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• Please read Chapter 13

• By April 9 do Problem Set A

• Schedule for the rest of the semester is 

– Lab 10 week of April 7 consisting of time for the design groups to meet; all 

groups need to turn in a brief progress report in lieu of a lab report 

– Lab 3 week of April 14 (optional, ungraded machine lab)

– Lab 11 (project presentations) by the individual teams to their TA before the end 

of classes (on or before April 29)

– Exam 2 on Wednesday April 23 during class 

– Design project due at 9:30 am on May 1 (i.e., at the end of our final slot; no final)

Announcements
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Transient Limit Monitors

• During a transient contingency how fast the voltage recovers is a key metric

Image from WECC Planning and 

Operating Criteria 

Similar performance 

criteria exist for 

frequency deviations
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Composite Load Models

• Many aggregate loads are best represented by a combination of different 

types of load

– Known as composite load models

– Important to keep in mind that the actual load is continually changing, so any 

aggregate load is at best an approximation

– Hard to know load behavior to extreme disturbances without actually faulting the 

load

• Early models included a number of loads at the transmission level buses 

(with the step-down transformer), with later models including a simple 

distribution system model
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CLOD Model

• The CLOD model represents the load as a combination of large induction 

motors, small induction motors, constant power, discharge lighting, and 

other

Transmission Bus

Distribution Bus

Distribution
Capacitors

Large
Motors Motors

Small Discharge
Lighting

Constant
Power

Other
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Composite Load Model

• Contains up to four motors or single phase induction motor models; also 

includes potential for solar PV 
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A Concern: Fault Induced Delayed Voltage 
Recovery (FIDVR)

• FIDVR is a situation in which the system voltage remains significantly 

reduced for at least several seconds following a fault (at either the 

transmission or distribution level)

– It is most concerning in the high voltage grid, but found to be unexpectedly 

prevalent in the distribution system

• Stalled residential air 

conditioning units are a 

key cause of FIDVR – 

they can stall within the 

three cycles needed to

clear a fault

Image Source: NERC, Fault Induced Delayed Voltage Recovery (FIDVR) Advisory, July 2015 6



Oscillations

• An oscillation is just a repetitive motion that can be 

either undamped, positively damped (decaying with 

time) or negatively damped (growing with time)

• If the oscillation can be written as a sinusoid then

• The damping ratio is 
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The percent damping is just the 

damping ratio multiplied by 100; 

goal is sufficiently positive damping
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Power System Oscillations

• Power systems can experience a wide range of oscillations, ranging from 

highly damped and high frequency switching transients to sustained low 

frequency (< 1 Hz) inter-area oscillations affecting an entire interconnect

• Types of oscillations include

– Transients: Usually high frequency and highly damped

– Local plant: Usually from 1 to 5 Hz

– Inter-area oscillations: From 0.15 to 1 Hz

– Slower dynamics: Such as AGC, less than 0.15 Hz

– Subsynchronous resonance: 10 to 50 Hz (less than synchronous)
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Example Oscillations

• The left graph shows an oscillation that was observed during a 1996 

WECC Blackout, the right from the 8/14/2003 blackout
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Causes of Power System Oscillations

• The response of a simple system can be divided into its natural response 

versus its forced response

– The natural response tells how the system will response to an initial disturbance 

without any additional (external) influences; this response shows the system’s modes

– A forced response is associated with an external disturbance; if the external 

disturbance is periodic then the system will oscillate at least partially at this 

frequency

– Often forced oscillations are due to control failures

• Resonance occurs when a forced response is at a similar frequency to one 

of the system’s modes

• An power system can experience both types of oscillations 
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Phasor Measurement Units (PMUs) and 
SynchroPhasors 

• Initially a challenge with understanding power system dynamics was the 

lack of high speed, synchronized measurements

– Supervisory Control and Data Acquisition (SCADA) measured the system analog 

values every couple of seconds

• This has gradually changed over the last several decades with the now 

widespread deployment of phasor measurement units (PMUs) that are able 

to use time synchronized measurements to accurately determine values at 

rates of 30 times per second
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Modes

