#### ECEN 460 Power System Operation and Control Spring 2025

#### Lecture 22: Modal Analysis, Stabilizers Voltage Stability

Prof. Tom Overbye Special Guest Lecture Given by Sanjana Kunkolienkar Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u>



#### Announcements



- Please read Chapter 13
- By April 9 do Problem Set A
- Schedule for the rest of the semester is
  - Lab 10 week of April 7 consisting of time for the design groups to meet; all groups need to turn in a brief progress report in lieu of a lab report
  - Lab 3 week of April 14 (optional, ungraded machine lab, Wednesday times only; since Friday is a Reading Day the Friday lab folks can go to a Wednesday lab
  - Lab 11 (project presentations) by the individual teams to their TA before the end of classes (on or before April 29)
  - Exam 2 on Wednesday April 23 during class; similar format to other exam; comprehensive but more emphasis on material since the first exam
  - Design project due at 9:30 am on May 1 (i.e., at the end of our final slot; no final)

## **Running 2000 Bus Case with Composite Loads**

- Show Texas2000\_CMPLDW; this is the previous 2000 bus case with the CMPLDW model applied to all loads
   Run the generator drop
- To see and modify the parameters in the Model Explorer select Transient Stability, Load Characteristics

| Explore |                                                                                               | 표 Load Characteristics X I | .oad Summary            |                  |                 |                 |
|---------|-----------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------|-----------------|-----------------|
|         |                                                                                               | 8:: 8: 세비 🎬 🗔 🌉 :          | Records -               | Geo - Set - Col  | umns 🕶 📴 🕶 📲    | * 響• 🍷 🏨•       |
| Explore | Fields                                                                                        | Filter Advanced - Load C   | haracteristic Generic   | -                |                 | · Find Remo     |
|         | lones                                                                                         | Load Characteristic        | inditacteristic benefic | 1                |                 | rindin Iteliio  |
|         | tion Details                                                                                  | All (1)                    |                         |                  |                 |                 |
|         | Information and Auxiliary                                                                     | BRAKE                      | Fully Elen              | nent Type Number | Name Nominal II | Area Name of MV |
|         | tingency Analysis                                                                             | CIM5                       | Supported               | icht type handet | kV              | Load            |
|         | mal Power Flow                                                                                | CIM5_PTR                   |                         |                  |                 |                 |
|         | s and Add Ons                                                                                 |                            | 1 YES Syst              | em               | System          |                 |
|         | sient Stability                                                                               |                            |                         |                  |                 |                 |
|         | DC Models                                                                                     |                            |                         |                  |                 |                 |
|         |                                                                                               | CLOD                       |                         |                  |                 |                 |
|         | Summary     Generator Model Use     Load Model Use     Model Support Status     Models in Use | CMLD                       |                         |                  |                 |                 |
|         |                                                                                               | CMPLDW (1)                 |                         |                  |                 |                 |
|         |                                                                                               | CMPLDWNF                   |                         |                  |                 |                 |
|         |                                                                                               | CompLoad                   |                         |                  |                 |                 |
|         | Area AGC Models                                                                               | DLIGHT                     |                         |                  |                 |                 |
|         | Bus Models                                                                                    | EXTL                       |                         |                  |                 |                 |
|         | OS Time Schedules                                                                             | IEEL.                      |                         |                  |                 |                 |
| III (   | Senerator Exciters                                                                            | INDMOT 1P                  |                         |                  |                 |                 |
| III (   | Senerator Governors                                                                           | INDMOT 1P_PTR              |                         |                  |                 |                 |
| ⊞ (     | Senerator Machine Models                                                                      | I INDMOT3P_A               |                         |                  |                 |                 |
| III (   | Senerator Other Models                                                                        | LD 1PAC                    |                         |                  |                 |                 |
| III (   | Senerator Stabilizer                                                                          | LD1PAC_CMP                 |                         |                  |                 |                 |
| III 1   | njection Group Models                                                                         | LDELEC                     |                         |                  |                 |                 |
| 用し      | ine Relay Models                                                                              | LDFR.                      |                         |                  |                 |                 |
| III I   | ine Shunts Models                                                                             | LDRANDOM                   |                         |                  |                 |                 |
|         | oad Characteristics                                                                           | LDVFD_A                    |                         |                  |                 |                 |
|         | oad Component                                                                                 | LoadTimeSchedu             |                         |                  |                 |                 |
|         | oad Distributed Generation Models                                                             | # MOTORC                   |                         |                  |                 |                 |
|         | and Distribution Equivalent Tune                                                              | # MOTORW                   |                         |                  |                 |                 |

Load Characteristic Information

 Bement Type
 System
 Area
 Zone
 Owner
 Bus
 Load Model Group
 Load Model Group
 Load Characteristics Load Relays Distributed Gen Terminal and State Value

 Insert
 Delete
 Show Block Diagram
 Setu Cefaults
 Note: Multiple
 defaults availab

 Type
 Active - CMPLDW
 Sature
 (Only One Active procept by Buse Party Party

Run the generator drop scenario varying these parameters; with this model the grid is no longer well damped (prone to oscillations)

