ECEN 460 Power System Operation and Control Spring 2025

Lecture 21: Load Modeling, Modal Analysis

Prof. Tom Overbye Special Guest Lecture Given by Sanjana Kunkolienkar Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u>

Announcements

- Please read Chapter 13
- By April 9 do Problem Set A
- Schedule for the rest of the semester is
 - Lab 10 week of April 7 consisting of time for the design groups to meet; all groups need to turn in a brief progress report in lieu of a lab report
 - Lab 3 week of April 14 (optional, ungraded machine lab)
 - Lab 11 (project presentations) by the individual teams to their TA before the end of classes (on or before April 29)
 - Exam 2 on Wednesday April 23 during class
 - Design project due at 9:30 am on May 1 (i.e., at the end of our final slot; no final)

Transient Limit Monitors

• During a transient contingency how fast the voltage recovers is a key metric

VOLTAGE PERFORMANCE PARAMETERS

Similar performance criteria exist for frequency deviations

Image from WECC Planning and Operating Criteria

ĀМ

Composite Load Models

- Many aggregate loads are best represented by a combination of different types of load
 - Known as composite load models
 - Important to keep in mind that the actual load is continually changing, so any aggregate load is at best an approximation
 - Hard to know load behavior to extreme disturbances without actually faulting the load
- Early models included a number of loads at the transmission level buses (with the step-down transformer), with later models including a simple distribution system model

CLOD Model

• The CLOD model represents the load as a combination of large induction motors, small induction motors, constant power, discharge lighting, and other

ĀМ

Composite Load Model

• Contains up to four motors or single phase induction motor models; also includes potential for solar PV

Ā Ň

A Concern: Fault Induced Delayed Voltage Recovery (FIDVR)

- FIDVR is a situation in which the system voltage remains significantly reduced for at least several seconds following a fault (at either the transmission or distribution level)
 - It is most concerning in the high voltage grid, but found to be unexpectedly prevalent in the distribution system
- Stalled residential air conditioning units are a key cause of FIDVR – they can stall within the three cycles needed to clear a fault

AM

7

Oscillations

- An oscillation is just a repetitive motion that can be either undamped, positively damped (decaying with time) or negatively damped (growing with time)
- If the oscillation can be written as a sinusoid then

$$e^{\alpha t} \left(a \cos(\omega t) + b \sin(\omega t) \right) = e^{\alpha t} C \cos(\omega t + \theta)$$

where $C = \sqrt{A^2 + B^2}$ and $\theta = \tan\left(\frac{-b}{a}\right)$

• The damping ratio is

$$\xi = \frac{-\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

The percent damping is just the damping ratio multiplied by 100; goal is sufficiently positive damping

Power System Oscillations

- Power systems can experience a wide range of oscillations, ranging from highly damped and high frequency switching transients to sustained low frequency (< 1 Hz) inter-area oscillations affecting an entire interconnect
- Types of oscillations include
 - Transients: Usually high frequency and highly damped
 - Local plant: Usually from 1 to 5 Hz
 - Inter-area oscillations: From 0.15 to 1 Hz
 - Slower dynamics: Such as AGC, less than 0.15 Hz
 - Subsynchronous resonance: 10 to 50 Hz (less than synchronous)

Example Oscillations

• The left graph shows an oscillation that was observed during a 1996 WECC Blackout, the right from the 8/14/2003 blackout

Ā M

Causes of Power System Oscillations

- The response of a simple system can be divided into its natural response versus its forced response
 - The natural response tells how the system will response to an initial disturbance without any additional (external) influences; this response shows the system's modes
 - A forced response is associated with an external disturbance; if the external disturbance is periodic then the system will oscillate at least partially at this frequency
 - Often forced oscillations are due to control failures
- Resonance occurs when a forced response is at a similar frequency to one of the system's modes
- An power system can experience both types of oscillations

Phasor Measurement Units (PMUs) and SynchroPhasors

- Initially a challenge with understanding power system dynamics was the lack of high speed, synchronized measurements
 - Supervisory Control and Data Acquisition (SCADA) measured the system analog values every couple of seconds
- This has gradually changed over the last several decades with the now widespread deployment of phasor measurement units (PMUs) that are able to use time synchronized measurements to accurately determine values at rates of 30 times per second

Modes

- A mode is a concept from linear system analysis
 - Electric grids certainly are not linear, but usually their response to small disturbances is approximated as linear
- A mode corresponds to one of the eigenvalues of the response or, for oscillations, a complex pair of eigenvalues
- A mode has a frequency and damping; all parts of the system oscillate with this pattern
- The mode shape tells how parts of the system participate in the mode
- There can be multiple modes in a system; power systems can have many modes