• A mode is a concept from linear system analysis

– Electric grids certainly are not linear, but usually their response to small disturbances 

is approximated as linear

• A mode corresponds to one of the eigenvalues of the response or, for 

oscillations, a complex pair of eigenvalues

• A mode has a frequency and damping; all parts of the system oscillate 

with this pattern

• The mode shape tells how parts of the system participate in the mode

• There can be multiple modes in a system; power systems can have many 

modes
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Small Signal Analysis (SSA)

• Small signal stability is the ability of the power system to maintain 

synchronism following a small disturbance

– System is continually subject to small disturbances, such as changes in the load

• The operating equilibrium point (EP) obviously must be stable

• Small signal analysis (SSA) is studied to get a feel for how close the 

system is to losing stability and to get additional insight into the system 

response

– There must be positive damping

13



Model-Based SSA

• Assume the power system is modeled in our standard form as

• The system can be linearized about an equilibrium point

• Eliminating y gives 

( ),=x f x y

0 = g(x,y)

+Δx = AΔx BΔy

0 = CΔx+DΔy

( )− =-1

sysΔx = A BD C Δx A Δx

If there are just classical generator models then D 

is the power flow Jacobian; otherwise it also 

includes the stator algebraic equations.
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Small Signal Analysis and 
Measurement-Based Modal Analysis

• The alternative to model-based SSA is to use measurement-based modal 

analysis to determine the observed dynamic properties of a system

– Input can either be measurements from devices (such as PMUs) or dynamic 

simulation results

– The same approach can be used regardless of the measurement source

• Focus in this section is on the measurement-based approach

15



Ring-down Modal Analysis

• Ring-down analysis seeks to determine the frequency and damping 

of key power system modes following some disturbance

• There are several different techniques, with the Prony approach the 
oldest (from 1795); introduced into power in 1990 by Hauer, 
Demeure and Scharf

• Regardless of technique, the goal is to represent the response of a 
sampled signal as a set of exponentially damped sinusoidals (modes)
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Goal: Extracting Modes from the Signals 

• The goal is to gain information about the electric grid by extracting 

modal information from its signals

– The frequency and damping of the modes is key

• The premise is we’ll be able to reproduce a complex signal, over a 

period of time, as a set a of sinusoidal modes

– We’ll also allow for linear 

detrending
0.1𝑡 + cos 2𝜋2𝑡
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Example: Summation of Two Damped Exponentials

• This example was created 

by going from the modes to 

a signal

• We’ll be going in the 

opposite direction (i.e., 

from a measured signal to 

the modes) 
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Example: One Signal

This could be any signal; image shows the result of the original 

signal (blue) and the reproduced signal (red) 
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Verification: Linear Trend Line Only
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Verification: Linear Trend Line + One Mode
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Verification: Linear Trend Line + Two Modes
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Verification: Linear Trend Line + Three Modes
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Verification: Linear Trend Line + Four Modes
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Verification: Linear Trend Line + Five Modes

It is hard to tell a difference

on this one, illustrating that 

modes manifest differently in 

different signals
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Measurement-Based Modal Analysis

• There are a number of different approaches

• The idea of all techniques is to approximate a signal, yorg(t), by the sum of other, 

simpler signals (basis functions)

– Basis functions are usually exponentials, with linear and quadratic functions used to detrend 

the signal

– Properties of the original signal can be quantified from basis function properties 

• Examples are frequency and damping

– Signal is considered over time with t=0 as the start

• Approaches sample the original signal yorg(t)
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Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled points from yorg(t) at a 

sampling value of T, starting with t=0, with values yj for j=1…m

– Times are then tj= (j-1)T

– At each time point j, the approximation of yj is 
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Measurement-Based Modal Analysis

• Error (residual) value at each point j is

• The closeness of the fit can be quantified using the Euclidean norm of the 

residuals

• Hence we need to determine  and b

ˆ( , ) ( , )j j j j jr t y y t= −α α
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dwelling on the equations; 

the key here is to 

understand the concepts



Sampling Rate and Aliasing

• The Nyquist-Shannon sampling theory requires sampling at twice the 

highest desired frequency

– For example, to see a 5 Hz frequency we need to sample the signal at a rate of at 

least 10 Hz

• Sampling shifts the frequency spectrum by 1/T (where T is the sample 

time), which causes frequency overlap

• This is known as aliasing, which 

can cause a high frequency 

signal to appear to be a lower 

frequency signal

– Aliasing can be reduced by fast sampling and/or low

pass filters   
Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png 29



One Solution Approach: The Matrix Pencil Method

• There are several algorithms for finding the modes.  We’ll use the Matrix 

Pencil Method

– This is a newer technique for determining modes from noisy signals (from about 

1990,  introduced to power system problems in 2005); it is an alternative to the 

Prony Method

– The Matrix Pencil Method is useful when there is signal noise 

• Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that 

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 

501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.
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Algorithm Details, cont.