| meters    |                 |       |         |              |           |               |            |               |            |               |            |               |            |               |
|-----------|-----------------|-------|---------|--------------|-----------|---------------|------------|---------------|------------|---------------|------------|---------------|------------|---------------|
| Bss       | 0.00000         | Xcmp  | 0.00000 | Q1e          | 1.00000   | Ha_Vrsta      | 0.30000    | Rsb_CompPFb   | 0.02000    | Vrc2b_Vc2onb  | 9999.000 🔹 | Ftr1c_TTr1c   | 0.00000    | Tpod_Tstalld  |
| Rfdr      | 0.00000         | FmA   | 0.20000 | Q1c          | 0.00000   | Etrqa_Trsta   | 2.00000    | Lsb_Vstallb   | 2.00000    | Trc2b_Tthb    | 9999.000 🔹 | Vrc1c_Vtr2c   | 9999.000 🜲 | Tppod_Frstd   |
| Xfdr      | 0.00000         | FmB   | 0.10    | Q2e          | 2.00000   | Vtr 1a_Fuvra  | 0.00000    | Lpb_Rstallb   | 0.20000    | Th 1tb        | 0.70000    | Trc1c_Ttr2c   | 9999.000   | Hd_Vrstd      |
| Fb        | 0.00000         | FmC   | 0.0     | Q2c          | 1.00000   | Ttr1a_Vtr1a   | 9999.000 🔹 | Lppb_Xstallb  | 0.20000    | Th2tb         | 1.30000    | Vtr2c_Vc1offc | 0.00000    | Etrqd_Trstd   |
| Xxf       | 0.00000         | FmD   | 0.00000 | Qfrq         | 0.00000   | Ftr1a_TTr1a   | 0.00000    | Tpob_Tstallb  | 0.16000    | Tvb           | 0.05000    | Ttr2c_Vc2offc | 9999.000   | Vtr 1d_Fuvrd  |
| Tfixhs    | 1.00000         | Fel   | 0.00000 | Mtypa        | 3.00000   | Vrc1a_Vtr2a   | 9999.000 🔹 | Tppob_Frstb   | 0.02000    | LFmc          | 0.80000    | Ftr2c_Vc1onc  | 0.00000    | Ttr 1d_Vtr 1d |
| Tfixls    | 1.00000         | PFel  | 1.00000 | Mtypb        | 3.00000   | Trc1a_Ttr2a   | 9999.000 🔹 | Hb_Vrstb      | 0.30000    | Rsc_CompPFc   | 0.02000    | Vrc2c_Vc2onc  | 9999.000   | Ftr1d_TTr1d   |
| LTC       | 0.00000         | Vd1   | 0.65000 | Mtypc        | 3.00000   | Vtr2a_Vc1offa | 0.00000    | Etrqb_Trstb   | 2.00000    | Lsc_Vstallc   | 2.00000    | Trc2c_Tthc    | 9999.000   | Vrc1d_Vtr2d   |
| Tmin      | 0.90000         | Vd2   | 0.50000 | Mtypd        | 1.00000   | Ttr2a_Vc2offa | 9999.000 🔹 | Vtr 1b_Fuvrb  | 0.00000    | Lpc_Rstallc   | 0.20000    | Th1tc         | 0.70000    | Trc1d_Ttr2d   |
| Tmax      | 1.10000         | frcel | 0.00000 | LFma         | 0.80000   | Ftr2a_Vc1ona  | 0.00000    | Ttr 1b_Vtr 1b | 9999.000 🔹 | Lppc_Xstallc  | 0.20000    | Th2tc         | 1.30000    | Vtr2d_Vc1offd |
| step      | 0.00625         | PFs   | 0.80000 | Rsa_CompPFa  | 0.02000   | Vrc2a_Vc2ona  | 9999.000   | Ftr 1b_TTr 1b | 0.00000    | Tpoc_Tstallc  | 0.16000    | Tvc           | 0.05000    | Ttr2d_Vc2offd |
| Vmin      | 1.02000         | P1e   | 1.00000 | Lsa_Vstalla  | 2.00000   | Trc2a_Ttha    | 9999.000   | Vrc1b_Vtr2b   | 9999.000 🔹 | Tppoc_Frstc   | 0.02000    | LFmd          | 1.00000    | Ftr2d_Vc1ond  |
| Vmax      | 1.04000         | P1c   | 1.00000 | Lpa_Rstalla  | 0.20000   | Th1ta         | 0.70000    | Trc1b_Ttr2b   | 9999.000 🔹 | Hc_Vrstc      | 0.30000    | Rsd_CompPFd   | 0.98000    | Vrc2d_Vc2ond  |
| Tdel      | 30.00000        | P2e   | 2.00000 | Lppa_Xstalla | 0.20000   | Th2ta         | 1.30000 🜲  | Vtr2b_Vc1offb | 0.00000    | Etrqc_Trstc   | 2.00000    | Lsd_Vstalld   | 0.45000    | Trc2d_Tthd    |
| Tdelstep  | 5.00000         | P2c   | 0.00000 | Tpoa_Tstalla | 0.16000 📮 | Tva           | 0.05000    | Ttr2b_Vc2offb | 9999.000 🔹 | Vtr1c_Fuvrc   | 0.00000    | Lpd_Rstalld   | 0.10000    | Th 1td        |
| Rcmp      | 0.00000         | Pfrq  | 0.00000 | Tppoa_Frsta  | 0.02000   | LFmb          | 0.80000    | Ftr2b_Vc1onb  | 0.00000    | Ttr 1c_Vtr 1c | 9999.000   | Lppd_Xstalld  | 0.10000 🜲  | Th2td         |
| Show Torq | ue Speed Dialog |       |         |              |           |               |            |               |            |               |            |               |            |               |

A M

#### Modal Analysis in PowerWorld

- Goal is to make modal analysis easy to use, and easy to visualize the results
- Provided tool can be used with either transient stability results or actual system signals (e.g., from PMUs)
- Three ways to access in PowerWorld
  - From the Modal Analysis button (in Add-Ons)
  - On the Transient Stability Analysis form left menu, Modal Analysis (right below SMIB Eigenvalues)
  - By right-clicking on a transient stability or plot case information display, and selecting Modal Analysis Selected Columns or Modal Analysis All Columns

#### Modal Analysis: Three Generator Example

• A short fault at t=0 gets the below three generator case oscillating with multiple modes (mostly clearly visible for the red and the green curve)



Ā M

## Modal Analysis: Three Generator Example



- Open the case **B3\_CLS\_UnDamped** 
  - This system has three classical generators without damping; the default event is a self clearing fault at bus 1
- Run the transient stability for 5 seconds
- To do modal analysis, on the Transient Stability page select Results from RAM, view just the generator speed fields, right-click and select **Modal Analysis All Columns** 
  - This display the Modal Analysis Form

#### **Modal Analysis Form**



#### First click on **Do Modal Analysis** to run the modal analysis

| Modal Analysis Form                                                                   |                              |                    |            |                  |                        |                              |                          |                 |                            | - 0                     | X                   |
|---------------------------------------------------------------------------------------|------------------------------|--------------------|------------|------------------|------------------------|------------------------------|--------------------------|-----------------|----------------------------|-------------------------|---------------------|
|                                                                                       |                              |                    | Results    |                  |                        |                              |                          |                 |                            |                         | ~                   |
| Modal Analysis Status Solved at 11/9/2021 10:02:26 AM                                 |                              |                    | Number of  | f Complex and Re | al Moder 2             | In                           | dude Detrend in          | Reproduced Sign | nals                       |                         |                     |
| Data Source Type                                                                      | Calculation Method           |                    | Number 0   | Complex and Re   | ai Modes 2             | Su                           | btract Reproduc          | ed from Actual  |                            |                         |                     |
| O From Plot     O File, Comtrade CFG     O File, WECC CSV 2     O None, Existing Data | Matrix Pencil (Once)         |                    | Lowest Pe  | rcent Damping    | -0                     | 011                          | Update Reprodu           |                 |                            |                         |                     |
| O File, JSIS Format O File, CSV (Data Starts Line 2)                                  | Iterative Matrix Pencil      |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
| O File, Comtrade CFF                                                                  | O Dynamic Mode Decompo       | sition             |            |                  |                        | ange Initial Guesse          |                          |                 |                            |                         |                     |
| Data Source Inputs from Plots or Files                                                |                              |                    | Fr         | equency (Hz) D   |                        | Largest Na<br>Component in w | ame of Signal            |                 | atio Average<br>to Largest | Largest<br>Component in | Name of<br>with Lar |
|                                                                                       | Do Modal Analy               | sis                |            |                  |                        |                              | omponent in              |                 | omponent in                |                         |                     |
| From Plot Gen_Speed                                                                   |                              |                    |            |                  |                        |                              | ode,                     | Unscaled        | Mode,<br>UnScaled          |                         | Mode, S             |
| From File Browse                                                                      | Save in JSIS Format          | Save to CSV        | 1          | 2.232            | 0.001                  |                              | nscaled<br>en Bus 1 #1 S | 0.00314         | 0.4900                     | 1.404                   | Gen Bus             |
|                                                                                       |                              |                    | 2          | 1.510            | -0.011                 |                              | en Bus 2 #1 S            | 0.00043         | 0.6838                     |                         | Gen 3 #             |
| Just Load Signals Group Disabled for Existing Data                                    |                              |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
| Data Sampling Time (Seconds) and Frequency (Hz)                                       |                              |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
|                                                                                       |                              |                    |            | •                |                        |                              |                          |                 |                            |                         |                     |
| Start Time 0.050 🗭 End Time 5.000 🗢                                                   |                              |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
| Maximum Hz 5.000 📮 Update Sampled Data                                                | Store Results in PWB File    |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
|                                                                                       | Always Reload Signals from   | Source             | <          |                  |                        |                              |                          |                 |                            |                         | >                   |
| Input Data, Actual Sampled Input Data Signals Options Reproc                          | uced Data Iterative Matrix F | Pencil Iteration [ | Details    |                  |                        |                              |                          |                 |                            |                         |                     |
| Type Name Latitude Longit                                                             | de Description Units         | Include            | Include    | Exclude from     | Alwa s inclu           | de Detrend                   | Detrend                  | Post-Detrend    | Post-Detreno               | d Solved                | Aver                |
|                                                                                       |                              |                    | Reproduced | Iterative Matrix | in Itentive            | Parameter A                  | Parameter B              | Number Zeros    | Standard                   |                         | Ur                  |
|                                                                                       |                              |                    |            | Pencil (IMP)     | Matrix Pencil<br>(IMP) |                              |                          |                 | Deviation                  |                         |                     |
| 1 Gen Bus 1 #1 Speed                                                                  | Speed                        | YES                | YES        | NO               | NO                     | 1.0024                       | 0.0004                   | 4 (             | 0.00457                    | YES                     |                     |
| 2 Gen Gen Bus 2 #1 Speed                                                              |                              | YES                | YES        | NO               | NO                     | 1.0024                       |                          |                 | 0.00147                    | YES                     |                     |
| 3 Gen Gen 3 #1 Speed                                                                  | Speed                        | YES                | YES        | NO               | NO                     | 1.0025                       | 0.0003                   | 3 (             | 0.00082                    | YES                     |                     |
| <                                                                                     |                              | <b>A</b>           |            |                  |                        |                              |                          |                 |                            |                         | >                   |
| I Close 7 Help                                                                        |                              |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |
| I Luose                                                                               | - Fi                         |                    |            |                  |                        |                              |                          |                 |                            |                         |                     |

Right-click on signal to view its dialog

Signals to include

Key results are shown in the upper-right of the form. There are two main modes, one at 2.23Hz and one at 1.51; both have very little damping.

