES o 0.00166 0.0000643 111.15 4113 0,171 39.67 -0.465
2|NO 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543
3|NO 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427
4|NC 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383
5|NO 0.0000223 000000445 -55.64 0.553 207 6.99 -0.888

fiwy » B Options *

1.00M2
1.001
1.0008
1.0006
1.0004
1.0002
1
0.9558
0.9996
0.9554

5 & 7

W — Raw Signal [v == Reproduced Signal

oK

Cancel

10

®

21



Verification: Linear Trend Line + Two Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10

| 3.000000| | 10.000000

Contingency |My Transient Contingency

Object |Gen 'Bus1_16.50''1

Field |T‘55|:|eed

Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear)

C (guadratic)

ljl Trend | 1.00| [ 0.0000617| |

0.0|

HECD

Modes for Selected Signal

17 By Ak %8 5% #% 8 Records~ Set~ Columns » By~ 8- B &

Z0RT
- 4
RELD

Update Auto

Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode
Include End Frequency |Damping Lambda
Reproduce|
1]YES 0.00166 0.0000643 111.15 4113 0,171 39.67 -0.465
2JVES o 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543
3|NO 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427
4|NC 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383
5|NO 0.0000223 000000445 -55.64 0.553 207 6.99 -0.888

fiwy » B Options *

1.00M2
1.001
1.0008
1.0006
1.0004
1.0002
1
0.9598

0.9996

0.9594

5 & 7

W — Raw Signal [v == Reproduced Signal

oK

Cancel

10

®
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Verification: Linear Trend Line + Three Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10

| 3.000000| | 10.000000

Contingency |My Transient Contingency

Object |Gen 'Bus1_16.50''1

Field |T‘55|:|eed

Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear)

C (guadratic)

ljl Trend | 1.00| [ 0.0000617| |

0.0|

HECD

Modes for Selected Signal

17 By Ak %8 5% #% 8 Records~ Set~ Columns » By~ 8- B &

Z0RT
- 4
RELD

Update Auto

Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode
Include End Frequency |Damping Lambda
Reproduce|
1]YES 0.00166 0.0000643 111.15 4113 0,171 39.67 -0.465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543
3|NO 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427
4IVES o 0.0000167  0.000243 -180.00 6.02 0.000 -100.00 0.383
5|NO 0.0000223 000000445 -55.64 0.553 207 6.99 -0.888

fiwy » B Options *

1.00M2
1.001
1.0008
1.0006
1.0004
1.0002
1
0.9598

0.9996

0.9594

5 & 7

W — Raw Signal [v == Reproduced Signal

oK

Cancel

10

®
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Verification: Linear Trend Line + Four Modes

Result Analysis Signal

O X
Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10 |
3.000000 10, 000000
| | | Contingency |My Transient Contingency |
Object |Gen 'Bus1_16.50''1 |
Field |T‘55|:|eed |
Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear) C (guadratic)
ljl Trend | 1.00| [ 0.0000617| | 0.0]
ED T B Al %8 5% 64 88 Records - sSet~ Columns ~ B~ 3~ W8~ BH- 3 fg- Bl oOptions -
Modes for Selected Signal Update Auto 10012
Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode 1.001
Include End Frequency |Damping Lambda ’
Reproduce 1.0008
1[YES 0.00166 0.0000643 111.15 41.13 017 39.67 -0.465
2]vEs 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
SIVES o 0.00097 0.0000438 69.05 24.01 1.364 493 -0.427 10004
4|YES 0.0000167  0.000243 -130.00 6.02 0.000 -100.00 0.383 :
5| NO 0.0000223 00000445 -55.64 0.553 2017 6.99 -0.888 1.0002
1
0.9993
0.99095
0.99094
5 6 7 10
W — Raw Signal [v == Reproduced Signal
oK Cancel

®
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Verification: Linear Trend Line + Five Modes

[®) Result Analysis Signal = O x

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000||  10.000000

Contingency |My Transient Contingency

Object |Gen 'Bus1_16.50''1

Field |T‘55|:|eed

Statistics Medes and Damping  Object Fields
Undamped Modes A (constant) B (inear) C (guadratic)

ljl Trend | 1.00| [ 0.0000617| | 0.0]
F0RT

ED T B Al %8 5% 64 88 Records - sSet~ Columns ~ B~ 3~ W8~ BH- 3 fg- Bl oOptions -