• Then calculate Y’s singular values using an economy singular value 

decomposition (SVD)

 

• The ratio of each singular value is then 

compared to the largest singular value c; 

retain the ones with a ratio > than a threshold

– This determines the modal order, M

– Assuming V is ordered by singular 

values (highest to lowest), let Vp be 

then matrix with the first M columns of V

= T
Y UΣV

The computational

complexity increases

with the cube of the number of 

measurements!

This threshold is a value that 

can be changed; decrease it 

to get more modes.

31

In 460 you should understand 

what an SVD is doing since the 

approach is widely used in many 

applications



Aside: Matrix Singular Value Decomposition (SVD) 

• The SVD is a factorization of a matrix that generalizes the eigendecomposition to any 

m by n matrix to produce

where  is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can be used to indicate the 

major components of a matrix (the gist is they provide a way to decrease the rank of a 

matrix)

= T
Y UΣV

The original concept is more than 100 years 

old, but has found lots of recent applications
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Aside: SVD Image Compression Example

Image Source: 

www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Images can be represented with matrices.  

When an SVD is applied and only the 

largest singular values are retained

the image is compressed.   
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SVD is used in many other applications as 

well, including facial recognition and 

principal component analysis (PCA)

http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf
http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf


Matrix Pencil Method with Many Signals

• The Matrix Pencil approach can be used with one signal or with 

multiple signals

• Multiple signals are handled by forming a Yk matrix for each signal k 

using the measurements for that signal and then combining the matrices
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The required computation

scales linearly with the 

number of signals

34



Matrix Pencil Method with Many Signals

• However, when dealing with many signals, usually the signals are 

somewhat correlated, so vary few of the signals are actually need to be 

included to determine the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system modes) while the b 

vector is signal specific (i.e., how the modes manifest in that signal)
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Quickly Determining the b Vectors

• A key insight is from an approach known as the Variable 

Projection Method (from Borden, 2013) that for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium, 

Manhattan, KS, Sept. 2013
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Where m is the 

number of 

measurements

and n is the 

number of modes  
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Matrix Pencil Method with Many Signals

• However, when dealing with many signals, usually the signals are 

somewhat correlated, so vary few of the signals are actually need to be 

included to determine the desired modes

• Ultimately, we are finding

• The  is common to all the signals (i.e., the system modes) while the b 

vector is signal specific (i.e., how the modes manifest in that signal)

1

(t , ) ( , )
n

j j i i j

i

y b t
=

= α α

37



Aside: Pseudoinverse of a Matrix

• The pseudoinverse of a matrix generalizes concept of a matrix inverse to 

an m by n matrix, in which m >= n

– Specifically this is a Moore-Penrose Matrix Inverse

• Notation for the pseudoinverse of A is A+

• Satisfies AA+A = A

• If A is a square matrix, then A+ = A-1

• Quite useful for solving the least squares problem since the least squares 

solution of Ax = b is x = A+ b

• Can be calculated using an SVD
T

T+ +

=

=

A UΣV

A VΣ U
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Least Squares Matrix Pseudoinverse Example

• Assume we wish to fix a line (mx + b = y) to three data points: 

(1,1), (2,4), (6,4)

• Two unknowns, m and b; hence x = [m  b]T

• Setup in form of Ax = b

1 1 1 1 1

2 1 4 so  = 2 1

6 1 4 6 1

m

b

     
      

=      
           

A
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Least Squares Matrix Pseudoinverse Example, cont.