#### **Three Generator Example: Signal Dialog**

- Ă**M**
- The **Signal Dialog** provides details about each signal, including its modal components and a comparison between the original and reproduced signals (example for gen 3)

|           | Gen 3 #1 Speed           | Data Detrend Parar           | meters                  |                           |               | Output Summary              |             |
|-----------|--------------------------|------------------------------|-------------------------|---------------------------|---------------|-----------------------------|-------------|
|           | Gen                      | Detrend Model = A            | + B*(t-t0) + C*(t-t0)^2 | Used Detrend Model        | Linear        | Average Error. Scaled by SD | 0.0000      |
| s         |                          | Use Case Def                 | ault Detrend Model      | Parameter A               | 1.0025        | Average Error. Unscaled     | 0.0000      |
| ription   | Speed                    | Signal Specific I            | _                       | Parameter B               | 0.0003        | Cost Function Value, Scaled | 0.0068      |
| ndude ir  | n Modal Analysis         | None                         | ○ Linear                | Parameter C               | 0.0000        | Include Detrend in Reprodu  | uced Signal |
| lways E   | xclude Signal During IMP | <ul> <li>Constant</li> </ul> | Quadratic               | Standard Deviation (SD)   | 0.0008        | Update Reproduced           | 1           |
| lways I   | nclude Signal During IMP |                              |                         |                           |               |                             | 1           |
| tual Inpu | ut Sampled Input Fast    | 1                            |                         | ginal and Reproduced Sign | al Comparison |                             |             |
|           | Time (Seconds)           | Original Value               | Reproduced Value        | Difference                |               |                             |             |
| 1         | 0.050                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 2         | 0.058                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 4         | 0.067                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 5         | 0.075                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 6         | 0.085                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 7         | 0.092                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 8         | 0.108                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 9         | 0.100                    | 1.002                        | 1.002                   | 0.000                     |               |                             |             |
| 10        | 0.125                    | 1.002                        | 1.003                   | 0.000                     |               |                             |             |
| 11        | 0.133                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 12        | 0.142                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 13        | 0.150                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 14        | 0.158                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 15        | 0.167                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 16        | 0.175                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 17        | 0.183                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
|           | 0.192                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
| 18        | 0.200                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |
|           |                          | 4 000                        | 1.007                   | 0.000                     |               |                             |             |
| 18        | 0.208                    | 1.003                        | 1.003                   | 0.000                     |               |                             |             |

Plotting the original and reproduced signals shows a near exact match



## Caution: Setting Time Range Incorrectly Can Result in Unexpected Results!

- Assume the system is run with no disturbance for two seconds, and then the fault is applied and the system is run for a total of seven seconds (five seconds post-fault)
  - The incorrect approach would be to try to match the entire signal; rather just match from after the fault
  - Trying to match the full
     signal between 0 and 7 seconds
     required eleven modes!
  - By default the Modal Analysis Form sets thedefault start time to immediately after the last event



#### **GENROU Example with Damping**

- Open the case **B3\_GENROU**, which changes the GENCLS to GENROU models, adding damping
  - Also each has an EXST1 exciter and a TGOV1 governor
  - The simulation runs for seven seconds, with the fault occurring at two seconds; modal analysis is done from the time the fault is cleared until the end of the simulation.



The image shows the generator speeds. The initial rise in the speed is caused by the load dropping during the fault, causing a power mismatch; this is corrected by the governors. Note the system now has damping; modal analysis tells us how much.

#### **GENROU Example with Damping**



| sults<br>mber of Complex and Real Modes<br>west Percent Damping<br>al and Complex Modes - Editable to Change Initial Guesses<br>Frequency (Hz)<br>Damping (%)<br>Largest<br>Component in<br>Mode,<br>Unscaled<br>1 2.053<br>11.353<br>0.00352 Gen 3 #1 Speec<br>2 1.649<br>19.638<br>0.00452 Gen Bus 2 #1 S<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0.00084<br>0. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ude Exclude from Always include Detrend Detrend Post-Detrend Post-Detrend Post-Detrend Parameter A Parameter B Number Zeros Stani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mode frequency, damping, and<br>largest contribution of each mode in<br>the signals. The slower mode is<br>associated with the governors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### **GENROU Example with Damping**

Left image show how well the speed for generator 1 is • approximated by the modes More signal details





Actual Input Sampled Input Fast Fourier Transform Results Modal Results Original and Reproduced Signal Comparison

|   | Damping (%) | Frequency (Hz) | Magnitude<br>Scaled by SD | Magnitude,<br>Unscaled | Angle (Deg) | Lambda | Include in<br>Reproduced<br>Signal |
|---|-------------|----------------|---------------------------|------------------------|-------------|--------|------------------------------------|
| 1 | 11.353      | 2.053          | 2.300                     | 0.003                  | 13.82       | -1.474 | YES                                |
| 2 | 19.638      | 1.649          | 2.038                     | 0.003                  | 10.46       | -2.075 | YES                                |
| 3 | 65.427      | 0.236          | 4.757                     | 0.006                  | -91.36      | -1.283 | YES                                |
| 4 | -34.022     | 0.098          | 0.689                     | 0.001                  | 135.64      | 0.222  | YES                                |



#### Just the 2.05 Hz mode

## **Dealing with Multiple Signals**

A M

- When there are many signals, usually they are at least somewhat correlated, so we do not need to include all the signals in the calculation of  $\alpha$ .
- Based on the previous quick calculation of b<sub>k</sub>, we can determine how well the signals match the α.
- A natural algorithm for improving is to include the signals that do not match  $\alpha$  well. That is, have high residuals.
- This gave rise to what is called the Iterative Matrix Pencil algorithm.