Modes for Selected Signal Update Auto 10012
Mode Magnitude| Magnitude| Angle Rank Mode |Mode Mode 1.001
Include End Frequency |Damping Lambda ’
Reproduce 1.0008

1]YES 0.00166 0.0000643 111.15 4113 0,171 39.67 -0.465

2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
3|YES 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427 1.0004

4|YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 '
SIYES ool 0.0000223 M00000445 -55.64 0.553 207 6.99 -0.888 1.0002
1
0.9998
0.9996
It is hard to tell a difference

3 4 5 & 7 8 ] 10

on this one, illustrating that T oS B re
modes manifest differently in =
different signals




Measurement-Based Modal Analysis

AJf
« There are a number of different approaches

» The idea of all techniques Is to approximate a signal, y,(t), by the sum of other,
simpler signals (basis functions)
— Basis functions are usually exponentials, with linear and quadratic functions used to detrend
the signal
— Properties of the original signal can be quantified from basis function properties
Examples are frequency and damping
— Signal is considered over time with t=0 as the start

» Approaches sample the original signal y,(t)

26



Measurement-Based Modal Analysis
T
* Vector y consists of m uniformly sampled points from y,(t) at a
sampling value of AT, starting with t=0, with values y; for j=1...m

— Times are then t.= (J-1)AT
_ e o _ In 460 we won’t be
- At each time point j, the approximation of y; Is dwelling on the equations

y;(t; )= Zl‘,bicﬁi(t,-,a)

where a IS a_ vector with the real and imaginary eigenvalue components,
with ¢ (t;, a) = e for o corresponding to a real eigenvalue, and

& (t,,0) =e"cos(a,.t,) and ¢, (a) =e“sin(e;, t;)

for a complex eigenvector value

27



Measurement-Based Modal Analysis

AJ#

* Error (residual) value at each point j is
rj(tj’a) =Y, _yj(tj’u)

* The closeness of the fit can be quantified using the Euclidean norm of the
residuals

AN ) 2 1 2 In 460 we won’t be
— . — V. t , O = —|Ir{d ] -
2 JZ:;‘(y‘ Vit @) 2 Ir( )HZ dwelling on the equations;

_ the key here is to
* Hence we need to determine o and b understand the concepts

7,(t;,0) = bl t,,0)

28



Sampling Rate and Aliasing
T
« The Nyquist-Shannon sampling theory requires sampling at twice the
highest desired frequency
— For example, to see a 5 Hz frequency we need to sample the signal at a rate of at
least 10 Hz
« Sampling shifts the frequency spectrum by 1/T (where T is the sample
time), which causes frequency overlap

« This is known as aliasing, which
can cause a high frequency
signal to appear to be a lower VY U Y
frequency signal 0 1 2 3 4 5 6 17 8 9 10

— Aliasing can be reduced by fast sampling and/or low
pass filters

29
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One Solution Approach: The Matrix Pencil Method
T

* There are several algorithms for finding the modes. We’ll use the Matrix
Pencil Method

— This is a newer technique for determining modes from noisy signals (from about
1990, introduced to power system problems in 2005); it is an alternative to the

Prony Method
— The Matrix Pencil Method is useful when there is signal noise
« Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that

Vi Yo o Yia
V= ){2 ¥3 e yl_.+2
| ym—L ym—L+1 o ym ]

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp.
501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005. 30



Algorithm Detalls, cont.

AJ#

* Then calculate Y’s singular values using an economy singular value

decomposition (SVD) In 460 you should understand

T what an SVD is doing since the
Y =Uxv approach is widely uged In many
 The ratio of each singular value is then applications
compared to the largest singular value o; The computational
retain the ones with a ratio > than a threshold complexity increases
— This determines the modal order, M with the cube of the number of
~ Assuming V is ordered by singular measurements!
ten matrix with the firstM coltmns oy ThiS threshold s a value tha

can be changed; decrease it
to get more modes.