Small Signal Analysis (SSA)

- Small signal stability is the ability of the power system to maintain synchronism following a small disturbance
 - System is continually subject to small disturbances, such as changes in the load
- The operating equilibrium point (EP) obviously must be stable
- Small signal analysis (SSA) is studied to get a feel for how close the system is to losing stability and to get additional insight into the system response
 - There must be positive damping

Model-Based SSA

- The system can be linearized about an equilibrium point

 $\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{y}$ $\mathbf{0} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{y}$

• Eliminating Δy gives $\Delta \dot{x} = (A - BD^{-1}C)\Delta x = A_{sys}\Delta x$ If there are just classical generator models then **D** is the power flow Jacobian; otherwise it also includes the stator algebraic equations.

We won't be covering model-based SSA in 460

Small Signal Analysis and Measurement-Based Modal Analysis

- The alternative to model-based SSA is to use measurement-based modal analysis to determine the observed dynamic properties of a system
 - Input can either be measurements from devices (such as PMUs) or dynamic simulation results
 - The same approach can be used regardless of the measurement source
- Focus in this section is on the measurement-based approach

Ring-down Modal Analysis

- Ring-down analysis seeks to determine the frequency and damping of key power system modes following some disturbance
- There are several different techniques, with the Prony approach the oldest (from 1795); introduced into power in 1990 by Hauer, Demeure and Scharf
- Regardless of technique, the goal is to represent the response of a sampled signal as a set of exponentially damped sinusoidals (modes)

$$y(t) = \sum_{i=1}^{q} A_i e^{\sigma_i t} \cos\left(\omega_i t + \phi_i\right) \quad \text{Damping (\%)} = \frac{-\alpha_i}{\sqrt{\alpha_i^2 + \omega_i^2}} \times 100$$

Goal: Extracting Modes from the Signals

ĀM

- The goal is to gain information about the electric grid by extracting modal information from its signals
 - The frequency and damping of the modes is key
- The premise is we'll be able to reproduce a complex signal, over a period of time, as a set a of sinusoidal modes
 - We'll also allow for linear detrending $0.1t + \cos(2\pi 2t)$

Example: Summation of Two Damped Exponentials

- This example was created by going from the modes to a signal
- We'll be going in the ulletopposite direction (i.e., from a measured signal to the modes)

Example: One Signal

A M

×

This could be any signal; image shows the result of the original signal (blue) and the reproduced signal (red)

Start Time Used End Time Used Time Window 3.000000 10.000000	Gen Speed 3 - 10			
Contingency	My Transient Conting	gency		
Object	Gen 'Bus1_16.50' '1'			
Field	TSSpeed			
Statistics Modes and Damping Object Fields				
Undamped Modes A (constant) 0 Trend 1.00	B (linear) 0.0000617	C (quadratic)	Erfai CAPT	
: 🔜 🖸 🏥 ∜* 🐝 👯 🌆 🦛 Records	▼ Set ▼ Columns	* 📴 * 📲 🖉 * 📴 * !	₩ ▼ 124 ABED f(x) • 🛗 Options •
Modes for Selected Signal		Update	Auto	1.0012
Mode Magnitude Magnitude An Include End Reproduce	gle Rank Fr	Mode Mode requency Damping %	Mode Lambda	
1 YES 0.00166 0.0000643 1	11.15 41.13	0.171 39.67	-0.465	
3 YES 0.00097 0.0000488	69.05 24.01	1.364 4.98	-0.427	
4 YES 0.0000167 0.000243 -1	80.00 6.02	0.000 -100.00	0.383	1.0004
5 123 0.000225 00000445	39.04 0.335	2.017 0.99	-0.000	1.0002
				0.9998
				0.9996
				0.9994
				3 4 5 6 7 8 9 10
				- Reve Signed - Reproduced Signed
				Iv — Raw Signar Iv Reproduced Signar
				OK Cancel