#### **Iterative Matrix Pencil Method**

- A M
- When there are a large number of signals the iterative matrix pencil method works by
  - Selecting an initial signal to calculate the  $\alpha$  vector
  - Quickly calculating the b vectors for all the signals, and getting a cost function for how closely the reconstructed signals match their sampled values
  - Selecting a signal that has a high cost function, and repeating the above adding this signal to the algorithm to get an updated  $\alpha$

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. Overbye, "Iterative Matrix Pencil Method for Power System Modal Analysis," *Proc. 52nd Hawaii International Conference on System Sciences*, Wailea, HI, January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803

#### **Texas 2000 Bus Synthetic Grid Example**

- For this example we'll again use the Texas 2000 bus grid, saved as **TSGC\_2000\_GenDrop**
- Use the Iterative Matrix Pencil Method to examine its modes
  - The contingency is the loss of two large generators (at bus 7098 and 7099)



The measurements will be the frequencies at all 2000 buses

**A**M

## 2000 Bus System Example, Initially Just One Signal

- Initially our goal is to understand the modal frequencies and their damping
- First we'll consider just one of the 2000 signals; arbitrarily I selected bus 8126 (Mount Pleasant)



ĀM

#### **Some Initial Considerations**

 $\bullet$ 

- The input is a dynamics study running using a <sup>1</sup>/<sub>2</sub> cycle time step; data was saved every 3 steps, so at 40 Hz
- The contingency was applied at time = 2 seconds
- We need to pick the portion of the signal to consider and the sampling frequency
  - Because of the underlying SVD, the algorithm scales with the cube of the number of time points (in a single signal)
- I selected between 2 and 17 seconds
- I sampled at ten times per second (so a total of 150 samples)

#### 2000 Bus System Example, One Signal

• The results from the Matrix Pencil Method are

| Number of Complex and<br>Lowest Percent Damping | g [1   | 0.137   |                                |              | -                                                              |         |                                    | Calculated mode |
|-------------------------------------------------|--------|---------|--------------------------------|--------------|----------------------------------------------------------------|---------|------------------------------------|-----------------|
| - Real and Complex Mode<br>Frequency (Hz)       | 1      |         | Name of Signal<br>with Largest | Component in | Name of Signal<br>with Largest<br>Component in<br>Mode, Scaled | Lambda  | Include in<br>Reproduced<br>Signal | information     |
| 1 0.383                                         | 32.011 | 0.44275 | Bus 1073 (ODE                  | 12.224       | Bus 7310 (WHA                                                  | -0.8136 | YES                                |                 |
| 2 0.670                                         | 24.191 | 0.38466 | Bus 2120 (PARIS                | 11.549       | Bus 8078 (MT. E                                                | -1.0490 | YES                                |                 |
| 3 0.665                                         | 10.705 | 0.23093 | Bus 2115 (PARIS                | 6.801        | Bus 2115 (PARIS                                                | -0.4501 | YES                                |                 |
| 4 0.312                                         | 14.397 | 0.16911 | Bus 1073 (ODES                 | 4.954        | Bus 7310 (WHA                                                  | -0.2855 | YES                                |                 |
| 5 0.971                                         | 10.137 | 0.08179 | Bus 1051 (MON                  | 2.551        | Bus 6147 (SAN /                                                | -0.6215 | YES                                |                 |
| 6 0.052                                         | 41.828 | 0.04603 | Bus 1074 (ODES                 | 1.063        | Bus 3035 (CHER                                                 | -0.1506 | YES                                |                 |
|                                                 |        |         |                                | PWD          | /ectorGrid Variables                                           |         |                                    |                 |



# Verification of results

**A**M

#### **Some Observations**

A M

- These results are based on the consideration of just one signal
- The start time **should** be at or after the event!

If it isn't then...



The results show the algorithm trying to match the first two flat seconds; this should not be done!!

| Results  |                  |                    |                                             |                                                                     |                  |                                                                |         |     |  |  |  |
|----------|------------------|--------------------|---------------------------------------------|---------------------------------------------------------------------|------------------|----------------------------------------------------------------|---------|-----|--|--|--|
| Number   | r of Complex and | Real Modes 8       |                                             | Include Detrend                                                     | in Reproduced S  | ignals                                                         |         |     |  |  |  |
| - tomber | or complex and   |                    |                                             | Subtract Reprod                                                     | luced from Actua | I                                                              |         |     |  |  |  |
| Lowest   | Percent Damping  | -10                | 00.000                                      | Update Reproduced Signals                                           |                  |                                                                |         |     |  |  |  |
| Real an  | d Complex Mode   | s - Editable to Ch | nange Initial Gue                           | sses                                                                |                  |                                                                |         |     |  |  |  |
|          | Frequency (Hz)   | Damping (%)        | Largest ▼<br>Component<br>Mode,<br>Unscaled | Name of Signal<br>with Largest<br>Component in<br>Mode,<br>Unscaled | Component in     | Name of Signal<br>with Largest<br>Component in<br>Mode, Scaled | Lambda  | R   |  |  |  |
| 1        | 0.000            | 100.000            | 0.93636                                     | Bus 1073 (ODES                                                      | 14.030           | Bus 1077 (ODES                                                 | -1.6801 | YE  |  |  |  |
| 2        | 0.240            | 44.396             | 0.82180                                     | Bus 1073 (ODES                                                      | 12.073           | Bus 1077 (ODES                                                 | -0.7473 | YE! |  |  |  |
| 3        | 0.025            | 84.809             | 0.43068                                     | Bus 4026 (CHRI                                                      | 8.463            | Bus 4026 (CHRI                                                 | -0.2476 | YE! |  |  |  |
| 4        | 0.408            | 4.729              | 0.10932                                     | Bus 1073 (ODES                                                      | 1.587            | Bus 1073 (ODES                                                 | -0.1213 | YE! |  |  |  |
| 5        | 0.645            | 6.111              | 0.09142                                     | Bus 2115 (PARIS                                                     | 1.694            | Bus 2115 (PARIS                                                | -0.2482 | YE! |  |  |  |
| 6        | 0.751            | 6.110              | 0.05556                                     | Bus 4192 (BROV                                                      | 1.042            | Bus 4192 (BRO\                                                 | -0.2887 | YE: |  |  |  |
| 7        | 0.954            | 3.484              | 0.02405                                     | Bus 1051 (MON                                                       | 0.397            | Bus 6147 (SAN /                                                | -0.2089 | YE: |  |  |  |
| 8        | 0.000            | -100.000           | 0.01406                                     | Bus 4026 (CHRI                                                      | 0.276            | Bus 4026 (CHRI:                                                | 0.0565  | VE  |  |  |  |

#### 2000 Bus System Example, Two Signals

| W | ith     | two s           | ignal              | S                                            |                                                                     |                                         |                                                                |          |
|---|---------|-----------------|--------------------|----------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------|
|   |         | of Complex and  |                    |                                              | Include Detrend<br>Subtract Reprod                                  |                                         | -                                                              |          |
|   | Lowest  | Percent Damping |                    | 7.359                                        | Update Repro                                                        | duced Signals                           |                                                                |          |
|   | Real an | d Complex Mode  | s - Editable to Ch | ange Initial Gue                             | sses                                                                |                                         |                                                                |          |
|   |         | Frequency (Hz)  | Damping (%)        | Largest<br>Component in<br>Mode,<br>Unscaled | Name of Signal<br>with Largest<br>Component in<br>Mode,<br>Unscaled | Largest<br>Component in<br>Mode, Scaled | Name of Signal<br>with Largest<br>Component in<br>Mode, Scaled | Lambo    |
|   | 1       | 2.266           | 17.168             |                                              | Bus 7329 (NEW                                                       |                                         | Bus 7307 (WHA                                                  | -2       |
|   | 2       | 1.413<br>0.958  | 21.844 7.359       |                                              | Bus 4030 (FANN<br>Bus 6147 (SAN)                                    |                                         | Bus 4030 (FANN<br>Bus 6147 (SAN /                              | -1<br>-0 |
|   | 4       | 0.938           | 11.705             |                                              | Bus 1051 (MON                                                       |                                         | Bus 8077 (MT. E                                                | -0       |
|   | 5       | 0.630           | 13.361             |                                              | Bus 2120 (PARIS                                                     |                                         | Bus 4192 (BROV                                                 | -0       |
|   | 6       | 0.352           | 36.405             | 0.44679                                      | Bus 1051 (MON                                                       | 13.024                                  | Bus 7311 (WHA                                                  | -0       |
|   | 7       | 0.322           | 14.403             |                                              | Bus 1073 (ODES                                                      |                                         | Bus 7311 (WHA                                                  | -0       |
|   | 8       | 0.000           | 100.000            |                                              | Bus 1051 (MON                                                       |                                         | Bus 1051 (MON                                                  | -0       |
|   | 9       | 0.064           | 36.756             | 0.02993                                      | Bus 1073 (ODE:                                                      | 1.182                                   | Bus 7307 (WHA                                                  | -0       |