• Doing an economy SVD

• Computing the pseudoinverse

0.182 0.765
6.559 0 0.976 0.219

0.331 0.543
0 0.988 0.219 0.976

0.926 0.345

T

− − 
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0.976 0.219 0.152 0 0.182 0.331 0.926

0.219 0.976 0 1.012 0.765 0.543 0.345
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0.762 0.548 0.310

T

T

+ +

+ +

− − − −     
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− − 
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− 

A VΣ U

A VΣ U

In an economy SVD the  matrix has dimensions of m by m if m < n or n by n if n < m
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Least Squares Matrix Pseudoinverse Example, cont.

• Computing x = [m b]T gives

• With the pseudoinverse approach we immediately see the sensitivity of 

the elements of x to the elements of b

– New values of m and b can be readily calculated if y changes

• Computationally the SVD is order mn2+n3 (with n < m)

– In this example it means it scales linearly with the number of points; matrices with 

m >> n are common

1
0.143 0.071 0.214 0.429

4
0.762 0.548 0.310 1.71

4
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A b

41



Computational Considerations

• When there is just one signal, the procedure scales with the cube of the 

number of measurements

– This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for 

200 measurements

• If multiple signals are included, it scales linearly with the number of 

signals

• However, a key insight is once  has been determined, each bk can be 

determined with a matrix multiply of a matrix with dimensions of the 

number of modes and number of measurements 

( ) ( )

( )  is the pseudoinverse of ( )

k k k k

+

+

= → =y Φ α b b Φ α y

Φ α Φ α

We can quickly determine how well

 matches each signal
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Modal Analysis in PowerWorld

• Goal is to make modal analysis easy to use, and easy to visualize the 

results

• Provided tool can be used with either transient stability results or 

actual system signals (e.g., from PMUs)

• Three ways to access in PowerWorld 

– From the Modal Analysis button (in Add-Ons)

– On the Transient Stability Analysis form left menu, Modal Analysis (right 

below SMIB Eigenvalues)

– By right-clicking on a transient stability or plot case information display, and 

selecting Modal Analysis Selected Columns or Modal Analysis All 

Columns
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Modal Analysis: Three Generator Example 

• A short fault at t=0 gets the below three generator case oscillating with 

multiple modes (mostly clearly visible for the red and the green curve)
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Speed_Gen 3 #1
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Modal Analysis: Three Generator Example 

• Open the case B3_CLS_UnDamped

– This system has three classical generators without damping; the default event is 

a self clearing fault at bus 1

• Run the transient stability for 5 seconds

• To do modal analysis, on the Transient Stability page select Results 

from RAM, view just the generator speed fields, right-click and select 

Modal Analysis All Columns

– This display the Modal Analysis Form 
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Modal Analysis Form

Key results are shown in the upper-right of the 

form.  There are two main modes, one at 2.23Hz 

and one at 1.51; both have very little damping.  

First click on Do Modal Analysis to run the modal analysis 

Right-click on signal 

to view its dialog
Signals to 

include
46



Three Generator Example: Signal Dialog

• The Signal Dialog provides details about each signal, including its 

modal components and a comparison between the original and 

reproduced signals (example for gen 3)
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Plotting the original and reproduced 

signals shows a near exact match
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Caution: Setting Time Range Incorrectly Can Result 
in Unexpected Results!

• Assume the system is run with no disturbance for two seconds, and then 

the fault is applied and the system is run for a total of seven seconds (five 

seconds post-fault)

– The incorrect approach would be to try to match the entire signal; rather just match 

from after the fault

– Trying to match the full

signal between 0 and 7 seconds 

required eleven modes!

– By default the Modal Analysis Form 

sets thedefault start time to

immediately after the last event
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GENROU Example with Damping

• Open the case B3_GENROU, which changes the GENCLS to GENROU 

models, adding damping

– Also each has an EXST1 exciter and a TGOV1 governor

– The simulation runs for seven seconds, with the fault occurring at two seconds; 

modal analysis is done from the time the fault is cleared until the end of the 

simulation.  
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The image shows the generator 

speeds.  The initial rise in the speed 

is caused by the load dropping 

during the fault, causing a power 

mismatch; this is corrected by the 

governors.  Note the system now 

has damping; modal analysis tells 

us how much.   
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GENROU Example with Damping

Start time 

default value

Mode frequency, damping, and 

largest contribution of each mode in 

the signals.  The slower mode is 

associated with the governors.
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GENROU Example with Damping

• Left image show how well the speed for generator 1 is  

approximated by the modes
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