Verification: Linear Trend Line Only

Verification: Linear Trend Line + One Mode

🔘 Result Analysis Signal		- 🗆 ×
Start Time Used End Time Used Time Window	Gen Speed 3 - 10	
3.000000 10.000000 Contingency	My Transient Contingency	
Object	Gen 'Bus1_16.50' '1'	
Field	TSSpeed	
Statistics Modes and Damping Object Fields		
Undamped Modes A (constant) 0 Trend 1.00	B (linear) C (quadratic)	
: 🛅 ∰ ୬ ० 🖧 🕫 🕅 💏 Record	ls - Set - Columns - - - - -	, san isec isec f(x) ▼ Ⅲ Options ▼
Modes for Selected Signal	Update	Auto 1.0012
Mode Magnitude Magnitude An Include End Reproduce	ngle Rank Mode Mode Mo Frequency Damping % Lam	de 1.001
1 YES 0.00166 0.0000643	111.15 41.13 0.171 39.67 ·	0.465
3 NO 0.00097 0.0000256	69.05 24.01 1.364 4.98	0.427 1.0004
4 NO 0.000167 0.000243 - 5 NO 0.0000223 000000445	180.00 6.02 0.000 -100.00 -59.64 0.553 2.017 6.99	0.383 0.888 1.0002
	-55104 0.555 2.017 0.55	0.9996 0.9996 0.9994 3 4 5 6 7 8 9 10 Ver Raw Signal Ver Reproduced Signal
		OK Cancel

Verification: Linear Trend Line + Two Modes

💽 Result Analysis Signal	- D X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
: 📰 🛅 🏗 👫 號 👭 🌺 Records - Set - Columns - 📴 - 🏙 - 🇱 - 🏥	SORT ISUED f(X) ▼ Ⅲ Options ▼
Modes for Selected Signal Update	Auto 1.0012
Mode Magnitude Magnitude Angle Rank Mode Mode	le 1.001 da 1.0008
1 YES 0.00166 0.000643 111.15 41.13 0.171 39.67 -0. 2 YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0. 3 NO 0.000097 0.0000488 69.05 24.01 1.364 4.98 -0. 4 NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.	465 543 427 383 1.0004
5 NO 0.0000223 J000000445 -59,64 0.553 2.017 6.99 -0	.888 1.0002 1 0.9998
	0.9996
	3 4 5 6 7 8 9 10
	OK Cancel

Verification: Linear Trend Line + Three Modes

Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency Object Gen Busi_16.50'1' Field TSSpeed Statetics Modes and Damping A (constant) 0 Trend 1.00 0.0000517 0.0 Image: Image All Constant B (mear) C (quadratic) 0.0 Image:	💽 Result Analysis Signal	- 🗆 X
Object Clem Bus_16.50'1' Field TSSpeed Statistics Modes and Damping Object Fields Undamped Modes A (constant) 8 (inear) C (quadratic) 0 Trend 1.000 0.0000517 0.0 Image: Statistics Modes for Selected Signal Trend 1.001 0.0000517 0.0 Image: Statistics Modes for Selected Signal Modes for Selected Signal Total Total <td>Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency</td> <td></td>	Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency	
Statistic Modes and Damping Object Fields Undemed Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 : : : : : : : : Modes for Setcred Signal : </td <td>Object Gen 'Bus1_16.50''1' Field TSSpeed</td> <td></td>	Object Gen 'Bus1_16.50''1' Field TSSpeed	
Image: Control of the start of the star	Statistics Modes and Damping Object Fields Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
Mode Include Reproduce Magnitude End Angle Rank Mode Frequency Mode Damping 9 Mode Lambda 1 YES 0.00166 0.000043 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00167 0.000256 0.00 28.28 0.000 10.00 -0.543 3 NO 0.000097 0.0000488 69.05 24.01 1.364 4.98 -0.427 4 YES 0.000167 0.000223 -180.00 6.02 0.000 -18.99 -0.888 5 NO 0.0000223 0.00000445 -59.64 0.553 2.017 6.99 -0.888 0.9996 0.9994	: 雖 * * * * * * * * * * * * * * * * * *	x) = III Options =
	Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.00097 0.0000488 69.05 24.01 1.364 4.98 -0.427 4 YES 0.000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 J000000445 -59.64 0.553 2.017 6.99 -0.888	1.001 1.001 1.0006 1.0006 1.0004 1.0002 1.0002 1.0002 1.0004 1.0002 1.0004 1.0002 1.0004 1.0004 1.0004 1.0004 1.0006 1.0006