#### With one signal

Number of Complex and Real Modes 6

Lowest Percent Damping

#### ✓ Include Detrend in Reproduced Signals Subtract Reproduced from Actual Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

10.137

|   | Frequency (Hz) | Damping (%) |         |                 | Component in<br>Mode, Scaled | Name of Signal<br>with Largest<br>Component in<br>Mode, Scaled | Lambo |
|---|----------------|-------------|---------|-----------------|------------------------------|----------------------------------------------------------------|-------|
| 1 | 0.383          | 32.011      | 0.44275 | Bus 1073 (ODES  | 12.224                       | Bus 7310 (WHA                                                  | -0    |
| 2 | 0.670          | 24.191      | 0.38466 | Bus 2120 (PARIS | 11.549                       | Bus 8078 (MT. E                                                | -1    |
| 3 | 0.665          | 10.705      | 0.23093 | Bus 2115 (PARIS | 6.801                        | Bus 2115 (PARIS                                                | -0    |
| 4 | 0.312          | 14.397      | 0.16911 | Bus 1073 (ODES  | 4.954                        | Bus 7310 (WHA                                                  | -0    |
| 5 | 0.971          | 10.137      | 0.08179 | Bus 1051 (MON   | 2.551                        | Bus 6147 (SAN /                                                | -0    |
| 6 | 0.052          | 41.828      | 0.04603 | Bus 1074 (ODES  | 1.063                        | Bus 3035 (CHER                                                 | -0    |

#### The new match on the bus that was previously worst (Bus 7061) is now quite good!





#### 2000 Bus System Example, Iterative Matrix Pencil



- The Iterative Matrix Pencil intelligently adds signals until a specified number is met
  - Doing ten iterations takes about four seconds

| Numb                                                        | er of Complex and                                      | Real Modes 11 |         | Include Detrend                                                     |              | -                                                              |         |                                    |   |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------|---------------|---------|---------------------------------------------------------------------|--------------|----------------------------------------------------------------|---------|------------------------------------|---|--|--|--|
|                                                             | Subtract Reproduced from Actual                        |               |         |                                                                     |              |                                                                |         |                                    |   |  |  |  |
| Lowe                                                        | Lowest Percent Damping 6.082 Update Reproduced Signals |               |         |                                                                     |              |                                                                |         |                                    |   |  |  |  |
| Real and Complex Modes - Editable to Change Initial Guesses |                                                        |               |         |                                                                     |              |                                                                |         |                                    |   |  |  |  |
|                                                             | Frequency (Hz)                                         | Damping (% 📥  |         | Name of Signal<br>with Largest<br>Component in<br>Mode,<br>Unscaled | Component in | Name of Signal<br>with Largest<br>Component in<br>Mode, Scaled | Lambda  | Include in<br>Reproduced<br>Signal |   |  |  |  |
|                                                             | 1 0.631                                                | 6.082         | 0.10313 | Bus BROWNSV                                                         | 3.292        | Bus BROWNSVI                                                   | -0.2415 | YES                                |   |  |  |  |
|                                                             | 2 0.959                                                | 7.068         | 0.04897 | Bus SAN ANTO                                                        | 1.890        | Bus SAN ANTOI                                                  | -0.4269 | YES                                |   |  |  |  |
|                                                             | 3 1.364                                                | 7.246         | 0.03780 | Bus ODESSA 1                                                        | 1.420        | Bus CHRISTINE                                                  | -0.6228 | YES                                |   |  |  |  |
|                                                             | 4 0.593                                                | 7.897         | 0.07205 | Bus BROWNSV                                                         | 2.300        | Bus BROWNSVI                                                   | -0.2949 | YES                                |   |  |  |  |
|                                                             | 5 1.602                                                | 8.562         | 0.04887 | <b>Bus FANNIN 2 F</b>                                               | 2.032        | Bus FANNIN 2 F                                                 | -0.8650 | YES                                |   |  |  |  |
|                                                             | 6 0.732                                                | 11.936        | 0.21348 | Bus MONAHAN                                                         | 4.054        | Bus MONAHAN                                                    | -0.5529 | YES                                |   |  |  |  |
|                                                             | 0.324                                                  | 14.207        | 0.19906 | Bus ODESSA 1                                                        | 5.268        | Bus WHARTON                                                    | -0.2917 | YES                                |   |  |  |  |
|                                                             | 8 0.324                                                | 39.346        | 0.55936 | Bus MONAHAN                                                         | 12.994       | Bus WHARTON                                                    | -0.8722 | YES                                |   |  |  |  |
|                                                             | 9 0.060                                                | 39.972        | 0.03815 | Bus ODESSA 1                                                        | 1.196        | Bus POINT CON                                                  | -0.1645 | YES                                |   |  |  |  |
| 1                                                           | 0 0.964                                                | 57.683        | 0.61264 | Bus ODESSA 1                                                        | 18.504       | Bus POINT CON                                                  | -4.2760 | YES                                |   |  |  |  |
| 1                                                           | 1 0.000                                                | 100.000       | 0.59650 | Bus ODESSA 10                                                       | 14.434       | Bus WHARTON                                                    | -2.5257 | YES                                | _ |  |  |  |

## **Takeaways So Far**



- Modal analysis can be quickly done on a large number of signals
  - Computationally is an O(N<sup>3</sup>) process for one signal, where N is the number of sample points; it varies linearly with the number of included signals
  - The number of sample points can be automatically determined from the highest desired frequency (the Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency)
  - Determining how all the signals are manifested in the modes is quite fast!!

#### 22

#### **Visualizing the Modes**

• If the grid has embedded geographic coordinates, the contributions for the mode to each signal can be readily visualized utilizing geographic data views (GDVs)



Image shows the magnitudes of the components for the 0.63 Hz mode; the display was pruned to only show some of the values



#### Damping Oscillations: Power System Stabilizers (PSSs)

- A PSS adds a signal to the excitation system to improve damping
  - A common signal is proportional to the generator's speed; other inputs, such as like power, voltage or acceleration, can be used
  - The signal is usually measured locally (e.g. from the shaft)
- Both local modes and inter-area modes can be damped.
- Regular tuning of PSSs is important
- Fully considering power system stabilizers can get quite involved
  - Here we'll just focus on covering the basics, and doing a simple PSS design. The goal is providing insight and tools that can help power system engineers understand the PSS models, determine whether there is likely bad data, understand the basic functionality, and do simple planning level design

## **Dynamic Models in the Physical Structure**



P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

A M

#### **Power System Stabilizer (PSS) Models**

ÂM



#### **PSSs Regulations**

- On ERCOT PSSs are required on all synchronous generators greater than 10 MW installed after January 2008
  - If a generator has a PSS then they need to be kept in-service; they also need to be tuned to help damp out oscillations between 0.2 to 2 Hz.
- WECC requires PSSs for synchronous generators connected to the bulk electric grid, and has a number specific requires associated with PSS values (see NERC VAR-501-WECC-3.1)

#### **Classic Block Diagram of a System with a PSS**





Image Source: Kundur, Power System Stability and Control

#### **PSS Basics**

• Stabilizers can be motivated by considering a classical model supplying an infinite bus

$$\frac{d\delta}{dt} = \omega - \omega_s = \Delta\omega$$

$$\frac{2H}{\omega_0} \frac{d\Delta\omega}{dt} = T_M^0 - \frac{E'V_s}{X'_d + X_{ep}} \sin(\delta) - D\Delta\omega$$

$$\stackrel{jX'_d \quad R_s \quad R_e \quad jX_{ep}}{=} \frac{i}{z}$$

• Assume internal voltage has an additional component

 $E' = E'_{org} + K\Delta\omega$ 

- This can add additional damping if  $sin(\delta)$  is positive
- In a real system there is delay, which requires compensation

#### **Example PSS**



- An example single input stabilizer is shown below (IEEEST)
  - The input is usually the generator shaft speed deviation, but it could also be the bus frequency deviation, generator electric power or voltage magnitude



#### **2000 Bus System Results With Stabilizers**

• The case has 334 IEEST stabilizers, all with the same parameters (which would not be the case in a real system)

Results are given for the previous generator drop contingency



ĀМ

#### **2000 Bus System Results Without Stabilizers**

Ā M

• Clearly the case is unstable; note the change in scale



#### Washout Filters and Lead-Lag Compensators

A M

Two common attributes of PSSs are washout filters and lead-lag compensators
 Lead-lag compensators



Figure 31—Type PSS1A single-input power system stabilizer

• Since PSSs are associated with damping oscillations, they should be immune to slow changes. These low frequency changes are "washed out" by the washout filter; this is a type of high-pass filter.