31



Aside: Matrix Singular Value Decomposition (SVD)
T

The SVD Is a factorization of a matrix that generalizes the eigendecomposition to any
m by n matrix to produce

B T The original concept is more than 100 years
Y =UXV old, but has found lots of recent applications

where X Is a diagonal matrix of the singular values

The singular values are non-negative, real numbers that can be used to indicate the

major components of a matrix (the gist is they provide a way to decrease the rank of a
matrix)

32



Aside: SVD Image Compression Example
Alm

Images can be represented with matrices.
When an SVD is applied and only the
largest singular values are retained

the Image Is compressed.

SVD is used in many other applications as
well, including facial recognition and
principal component analysis (PCA)

/Plrate

Figure 3.1: Image size 250x236 - modes used Image Source:
{{1,2,4,6),{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image}} www.math.utah.edu/~goller/F15 M2270/BradyMathews SVDImage.pdf 33



http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf
http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Matrix Pencil Method with Many Signals
T

* The Matrix Pencil approach can be used with one signal or with
multiple signals

» Multiple signals are handled by forming a Y, matrix for each signal k
using the measurements for that signal and then combining the matrices

Ve Yox o Yia |
Y, Var o Vi The required computation
Y= . : - : scales linearly with the
number of signals

_ym—L,k ym—L+1,k ym,k |

v
Y=| :

_YN_

34



Matrix Pencil Method with Many Signals
T

* However, when dealing with many signals, usually the signals are
somewhat correlated, so vary few of the signals are actually need to be

Included to determine the desired modes
« Ultimately we are finding

yj(tj1a):ibi¢i(tj’a)

* The a I1s common to all the signals (i.e., the system modes) while the b
vector is signal specific (i.e., how the modes manifest in that signal)

35



Quickly Determining the b Vectors

« A key insight iIs from an approach known as the Variable
Projection Method (from Borden, 2013) that for any signal k

Yy, =®@(a)b,
And then the residual is minimized by selecting b, =®(a)"y,  Where m is the
where ®(a) is the m by n matrix with values number of

aty it | oi | measurements
CDji(a) =e " If o, corresponds to a real eigenvalue, and n is the
and @ ; () =e“" cos(a,,.t;) and @ ;, (@) =™ sin(a,qt;) number of modes

for a complex eigenvalue; t, =(j—1)AT

Finally, ®(a)” is the pseudoinverse of ®(a)

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium,
Manhattan, KS, Sept. 2013
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Matrix Pencil Method with Many Signals
T

* However, when dealing with many signals, usually the signals are
somewhat correlated, so vary few of the signals are actually need to be

Included to determine the desired modes
« Ultimately, we are finding

yj(tj1a):ibi¢i(tj’a)

* The a I1s common to all the signals (i.e., the system modes) while the b
vector is signal specific (i.e., how the modes manifest in that signal)

37



Aside: Pseudoinverse of a Matrix

AJp
* The pseudoinverse of a matrix generalizes concept of a matrix inverse to
an m by n matrix, in whichm >=n

— Specifically this is a Moore-Penrose Matrix Inverse
* Notation for the pseudoinverse of A'is A*
« Satisfies AA*A=A
« If Ais asquare matrix, then A* = Al

« Quite useful for solving the least squares problem since the least squares
solutionof Ax=bisx=A*Db

» Can be calculated using an SVD A=UXV'
A" =VI'U'
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Least Squares Matrix Pseudoinverse Example

1 1]
2 1

6 1

m
b

1

SO A=

o N

Assume we wish to fix a line (mx + b = y) to three data points:
(1,1), (2,4), (6,4)

Two unknowns, m and b; hence x = [m b]"
Setup in form of Ax =D

e

AJ#
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Least Squares Matrix Pseudoinverse Example, cont.

AJp
* Doing an economy SVD
—0.182 -0.765
] 6559 0 1[-0.976 -0.219
A=UXV =|-0.331 -0.543
0 0.988 || 0.219 -0.976
|-0.926 0.345

e Computing the pseudoinverse

0976 0.219 ][0.152 0 }{—0.182 —0.331 —0.926}

A '=VX'U =
-0.219 -0.976|| 0 1.012]| -0.765 -0.543 0.345

A+—VZ+UT—__O'143 -0.071 0.214
- 71 0762 0548 —0.310

In an economy SVD the X matrix has dimensionsof mby mifm<nornbynifn<m "



Least Squares Matrix Pseudoinverse Example, cont.