Verification: Linear Trend Line + Four Modes

🔘 Result Analysis Signal	- D X
Start Time Used End Time Used Time Window	Gen Speed 3 - 10
Contingency	My Transient Contingency
Object	Gen 'Bus1_16.50' '1'
Field	TSSpeed
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) 0 Trend 1.00	B (linear) C (quadratic) 0.0000617 0.0
: 🛄 📄 🎬 위송 *.00 +.00 🏟 🍓 Record	s - Set - Columns - 📴 - 🏙 - 🇱 - 🇱 f 🛛 - 🌐 Options -
Modes for Selected Signal	Update Auto
Mode Magnitude Magnitude Ar Include End Reproduce	ngle Rank Mode Mode Damping % Lambda 1.001
1 YES 0.00166 0.000043 2 YES 0.00114 0.000256 3 YES 0.00097 0.0000488 4 YES 0.0000167 0.000243 - 5 NO 0.0000223 000000445	111.15 41.13 0.171 39.67 -0.465 0.00 28.28 0.000 100.00 -0.543 69.05 24.01 1.364 4.98 -0.427 180.00 6.02 0.000 -100.00 0.383 -59.64 0.553 2.017 6.99 -0.888 0.9996 0.9996 0.9994 3 4 5 6 7 8 9 10 V - Raw Signal V - Reproduced Signal
	OK Cancel

Verification: Linear Trend Line + Five Modes

💽 Result Analysis Signal — 🗆 >	×
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic)	
$: \square \square$	
$ \underline$	
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00017 0.000256 0.00 28.28 0.000 100.00 -0.543 3 YES 0.0000167 0.000243 -180.00 6.02 0.000 -0.0888 5 YES 0.00000223 J000000445 -59.64 0.553 2.017 6.99 -0.888 1 0.9998 - - - - -	
It is hard to tell a difference on this one, illustrating that $\boxed{-Raw Signal \lorReproduced Signal}$)
madag manifagt differently in	
Inodes mannest differently m	
different signals	

Measurement-Based Modal Analysis

- There are a number of different approaches
- The idea of all techniques is to approximate a signal, y_{org}(t), by the sum of other, simpler signals (basis functions)
 - Basis functions are usually exponentials, with linear and quadratic functions used to detrend the signal
 - Properties of the original signal can be quantified from basis function properties
 - Examples are frequency and damping
 - Signal is considered over time with t=0 as the start
- Approaches sample the original signal $y_{org}(t)$

Measurement-Based Modal Analysis

- Vector **y** consists of m uniformly sampled points from $y_{org}(t)$ at a sampling value of ΔT , starting with t=0, with values y_j for j=1...m
 - Times are then $t_i = (j-1)\Delta T$
 - At each time point j, the approximation of y_j is $\hat{y}_j(t_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$

In 460 we won't be dwelling on the equations

where α is a vector with the real and imaginary eigenvalue components,

with $\phi_i(t_j, \mathbf{a}) = e^{\alpha_i t_j}$ for α_i corresponding to a real eigenvalue, and $\phi_i(t_i, \mathbf{a}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_i)$ and $\phi_{i+1}(\mathbf{a}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_i)$

for a complex eigenvector value

Measurement-Based Modal Analysis

A M

- Error (residual) value at each point j is
 - $r_j(t_j, \boldsymbol{\alpha}) = y_j \hat{y}_j(t_j, \boldsymbol{\alpha})$
- The closeness of the fit can be quantified using the Euclidean norm of the residuals

$$\frac{1}{2}\sum_{j=1}^{m}(y_j-\hat{y}_j(t_j,\boldsymbol{\alpha}))^2 = \frac{1}{2}\left\|\mathbf{r}(\boldsymbol{\alpha})\right\|_2^2$$

• Hence we need to determine $\boldsymbol{\alpha}$ and \boldsymbol{b}

$$\hat{y}_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

In 460 we won't be dwelling on the equations; the key here is to understand the concepts

Sampling Rate and Aliasing

- The Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency
 - For example, to see a 5 Hz frequency we need to sample the signal at a rate of at least 10 Hz
- Sampling shifts the frequency spectrum by 1/T (where T is the sample time), which causes frequency overlap
- This is known as aliasing, which can cause a high frequency signal to appear to be a lower frequency signal

Aliasing can be reduced by fast sampling and/or low pass filters

Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png

One Solution Approach: The Matrix Pencil Method

- ÂM
- There are several algorithms for finding the modes. We'll use the Matrix Pencil Method
 - This is a newer technique for determining modes from noisy signals (from about 1990, introduced to power system problems in 2005); it is an alternative to the Prony Method
 - The Matrix Pencil Method is useful when there is signal noise
- Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that

$$\mathbf{Y} = \begin{bmatrix} y_1 & y_2 & \dots & y_{L+1} \\ y_2 & y_3 & \dots & y_{L+2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L} & y_{m-L+1} & \dots & y_m \end{bmatrix}$$

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.