#### **Washout Filter**

- The filter changes both the magnitude ulletand angle of the signal at low frequencies
  - Gain (dB) = 20 log Vout Vin Pass Band Stop Band 0dB -3dB (45°) Frequency Response Output Slope = +20dB/Decade Bandwidth -dB  $f_{c}$  (HP) Frequency (Hz) Phase (Logarithmic Scale) +90° Phase Shift +45° 0° Frequency (Hz)

The breakpoint frequency is when the phase shift is 45 degrees and the gain is -3 dB (1/sqrt(2))

A larger T value shifts the breakpoint to lower frequencies; at T=10 the breakpoint frequency is 0.016 Hz

Image Source: www.electronicstutorials.ws/filter/filter 3.html





#### **Lead-Lag Compensators**

- For a lead-lag compensator of the below form with  $\alpha \le 1$  (equivalently a  $\ge 1$ )  $\frac{1+sT_1}{1+sT_2} = \frac{1+sT_1}{1+s\alpha T_1} = \frac{1+asT}{1+sT}$
- There is no gain or phase shift at low frequencies, a gain at high frequencies but no phase shift
- Equations for a design maximum phase shift α at a frequency f are given



#### **Stabilizer Design**

- A M
- As noted by Larsen, the basic function of stabilizers is to modulate the generator excitation to damp generator oscillations in frequency range of about 0.2 to 2.5 Hz
  - This requires adding a torque that is in phase with the speed variation; this requires compensating for the gain and phase characteristics of the generator, excitation system, and power system (GEP(s))
  - We need to compensate for the phase lag in the GEP
- The stabilizer input is often the shaft speed


#### **Stabilizer Design**

- $T_6$  is used to represent measurement delay; it is usually zero (ignoring the delay) or a small value (< 0.02 sec)
- The washout filter removes low frequencies; T<sub>5</sub> is usually several seconds (with an average of say 5)
  - Some guidelines say less than ten seconds to quickly remove the low frequency component
  - Some stabilizer inputs include two washout filters



Image Source: EEE Std 421.5-2016

Figure 31—Type PSS1A single-input power system stabilizer

#### **Stabilizer Design Values**

- With a washout filter value of  $T_5 = 10$  at 0.1 Hz (s = j0.2 $\pi$  = j0.63) the gain is 0.987; with  $T_5 = 1$  at 0.1 Hz the gain is 0.53
- Ignoring the second order block, the values to be tuned are the gain,  $K_s$ , and the time constants on the two lead-lag blocks to provide phase compensation
  - We'll assume  $T_1=T_3$  and  $T_2=T_4$



Figure 31—Type PSS1A single-input power system stabilizer

#### **Stabilizer Design Phase Compensation**

A M

- Goal is to move the eigenvalues further into the left-half plane
- Initial direction the eigenvalues move as the stabilizer gain is increased from zero depends on the phase at the oscillatory frequency
  - If the phase is close to zero, the real component changes significantly but not the imaginary component
  - If the phase is around  $-45^{\circ}$  then both change about equally
  - If the phase is close to -90° then there is little change in the real component but a large change in the imaginary component

#### **Stabilizer Design Tuning Criteria**

• Eigenvalues moves as K<sub>s</sub> increases

 $K_{OPT}$  is where the damping is maximized;  $K_{INST}$  is the gain at which sustained oscillations or an instability occur

• A practical method is to find  $K_{INST}$ , then set  $K_{OPT}$  as about 1/3 to  $\frac{1}{2}$  of this value





## **Stabilizer Design Tuning**

- A M
- Basic approach is to provide enhanced damping at desired frequencies; the challenge is power systems can experience many different types of oscillations, ranging from the high frequency local modes to the slower (< 1.0 Hz usually) inter-area modes
- Usually the PSS should be set to compensate the phase so there is little phase lag at inter-area frequencies
  - This can get modified slightly if there is a need for local stability enhancement
- An approach is to first set the phase compensation, then tune the gain; this should be done at full output

#### **PSS2A Example Values**

A M

- Based on about 1000 WECC PSS2A models
  - $T_1=T_3$  about 64% of the time and  $T_2=T_4$  about 69% of the time
  - The next page has a plot of the T1 and T2 values; the average T1/T2 ratio is about 6.4







## **PSS Tuning Example**

- Open the case **wscc\_9bus\_Start**, apply the default dynamics contingency of a self-clearing fault at Bus 8.
- Use Modal Analysis to determine the major modal frequency and damping



Ā M

#### **PSS Example: Getting Initial Frequency, Damping**

• The Modal Analysis button provides quick access





Ā M

## PSS Tuning Example: Add PSS1As at Gens 2 and 3

- A M
- To increase the generator speed damping, we'll add PSS1A stabilizers using the local shaft speed as an input
- First step is to determine the phase difference between the PSS output and the PSS input; this is the value we'll need to compensate
- This phase can be determined either analytically, actually testing the generator or using simulation results

 $V_{SI}$ 

We'll use
 simulation
 results



Δt

ALL OTHER CONTRIBUTIONS

Figure 31—Type PSS1A single-input power system stabilizer

#### **PSS Example: Using Stabilizer Reference Signals**

AM

- PowerWorld now allows reference sinusoidals to be easily played into the stabilizer input
  - This should be done at the desired modal frequency
- Modal analysis can then be used to quickly determine the phase delay between the input and the signal we wish to damp
- Open the case wscc\_9Bus\_Stab\_Test
  - This has SignalStab stabilizers modeled at each generator; these models can play in a fixed frequency signal

#### **SignalStab Input and Results**



• Enable the SignalStab stabilizer at the bus 2 generator and run the simulation

| 🔵 Generat   | or Information for Present                                              | _      |            | ×      |
|-------------|-------------------------------------------------------------------------|--------|------------|--------|
| Bus Number  | Z  ✓                                                                    |        |            |        |
| Bus Name    | Bus 2 V Find By Name Olosed                                             |        |            |        |
| ID          | 1 Find Energized<br>NO (Offline)                                        |        |            |        |
| Area Name   | 1 (1)                                                                   |        |            |        |
| Labels      | no labels Fuel Type Unknown                                             |        |            | $\sim$ |
|             | Generator MVA Base 250.00 Unit Type UN (Unknown)                        |        |            | $\sim$ |
| Power and V | oltage Control Costs OPF Faults Owners, Area, etc. Custom Stability     |        |            |        |
| Machine Mo  | els Exciters Governors Stabilizers Other Models Step-up Transformer Ter | rminal | and State  |        |
| In          | ert Delete Gen MVA Base 250.0 Show Block Diagram                        | Crea   | ate VCurve | ]      |
| Type SIGN   | LSTAB V Active (only one may be active) Set to Defaults                 |        |            |        |
| Parameter   |                                                                         |        |            |        |
| PU values   | shown/entered using device base of 250.0 MVA $$                         |        |            |        |
| DoRamp      | 0 🔹 dVolt4 0.00000 📼                                                    |        |            |        |
| StartTime   | 0.00000                                                                 |        |            |        |
| dVolt1      | 0.05000 Duration4 0.00000                                               |        |            |        |
| Freq1       | 1.36000 dVolt5 0.00000                                                  |        |            |        |
| Duration 1  | 0.00000 🛉 Freq5 0.00000 🗭                                               |        |            |        |
| dVolt2      | 0.00000 - Duration5 0.00000 -                                           |        |            |        |
| Freq2       | 0.00000                                                                 |        |            |        |
| Duration2   | 0.00000                                                                 |        |            |        |
| dVolt3      | 0.00000                                                                 |        |            |        |
| Freq3       | 0.00000                                                                 |        |            |        |
| Duration3   | 0.00000                                                                 |        |            |        |
|             |                                                                         |        |            |        |
|             |                                                                         |        |            |        |