AJ#

« Computing X = [m b]" gives

A ~0.143 -0.071 0.214 [0.429
0.762 0.548 —0.310 | 1.71

A

« With the pseudoinverse approach we immediately see the sensitivity of
the elements of x to the elements of b
- New values of m and b can be readily calculated if y changes

« Computationally the SVD is order mn2+n3 (with n <m)

— In this example it means it scales linearly with the number of points; matrices with
m >>n are common
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Computational Considerations

AJ
* When there is just one signal, the procedure scales with the cube of the
number of measurements

— This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for
200 measurements

« |f multiple signals are included, it scales linearly with the number of
signals

* However, a key Insight is once a has been determined, each b, can be
determined with a matrix multiply of a matrix with dimensions of the
number of modes and number of measurements

Y, = ®(@)b, —>b =d(a)y, We can quickly determine how well

®(a)" is the pseudoinverse of ®(a) a. matches each signal
42



Modal Analysis in PowerWorld
AJ
* Goal is to make modal analysis easy to use, and easy to visualize the
results

* Provided tool can be used with either transient stability results or
actual system signals (e.g., from PMUs)

« Three ways to access in PowerWorld
~ From the Modal Analysis button (in Add-Ons)

— On the Transient Stability Analysis form left menu, Modal Analysis (right
below SMIB Eigenvalues)

— By right-clicking on a transient stability or plot case information display, and
selecting Modal Analysis Selected Columns or Modal Analysis All
Columns
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Modal Analysis: Three Generator Example

AJ
« A short fault at t=0 gets the below three generator case oscillating with
multiple modes (mostly clearly visible for the red and the green curve)

(\

1.0100

GENCLS Bus xz BUS 2 ~eNcLs 100201 {\ n ﬂ ﬂ ﬂ n A /\

1.0080

1.0070}

0060 ]
10050
10040
10030
10020

1.0010

1.0000

gguu\}UUUU I

44



Modal Analysis: Three Generator Example
AJ
e Open the case B3 CLS UnDamped

— This system has three classical generators without damping; the default event is
a self clearing fault at bus 1

* Run the transient stability for 5 seconds

« To do modal analysis, on the Transient Stability page select Results
from RAM, view just the generator speed fields, right-click and select
Modal Analysis All Columns
— This display the Modal Analysis Form
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Modal Analysis Form

First click on Do Modal Analysis to run the modal analysis

Data Source Inputs from Plots or Files Do Modal Analysis

Maodal Analysis Form — O X
Results
Modal Analysis Status |Solved at 11/9/2021 10:02:26 AM
b il | Mumber of Complex and Real Modes Indude Detrend in Reproduced Signals

Data Source Type Calculation Method [ subtract Reproduced from Actual

(O From Plot (OFile, Comtrade CFG (® Matrix Pendl {Once) Lowest Percent Damping _

(C)File, WECC CSV 2 (®) None, Existing Data O terative Matrix Pendi Update Reproduced Signals

8?:5’ éSIS;D;mT:tFF OFile, CSV (Data Starts Line 2) () Dynamic Mode Decomposition Real and Complex Modes - Editable to Change Initial Guesses

e, LomTrade
Frequency (Hz)| Damping (%) Largest Mame of Signa Average Ratio Average Largest Mame o

Component in |with Largest |Componentin| tolargest |[Componentin|with Lar
Mode, Component in Mode, Component in| Mode, Scaled |Compor

Gen_Speed N Unscaled |Mode, Unscaled Mode, Mode, 5
Save in J5IS Format | Save to CSV | Unscaled UnScaled
1 0.001 0.00642 GenBus1#15 0.00314 0.4900 1.404 Gen Bus
2 -0.011 0.00063 GenBus2#15 0.00043 0.6833 0.615 Gen 3 #
Start Time End Time
Maximum Hz Update Sampled Data Store Results in PWE File
[ always Reload Signals from Source £ >
Input Data, Actual  Sampled InputData Signals  Options  Reproduced Data  Iterative Matrix Pencil Tteration Details
Type MName Latitude |Longitude [ Description | Units Include Include Exclude from |Alwds include Dretrend Detrend Post-Detrend | Post-Detrend Solved Averi
Reproduced |lterative Matrix|in [teftive Parameter A Parameter B |Number Zeros Standard Ur
Pencil (IMF} Matri Dreviation
(IMP)
1J5en YES YES o] NO 1.0024 0.0004 0 0.00457 YES
2|Gen YES YES o] NO 1.0024 0.0003 0 0.00147 YES
3|Gen YES YES NO 1.0025 0.0003 0 0.00082 YES
< >
j"L Close ? Help