31

Algorithm Details, cont.

Then calculate Y's singular values using an economy singular value decomposition (SVD)
 In 460 you should under

 $\mathbf{Y} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

- The ratio of each singular value is then compared to the largest singular value σ_c ; retain the ones with a ratio > than a threshold
 - This determines the modal order, M
 - Assuming V is ordered by singular values (highest to lowest), let V_p be then matrix with the first M columns of V

In 460 you should understand what an SVD is doing since the approach is widely used in many applications

The computational complexity increases with the cube of the number of measurements!

This threshold is a value that can be changed; decrease it to get more modes.

Aside: Matrix Singular Value Decomposition (SVD)

- The SVD is a factorization of a matrix that generalizes the eigendecomposition to any m by n matrix to produce
 - $\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

The original concept is more than 100 years old, but has found lots of recent applications

where Σ is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can be used to indicate the major components of a matrix (the gist is they provide a way to decrease the rank of a matrix)

Aside: SVD Image Compression Example

Figure 3.1: Image size 250x236 - modes used {{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,original image}} Images can be represented with matrices. When an SVD is applied and only the largest singular values are retained the image is compressed.

SVD is used in many other applications as well, including facial recognition and principal component analysis (PCA)

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

33

AM

Matrix Pencil Method with Many Signals

Ă**M**

- The Matrix Pencil approach can be used with one signal or with multiple signals
- Multiple signals are handled by forming a \mathbf{Y}_k matrix for each signal k using the measurements for that signal and then combining the matrices

$$\mathbf{Y}_{k} = \begin{bmatrix} y_{1,k} & y_{2,k} & \cdots & y_{L+1,k} \\ y_{2,k} & y_{3,k} & \cdots & y_{L+2,k} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L,k} & y_{m-L+1,k} & \cdots & y_{m,k} \end{bmatrix}$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{l} \\ \vdots \\ \mathbf{Y}_{N} \end{bmatrix}$$

The required computation scales linearly with the number of signals

Matrix Pencil Method with Many Signals

- A M
- However, when dealing with many signals, usually the signals are somewhat correlated, so vary few of the signals are actually need to be included to determine the desired modes
- Ultimately we are finding

$$y_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

• The α is common to all the signals (i.e., the system modes) while the **b** vector is signal specific (i.e., how the modes manifest in that signal)

Quickly Determining the b Vectors

• A key insight is from an approach known as the Variable Projection Method (from Borden, 2013) that for any signal k

 $\mathbf{y}_k = \mathbf{\Phi}(\boldsymbol{\alpha}) \mathbf{b}_k$

And then the residual is minimized by selecting $\mathbf{b}_k = \mathbf{\Phi}(\mathbf{\alpha})^+ \mathbf{y}_k$ Where m is the where $\mathbf{\Phi}(\mathbf{\alpha})$ is the m by n matrix with values $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_i t_j}$ if α_i corresponds to a real eigenvalue, and $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_j)$ and $\Phi_{ji+1}(\mathbf{\alpha}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_j)$ mumber of modes for a complex eigenvalue; $t_j = (j-1)\Delta T$ Finally, $\mathbf{\Phi}(\mathbf{\alpha})^+$ is the pseudoinverse of $\mathbf{\Phi}(\mathbf{\alpha})$

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," *Proc. 2013 North American Power Symposium*, Manhattan, KS, Sept. 2013

Matrix Pencil Method with Many Signals

- A M
- However, when dealing with many signals, usually the signals are somewhat correlated, so vary few of the signals are actually need to be included to determine the desired modes
- Ultimately, we are finding

$$y_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

• The α is common to all the signals (i.e., the system modes) while the **b** vector is signal specific (i.e., how the modes manifest in that signal)

Aside: Pseudoinverse of a Matrix

- A M
- The pseudoinverse of a matrix generalizes concept of a matrix inverse to an m by n matrix, in which m >= n
 - Specifically this is a Moore-Penrose Matrix Inverse
- Notation for the pseudoinverse of A is A⁺
- Satisfies $AA^+A = A$
- If **A** is a square matrix, then $\mathbf{A}^+ = \mathbf{A}^{-1}$
- Quite useful for solving the least squares problem since the least squares solution of Ax = b is $x = A^+ b$
- Can be calculated using an SVD A =

$$\mathbf{A} = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^{\mathrm{T}}$$

Least Squares Matrix Pseudoinverse Example

- Assume we wish to fix a line (mx + b = y) to three data points:
 (1,1), (2,4), (6,4)
- Two unknowns, m and b; hence $\mathbf{x} = [m \ b]^T$
- Setup in form of Ax = b

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} \text{ so } \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix}$$

Least Squares Matrix Pseudoinverse Example, cont.