At time=0 the stabilizer receives a sinusoidal input with a magnitude of 0.05 and a frequency of 1.36 Hz

#### **PSS Example: Gen2 Reference Signal Results**



- Graph shows four signals at bus 2, including the stabilizer input and the generator's speed
  - The phase relationships are most important



Use modal analysis to determine the exact phase values for the 1.36 Hz mode; analyze the data between 5 and 10 seconds

#### **PSS Tuning Example: 1.36 Hz Modal Values**



- The change in the generator's speed is driven by the stabilizer input sinusoid, so it will be lagging. The below values show is lags by (-161+360) (-81.0) = 280 degrees
  - Because we want to damp the speed not increased it, subtract off 180 degrees to flip the sign. So we need 100 degrees of compensation; with two lead-lags it is 50 degrees each

| Standard<br>Deviation      Unscaled      Scaled by SD        1 Gen      V pu \ Gen Bus 2 #1      0.011      69.015      0.015      1.364      0.015        2 Gen      Vstab \ Gen Bus 2 #1      0.035      -160.952      0.048      1.377      0.004 | equency (Hz) and D | amping (%) 1.359 Hz, D | amping = -0,1 <sup>4</sup> | 14% ~        | <b>T</b> | Results from Sele<br>Floating Point Fiel |            | Object Custom F | -             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|----------------------------|--------------|----------|------------------------------------------|------------|-----------------|---------------|
| Standard<br>Deviation      Unscaled      Scaled by SD        1 Gen      V pu \ Gen Bus 2 #1      0.011      69.015      0.015      1.364      0.015        2 Gen      Vstab \ Gen Bus 2 #1      0.035      -160.952      0.048      1.377      0.004 | ₩ 🖽 🖬              | +.0 .00 A A A Reco     | rds * Geo * S              | et + Columns |          |                                          | f(x) ▼ Ⅲ 0 | ptions 🝷        |               |
| 2 Gen Vstab \ Gen Bus 2 #1 0.035 -160.952 0.048 1.377 0.004                                                                                                                                                                                          | Туре               | Name                   | Units                      | Description  | Standard | Angle (Deg)                              |            | -               | Cost Function |
| 2 Gen Vstab \ Gen Bus 2 #1 0.035 -160.952 0.048 1.377 0.004                                                                                                                                                                                          | 1 Gen              | V pu \ Gen Bus 2 #1    |                            |              | 0.011    | 69.015                                   | 0.015      | 1.364           | 0.0158        |
| 3 Gen MW \ Gen Bus 2 #1 25.013 -171.078 34.460 1.378 0.007                                                                                                                                                                                           |                    | Vstab \ Gen Bus 2 #1   |                            |              | 0.035    | -160.952                                 | 0.048      | 1.377           | 0.0049        |
|                                                                                                                                                                                                                                                      | 3 Gen              | MW \ Gen Bus 2 #1      |                            |              | 25.013   | -171.078                                 | 34.460     | 1.378           | 0.0073        |
| 4 Gen Speed \ Gen Bus 2 #1 0.002 -81.037 0.003 1.360 0.013                                                                                                                                                                                           | 4 Gen              | Speed \ Gen Bus 2 #1   |                            |              | 0.002    | -81.037                                  | 0.003      | 1.360           | 0.0136        |

#### **PSS Tuning Example: 1.36 Hz Lead-Lag Values**



In designing a lead-lag of the form

$$\frac{1+sT_1}{1+sT_2} = \frac{1+sT_1}{1+s\alpha T_1}$$

to have a specified phase shift of  $\phi$  at a frequency f the value of  $\alpha$  is

$$\alpha = \frac{1 - \sin \phi}{1 + \sin \phi}, \ T_1 = \frac{1}{2\pi f \sqrt{\alpha}}$$

In our example with  $\phi = 50^{\circ}$  then

$$\frac{1 - \sin \phi}{1 + \sin \phi} = 0.132, \ T_1 = 0.321, \ T_2 = \alpha T_1 = 0.042$$

#### **PSS Tuning Example: 1.36 Hz Lead-Lag Values**



• Hence  $T_1 = T_3 = 0.321$ ,  $T_2 = T_4 = 0.042$ . We'll assumed  $T_6 = 0$ , and  $T_5 = 10$ , and  $A_1 = A_2 = 0$ 



- The last step is to determine  $K_s$ . This is done by finding the value of  $K_s$  at just causes instability (i.e.,  $K_{INST}$ ), and then setting  $K_s$  to about 1/3 of this value
  - Instability is easiest to see by plotting the output  $(V_{ST})$  value for the stabilizer

## **PSS Tuning Example: Setting the Values for Gen 2**

- Instability occurs with KS = 55, hence the optimal value is about 55/3=18.3
- This increases the damping from 5% to about 16.7%



**A**M

## **PSS Tuning Example: Setting the Values for Gen 3**

• The procedure can be repeated to set the values for the bus 3 generator, where we need a total of 68 degrees of compensation, or 34 per lead-lag

| Frequency (Hz) and Damping (%)    1.359 Hz, Damping = -0.098%       Transfer Results from Selected Column to Object Custom Floating Pont Field       Custom Floating Point Field       Custom Floating Point Field       1        Transfer Results |                     |       |             |                                       |             |                        |                           |               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------------|---------------------------------------|-------------|------------------------|---------------------------|---------------|--|
| 🕎 🛅 🎬 兆 🚧 🛤 🌺 Records ▼ Geo ▼ Set ▼ Columns ▼ 🔤 ▼ 🏙 ▼ 👹 ▼ 競 f(x) ▼ 田   Options ▼                                                                                                                                                                   |                     |       |             |                                       |             |                        |                           |               |  |
| Туре                                                                                                                                                                                                                                               | Name                | Units | Description | Post-Detrend<br>Standard<br>Deviation | Angle (Deg) | Magnitude,<br>Unscaled | Magnitude<br>Scaled by SD | Cost Function |  |
| 1 Gen V                                                                                                                                                                                                                                            | pu \ Gen Bus 3 #1   |       |             | 0.007                                 | 91.689      | 0.009                  | 1.387                     | 0.0032        |  |
| 2 Gen Vs                                                                                                                                                                                                                                           | stab \ Gen Bus 3 #1 |       |             | 0.035                                 | -161.183    | 0.049                  | 1.392                     | 0.0021        |  |
| 3 Gen M                                                                                                                                                                                                                                            | IW \ Gen Bus 3 #1   |       |             | 3.925                                 | -139.661    | 5.462                  | 1.392                     | 0.0038        |  |
| 4 Gen Sp                                                                                                                                                                                                                                           | peed \ Gen Bus 3 #1 |       |             | 0.001                                 | -49.263     | 0.001                  | 1.386                     | 0.0022        |  |

• The values are  $\alpha = 0.283$ , T<sub>1</sub>=0.22, T<sub>2</sub>=0.062, K<sub>S</sub> for the verge of instability is 36, so K<sub>S</sub> optimal is 12.

#### **PSS Tuning Example: Final Solution**



With stabilizers at buses 2 and 3 the damping has been increased to 25.7%



#### Example 2: Adding a PSS to a 42 Bus System



- Goal is to try to improve damping by adding one PSS1A at a large generator at Lion345 (bus 42)
  - Example event is a three-phase fault is applied to the middle of the 345 kV transmission line between Prairie (bus 22) and Hawk (bus 3) with both ends opened at 0.05 seconds



The starting case name is **Bus42\_PSS** 

#### **Example 2: Decide Generators to Tune, Frequency**

• Generator speeds and rotor angles are observed to have a poorly damped oscillation around 0.6 Hz.