Right-click on signal

to view its dialog Signals to

Include

Key results are shown in the upper-right of the
form. There are two main modes, one at 2.23Hz
and one at 1.51; both have very little damping.

®
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Three Generator Example: Signal Dialog

®

« The Signal Dialog provides details about each signal, including its
modal components and a comparison between the original and

reproduced signals (example for gen 3)

MName

Maodal Analysis Signal Dialog

Gen 3 #1 5peed Data Detrend Parameters

Gen

[] Always Exdude Signal During IMP
[] Always Indude Signal During IMP

Detrend Model = A + B=(t-t0) + C*(t-t0)~2

Use Case Default Detrend Model

Signal Spedific Detrend Model

@ Mone

O Constant

O Linear
(O Quadratic

Used Detrend Model
Farameter A
Parameter B
Farameter C
Standard Deviation (SD)

Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison

Time [Seconds) | Original Value Reproduced Value Difference |
1 0.050] 1.002 1.002 0.000
2 0.058 1.002 1.002 0.000
3 0.067 1.002 1.002 0.000
4 0.075 1.002 1.002 0.000
5 0.083 1.002 1.002 0.000
& 0.092 1.002 1.002 0.000
7 0.100 1.002 1.002 0.000
8 0.108 1.002 1.002 0.000
9 0.117 1.002 1.003 0.000
10 0.125 1.003 1.003 0.000
11 0.133 1.003 1.003 0.000
12 0.142 1.003 1.003 0.000
13 0.150 1.003 1.003 0.000
14 0.158 1.003 1.003 0.000
15 0.167 1.003 1.003 0.000
16 0.175 1.003 1.003 0.000
17 0.183 1.003 1.003 0.000
18 0.192 1.003 1.003 0.000
19 0.200 1.003 1.003 0.000
20 0.208 1.003 1.003 0.000
1 0.217 1.0n3 1.003 0.000

? Help Print

QOutput Summary

Average Error, Scaled by 5D 0.0000
Average Error. Unscaled 0,0000
Cost Function Value, Scaled 0.0068

Indude Detrend in Reproduced Signal

Update Reproduced

Values

Plotting the original and reproduced
signals shows a near exact match

1.0052 ]

1.005]
1.0048 ]
1.0046 ]
1.0044 ]
1.0042 ]

1.004
1.0038 ]
1.0036
1.0034 ]
1.0032

1.003
1.0028 ]
1.0026
1.0024 ]
1.0022 ]

1.002
1.0018
1.0016
1.0014 ]

PWDVectorGrid Variables

T
100

T
200 300 400

«= QOriginal Value == ReproducedVaIueI

47



Caution: Setting Time Range Incorrectly Can Result

In Unexpected Results!
T
« Assume the system is run with no disturbance for two seconds, and then
the fault Is applied and the system is run for a total of seven seconds (five
seconds post-fault)

— The incorrect approach would be to try to match the entire signal; rather just match
from after the fault |

~ Trying to match the full p ,‘ ﬁ

signal between 0 and 7 seconds - ﬂ N \/\ M

required eleven modes!

- By default the Modal Analysis Form M U
sets thedefault start time to
Immediately after the last event
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GENROU Example with Damping
T

* Open the case B3_ GENROU, which changes the GENCLS to GENROU
models, adding damping
— Also each has an EXST1 exciter and a TGOV1 governor

— The simulation runs for seven seconds, with the fault occurring at two seconds;
modal analysis is done from the time the fault is cleared until the end of the
simulation.

The image shows the generator
speeds. The initial rise in the speed
Is caused by the load dropping
during the fault, causing a power
mismatch; this is corrected by the
governors. Note the system now
has damping; modal analysis tells
us how much.