• Doing an economy SVD

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} = \begin{bmatrix} -0.182 & -0.765 \\ -0.331 & -0.543 \\ -0.926 & 0.345 \end{bmatrix} \begin{bmatrix} 6.559 & 0 \\ 0 & 0.988 \end{bmatrix} \begin{bmatrix} -0.976 & -0.219 \\ 0.219 & -0.976 \end{bmatrix}$$

• Computing the pseudoinverse

$$\mathbf{A}^{+} = \mathbf{V} \, \mathbf{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.976 & 0.219 \\ -0.219 & -0.976 \end{bmatrix} \begin{bmatrix} 0.152 & 0 \\ 0 & 1.012 \end{bmatrix} \begin{bmatrix} -0.182 & -0.331 & -0.926 \\ -0.765 & -0.543 & 0.345 \end{bmatrix}$$
$$\mathbf{A}^{+} = \mathbf{V} \, \mathbf{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix}$$

In an economy SVD the Σ matrix has dimensions of m by m if m < n or n by n if n < m

Least Squares Matrix Pseudoinverse Example, cont.

• Computing $\mathbf{x} = [m b]^T$ gives

$$\mathbf{A}^{+}\mathbf{b} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.429 \\ 1.71 \end{bmatrix}$$

- With the pseudoinverse approach we immediately see the sensitivity of the elements of **x** to the elements of **b**
 - New values of m and b can be readily calculated if y changes
- Computationally the SVD is order mn^2+n^3 (with n < m)
 - In this example it means it scales linearly with the number of points; matrices with m >> n are common

Computational Considerations

- A M
- When there is just one signal, the procedure scales with the cube of the number of measurements
 - This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for 200 measurements
- If multiple signals are included, it scales linearly with the number of signals
- However, a key insight is once α has been determined, each \mathbf{b}_k can be determined with a matrix multiply of a matrix with dimensions of the number of modes and number of measurements

$$\mathbf{y}_k = \mathbf{\Phi}(\mathbf{\alpha})\mathbf{b}_k \rightarrow \mathbf{b}_k = \mathbf{\Phi}(\mathbf{\alpha})^+\mathbf{y}_k$$

 $\Phi(\alpha)^+$ is the pseudoinverse of $\Phi(\alpha)$

We can quickly determine how well α matches each signal

Modal Analysis in PowerWorld

- Goal is to make modal analysis easy to use, and easy to visualize the results
- Provided tool can be used with either transient stability results or actual system signals (e.g., from PMUs)
- Three ways to access in PowerWorld
 - From the Modal Analysis button (in Add-Ons)
 - On the Transient Stability Analysis form left menu, Modal Analysis (right below SMIB Eigenvalues)
 - By right-clicking on a transient stability or plot case information display, and selecting Modal Analysis Selected Columns or Modal Analysis All Columns

Modal Analysis: Three Generator Example

• A short fault at t=0 gets the below three generator case oscillating with multiple modes (mostly clearly visible for the red and the green curve)

Ā M

Modal Analysis: Three Generator Example

- Open the case **B3_CLS_UnDamped**
 - This system has three classical generators without damping; the default event is a self clearing fault at bus 1
- Run the transient stability for 5 seconds
- To do modal analysis, on the Transient Stability page select Results from RAM, view just the generator speed fields, right-click and select **Modal Analysis All Columns**
 - This display the Modal Analysis Form

Modal Analysis Form

First click on **Do Modal Analysis** to run the modal analysis

Modal Analysis Form										<u>–</u> П	×
			Results								~
Modal Analysis Status Solved at 11/9/2021 10:02:26 AM			Number o	f Complex and Re	Nodec 2	🗹 In	clude Detrend in	Reproduced Sign	nals		
Data Source Type		Number o	Complex and Re	ai Modes 2		ibtract Reproduc	ed from Actual				
○ From Plot ○ File, Comtrade CFG	Matrix Pencil (Once)		Lowest Pe	ercent Damping	-0	.011					
File, WECC CSV 2 None, Existing Data	O Iterative Matrix Pencil						Update Reprodu	uced Signals			
O File, JSIS Format O File, CSV (Data Starts Line	2)		Real and	Complex Modes -	Editable to Cha	ange Initial Guesse	S				
○ File, Comtrade CFF	O Dynamic Mode Decomp	osition	E	equency (Hz)	amping (%)	Largest N	ame of Signal	Average P	atio Average	Largest	Name of
Data Source Inputs from Plots or Files	De Madel Anal			requericy (riz)	amping (76)	Component in w	ith Largest	omponent in	to Largest	Component in	with Lar
	Do Modal Analy	SIS				Mode, C	omponent in	Mode, Co	omponent in	Mode, Scaled	Compor
From Plot Gen_Speed						Unscaled N	lode,	Unscaled	Mode,		Mode, S
From File Browse	Save in JSIS Format	Save to CSV		2.222	0.001	0.000010	nscaled	0.00014	UnScaled		C
				2.232	0.001	0.00642 G	en Bus 1#15 an Bus 2#15	0.00314	0.4900	0.615	Gen Bus
Just Load Signals Group Disabled for Existing Data				1.510	-0.011	0.00005 G		0.00045	0.0050	0.015	Gen 5 #
Data Sampling Time (Seconds) and Frequency (Hz)											
Start Time 0.050 A End Time 5.000 A											
Maximum Hz 5.000 Update Sampled Data	Store Results in PWB File										
	Always Reload Signals from	Source	<								>
Input Data, Actual Sampled Input Data Signals Options Re	eproduced Data Iterative Matrix	Pencil Iteration D	Details								
Type Name Latitude Lo	ngitude Description Units	Include	Include	Exclude from	Alwa s inclu	de Detrend	Detrend	Post-Detrend	Post-Detreno	d Solved	Avera
			Reproduced	Iterative Matrix	in Itentive	Parameter A	Parameter B	Number Zeros	Standard		Ur
				Pencil (IMP)	Matrix Pencil				Deviation		
		WE C	NEC.		(IMP)	1.000			0.00457	1055	
Gen Gen Bus 1 #1 Speed	Speed	TES	TES VEC	NO	NO	1.0024	+ 0.0004	+ (0.00457	TES VEC	
3 Gen Gen 3 #1 Speed	Speed	YES	YES	NO	NO	1.002	0.000		0.00082	YES	
<		•									>
👖 Close 🍼 💎 🕇	Help										
au - 1	•										

Right-click on signal to view its dialog

Signals to include

Key results are shown in the upper-right of the form. There are two main modes, one at 2.23Hz and one at 1.51; both have very little damping.

Three Generator Example: Signal Dialog

- Ă,M
- The **Signal Dialog** provides details about each signal, including its modal components and a comparison between the original and reproduced signals (example for gen 3)

e	Gen 3 #1 Speed	Data Detrend Paran	neters			Output Summary	
e	Gen	Detrend Model = A	+ B*(t-t0) + C*(t-t0)^2	Used Detrend Model	Linear	Average Error. Scaled by SD	0.0000
s		Use Case Def	ault Detrend Model	Parameter A	1.0025	Average Error. Unscaled	0.0000
cription	Speed	Signal Specific D	etrend Model	Parameter B	0.0003	Cost Function Value, Scaled	0.0068
Include ir	n Modal Analysis	None	Linear	Parameter C	0.0000	Include Detrend in Reprodu	uced Signal
Always E	xclude Signal During IMP	◯ Constant	○ Quadratic	Standard Deviation (SD)	0.0008	Update Reproduced	
lways I	nclude Signal During IMP			riad and Daras durad Car			
tual Inpu	It Sampled Input Fasi	Original Value	Reproduced Value	Difference	ai Comparison		
1	0.050	1.002	1.002	0.000			
2	0.058	1.002	1.002	0.000			
3	0.067	1.002	1.002	0.000			
4	0.075	1.002	1.002	0.000			
5	0.083	1.002	1.002	0.000			
6	0.092	1.002	1.002	0.000			
7	0.100	1.002	1.002	0.000			
8	0.108	1.002	1.002	0.000			
9	0.117	1.002	1.003	0.000			
10	0.125	1.003	1.003	0.000			
11	0.133	1.003	1.003	0.000			
12	0.142	1.003	1.003	0.000			
13	0.150	1.003	1.003	0.000			
14	0.158	1.003	1.003	0.000			
15	0.167	1.003	1.003	0.000			
16	0.1/5	1.003	1.003	0.000			
4.77	0.183	1.003	1.003	0.000			
17	0.192	1.003	1.003	0.000			
17 18		1.003	1.003	0.000			
17 18 19	0.200	1.007	1.007	0.000			

Plotting the original and reproduced signals shows a near exact match

Caution: Setting Time Range Incorrectly Can Result in Unexpected Results!