GENROU Example with Damping

Madal Analysis Form

Modal Analysis Status |Solved at 11/9/2021 10:07:41 AM

Data Source Type

() From Plat () File, Comtrade CFG

(OFile, WECC CsV 2 (®) None, Existing Data

(CFile, 1515 Format (OIFile, Csv (Data Starts Line 2)
(C)File, Comtrade CFF

Data Source Inputs from Plots or Files

Gen_Speed w

rows

m

Start Time

Maximum Hz =

Update Sampled Data

Input Data, A

Calculation Method
(®) Matrix Pendl (Once)

(D) Iterative Matrix Pencil
O Dynamic Mode Decomposition

Do Modal Analysis

Save in J5IS Format Save to CSV

Store Results in PWE File
] Always Reload Signals from Source

Sampled InputData  Signals  Options  Reproduced Data  Iterative Matrix Pencil Tteration Details

MName Latitude |Longitude | Description | Units Include

= O X
Results

Number of Complex and Real Modes [ 1ndude Detrend in Reproduced Signals

Subtract Reproduced from Actual

4,022
Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Lowest Percent Damping

-

| == ? Help

YES
YES
YES

Print

Frequency (Hz}| Damping [32) Largest Mame of Signa Average Ratio Aver.
Component in |with Largest |Componentin| to Large
Muode, Component in Muode, Componer
Unscaled Maode, Unscaled Mode,
Unscaled UnScale
1 11.353 0,00352 Gen 3 #1 Speet 0.00231 0.¢
2 15.638 0.00452 Gen Bus 2#1 5 0.00292 0.t
3 65427 0.00662 Gen Bus 2#15 0.00640 0.¢
4 -34.022 0,00088 Gen Bus1#15 0.00084 0.c
< >
Include Exclude from |Always inNude Detrend Detrend Post-Detrend | Post-D
Reproduced |lerative Matrix|in [terative Parameter A Parameter B |Mumber Zeros Stans
Pencil {IMF} Matrix Penci Deviz
{IMP)
YES - T T
YES

= Mode frequency, damping, and
largest contribution of each mode In

Start time
default value

the signals. The slower mode Is
associated with the governors.

®
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GENROU Example with Damping

®

« Left image show how well the speed for generator 1 is
approximated by the modes More signal details

PWDVectorGrid Variables Modal Analysis Signal Dialog
1.008 E Name Gen Bus 1 #1 Speed Data Detrend Parameters Output Su
1.0075 é Type Gen Detrend Model = & +B%(t-t0) + C¥(t-10)~2 Used Detrend Model Average E
1.007 H T I:I Use Case Default Detrend Model Farameter A 1.0037 Average E
1.0065 ? Description gnal Spedific Det’egl\‘lodel Parameter B 0.0014 Cost Funci
1.006 Mone Linear
1 Parameter C 0.0000 Indude
1.0055 Indude in Modal Analysis () Constant () Quadratic
] Standard Deviation (SD) | 0.0013 Upda
1.005
1.0045
1 0045 Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison
2 10035 ] Damping (%) Frequency [Hz) Magnitude Magnitude, Angle (Deg) Lambda Include in
03-’ . E Scaled by 5D Unscaled Reproduced
§ 1.003 Signal
1 11,353 2,053 2,300 0.003 13.82 -1.474 YES
1.0025 2 19.638 1.649 2,038 0.003 1046 -2.075 VES
1 0025 3 65,427 0.236 4,757 0.006 -91.36 -1.283 YES
: 1 4 -34.022 0.083 0.689 0.001 135.64 0,222 YES
1.0015
1.001 Reproduced Value
N 0.0028
1.0005 0.0026 ]
B 0.0024
. ot Just the 2.05
p 0.0018 | ]
0.9995 7 60016 ]
B 0.0014
0.999 0.0012 § d
N @ 0.001
0.9985 £ Joooe] I IZ I I IO e
N — § 0.0004
T T T T T T T T T T T T T T T —— T T 8 ©0.0002
5 o]
3 4 5 6 7 &  -0.0002
Time (Seconds) “5:0000 ]
-0.0008
== QOriginal Value == Reproduced Value I 60012 ]
-0.0014
-0.0016
-0.0018
-0.0024
b 1‘00 2‘00 3‘00 460 5‘00

— Reproduced Value
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