- Assume the system is run with no disturbance for two seconds, and then the fault is applied and the system is run for a total of seven seconds (five seconds post-fault)
 - The incorrect approach would be to try to match the entire signal; rather just match from after the fault
 - Trying to match the full
 signal between 0 and 7 seconds
 required eleven modes!
 - By default the Modal Analysis Form sets thedefault start time to immediately after the last event

GENROU Example with Damping

- Open the case **B3_GENROU**, which changes the GENCLS to GENROU models, adding damping
 - Also each has an EXST1 exciter and a TGOV1 governor
 - The simulation runs for seven seconds, with the fault occurring at two seconds; modal analysis is done from the time the fault is cleared until the end of the simulation.

The image shows the generator speeds. The initial rise in the speed is caused by the load dropping during the fault, causing a power mismatch; this is corrected by the governors. Note the system now has damping; modal analysis tells us how much.

GENROU Example with Damping

Modal Analysis Form										- [ТХ	
Modal Analysis Status Solved at 11/9/2021 10:07:4	1 AM	Calculation Method	d]	Results Number	of Complex and I	eal Modes 4		✓ Include Detrend ✓ Subtract Reprod	in Reproduced S luced from Actua	ignals I	
File, WECC CSV 2 File, JSIS Format File, Combrade CFF	Data a Starts Line 2)	Matrix Pencil (C Iterative Matrix Dynamic Mode	once) x Pencil Decomposit	tion	Real and	Percent Damping	- Editable to C	14.022 nange Initial G	Update Repr uesses	oduced Signals		
Data Source Inputs from Plots or Files From Plot Gen_Speed	~	Do Mod	dal Analysis	ave to CSV		Frequency (Hz)	Damping (%)	Largest Component Mode, Unscaled	Name of Signa in with Largest Component in Mode, Unscaled	Average Component in Mode, Unscaled	Ratio Aver to Large Componer Mode, UnScale	
From File Just Load Signals Group Disabled for Exist	Browse	3876 11 3313 1 0111			1 2 3 4	2.053 1.649 0.236 0.098	11.353 19.638 65.427 -34.022	0.003	852 Gen 3 #1 Spee 152 Gen Bus 2 #1 S 1562 Gen Bus 2 #1 S 188 Gen Bus 1 #1 S	0.00231 0.00292 0.00640 0.00084	0.6 0.6 0.5 0.5	
Data Sampling Time (Seconds) and Frequency (Hz) Start Time 2.050 🔪 End Time Maximum Hz 5.000 🔪 Update Sampled D	7.000 🔹	Store Results in PV	NB File			0,050	R				01.	
nput Data, XC lar Sampled Input Data Signals	Options Reprodu	Always Reload Sig	nals from So e Matrix Per	ource ncil Iteration De	< etcails						>	
Tipe Name La	titude Longitu	de Description	Units	Include	Include Reproduce	Exclude from Iterative Mat Pencil (IMP)	Always ina ix in Iterative Matrix Peno (IMP)	ide Detrei Paramet	nd Detrend ter A Parameter	Post-Detrei B Number Zei	nd Post-D ros Stanı Devia	
1 Gen Gen Bus 1 #1 Speed 2 Gen Gen Bus 2 #1 Speed 3 Gen Gen 3 #1 Speed		Speed Speed Speed	YE YE YE		ies ies ies	Mo	de fi	equ	ency,	dam	npin	g, and
	7 Help		Print			larg	est c	cont	ributi	on o	fea	ch mode
	3 Help					the	sign	als.	The	slow	ver n	node is
tart time					*	asso	ociat	ed v	with t	he go	over	nors.
efault value												

GENROU Example with Damping

Left image show how well the speed for generator 1 is approximated by the modes
 More signal details

Actual Input Sampled Input Fast Fourier Transform Results Modal Results Original and Reproduced Signal Comparison

	Damping (%)	Frequency (Hz)	Magnitude Scaled by SD	Magnitude, Unscaled	Angle (Deg)	Lambda	Include in Reproduced Signal
1	11.353	2.053	2.300	0.003	13.82	-1.474	YES
2	19.638	1.649	2.038	0.003	10.46	-2.075	YES
3	65.427	0.236	4.757	0.006	-91.36	-1.283	YES
4	-34.022	0.098	0.689	0.001	135.64	0.222	YES

Just the 2.05 Hz mode