**A**M

#### **Example 2: Determine Phase Compensation**

- Using a SignalStabStabilizer at bus 42 (Lion345), the phase lag of the generator's speed, relative to the stabilizer input is 199 degrees; flipping the sign requires phase compensation of 19 degrees or 9.5 per lead-lag
- Values are  $\alpha = 0.72$ ; for 0.6 Hz,  $T_1 = 0.313$ ,  $T_2 = 0.225$ ; set  $T_3$  and  $T_4$  to match; gain at instability is about 450, so the gain is set to 150.



The case with the test signal is **Bus42\_PSS\_Test** Adding this single stabilizer increases the damping to 4.24%

## **Example 2: Determine Phase Compensation for the Other Gens**

• Adding and tuning three more stabilizers (at Grafton345 and the two units at Lake345) increases the damping to 8.16%



However, these changes are impacting modes in other areas of the system A M

#### **Power System Voltage Stability**

- A M
- Voltage Stability: The ability to maintain system voltage so that both power and voltage are controllable. System voltage responds as expected (i.e., an increase in load causes proportional decrease in voltage).
- Voltage Instability: Inability to maintain system voltage. System voltage and/or power become uncontrollable. System voltage does not respond as expected.
- Voltage Collapse: Process by which voltage instability leads to unacceptably low voltages in a significant portion of the system. Typically results in loss of system load.

#### **Power System Stability Terms**



Fig. 4. Classification of power system stability

[a] IEEE/PES Power System Dynamic Performance Committee, "Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies", PES-TR77, April 2020

#### **Small Disturbance Voltage Stability**

- Small disturbance voltage stability can be assessed using a power flow (maximum loadability)
- Depending on the assumed load model, the power flow can have multiple (or no solutions)
- PV curve is created by plotting power versus voltage

 $\begin{array}{c|c} \text{Bus 1} & x = 0.2 \\ \hline & \text{(Slack)} \\ \hline & \text{Slack)} \\ \hline & \text{Slack)} \\ \hline & \text{Slack} \\ \hline \\ \hline & \text{Slack} \\ \hline \\ & \text{Slack$ 

$$P_L - BV\sin\theta = 0$$
$$Q_L + BV\cos\theta - BV^2 = 0$$

Where B is the line susceptance =-10,  $V \angle \theta$  is the load voltage

#### **Small Disturbance Voltage Stability**

- Question: how do the power flow solutions vary as the load is changed?
- A Solution: Calculate a series of power flow solutions for various load levels and see how they change
- Power flow Jacobian

$$\mathbf{J}(\theta, V) = \begin{bmatrix} -BV\cos\theta & -B\sin\theta \\ -BV\sin\theta & B\cos\theta - 2BV \end{bmatrix}$$
  
det  $\mathbf{J}(\theta, V) = VB^2 \left( 2V\cos\theta - \cos^2\theta - \sin^2\theta \right)$   
Singular when  $\left( 2V\cos\theta - 1 \right) = 0$ 

#### Maximum Loadability: Singular Power Flow Jacobian

- An important paper considering this was by Sauer and Pai from *IEEE Trans. Power Systems* in Nov 1990, "Power system steady-state stability and the load-flow Jacobian"
- Other earlier papers were looking at the characteristics of multiple power flow solutions
- Work with the power flow optimal multiplier around the same time had shown that optimal multiplier goes to zero as the power flow Jacobian becomes singular
- The power flow Jacobian depends on the assumed load model (we'll see the impact in a few slides)

**A**M

#### **Bifurcations**

- A M
- In general, bifurcation is the division of something into two branches or parts
- For a dynamic system, a bifurcation occurs when small changes in a parameter cause a new quality of motion of the dynamic system
- Two types of bifurcation are considered for voltage stability
  - Saddle node bifurcation is the disappearance of an equilibrium point for parameter variation; for voltage stability it is two power flow solutions coalescing with parameter variation
  - Hopf bifurcation is cause by two eigenvalues crossing into the right-half plane

#### **PV and QV Curves**

AM

- PV curves can be traced by plotting the voltage as the real power is increased; QV curves as reactive power is increased
  - At least for the upper portion of the curve
- Two bus example PV and QV curves



#### **Small Disturbance Voltage Collapse**

A M

- At constant frequency (e.g., 60 Hz) the complex power transferred down a transmission line is S=VI\*
  - V is phasor voltage, I is phasor current
  - This is the reason for using a high voltage grid
- Line real power losses are given by RI<sup>2</sup> and reactive power losses by XI<sup>2</sup>
  - R is the line's resistance, and X its reactance; for a high voltage line X >>
    R
- Increased reactive power tends to drive down the voltage, which increases the current, which further increases the reactive power losses

#### **PowerWorld Two Bus Example**



Disable Power Flow Optimal Multiplier Disable Treating Continuous SSs as PV Bu Initialize from Flat Start Values Disable Balancing of F Minimum Per Unit Voltage for Constant Power Loads 0.700 Disable Transformer Tap Control if Tap Sens. is the Wrong Sign (Normally Check This) Constant Current Loads 0.500 Min. Sensitivity for LTC Control 0.0500 Pre-Processing Post-Processing Disable Angle Smoothing Disable Angle Rotation Processing Sharing of generator vars across groups of buses during remote regulation Allocate across buses using the user-specified remote regulation percentages O Allocate so all generators are at same relative point in their [min .. max] var range O Allocate across buses using the SUM OF user-specified remote regulation percentages ZBR Threshold 0.000200 Options for Areas on Economic Dispatch

Commercial power flow software usually auto converts constant power loads at low voltages; set these fields to zero to disable this conversion

Case is **Bus2\_PV** 

#### **Power Flow Region of Convergence**



Convergence regions with P=100 MW, Q=0 Mvar



#### **Load Parameter Space Representation**

- With a constant power model there is a maximum loadability surface,  $\Sigma$ 
  - Defined as point in which the power flow Jacobian is singular
  - For the lossless two bus system it can be determined as





#### Load Model Impact

- With a static load model regardless of the voltage dependency the same PV curve is traced
  - But whether a point of maximum loadability exists depends on the assumed load model
    - If voltage exponent is > 1 then multiple solutions do not exist (see B.C. Lesieutre, P.W. Sauer and M.A. Pai "Sufficient conditions on static load models for network solvability," NAPS 1992, pp. 262-271)



Change the load to constant impedance; hence it becomes a linear model



## **Application: Conservation Voltage Reduction (CVR)**

- If the "steady-state" load has a true dependence on voltage, then a change (usually a reduction) in the voltage should result in a total decrease in energy consumption
- If an "optimal" voltage could be determined, then this could result in a net energy savings
- Some challenges are 1) the voltage profile across a feeder is not constant, 2) the load composition is constantly changing, 3) a decrease in power consumption might result in a decrease in useable output from the load, and 4) loads are dynamic and an initial decrease might be balanced by a later increase

#### **CVR** Issues

#### **ENREL**



Fig. 4. Comparison of active and reactive powers between old and new appliances.

Conservation Voltage Reduction with Distributed Energy Resource Management System, Grid-Edge, and Legacy Devices

#### Preprint

Harsha Padullaparti, Murali Baggu, Jing Wang, Ismael Mendoza, Soumya Tiwari, Jiyu Wang, and Santosh Veda

National Renewable Energy Laboratory

#### Suggested Citation

Padulaparti, Harsha, Murali Baggu, Jing Wang, Ismael Mendoza, Soumya Tiwari, Jiyu Wang, and Santosh Veda. 2023. Conservation Voltage Reduction with Distributed Energy Resource Management System, Grid-Edge, and Legacy Devices: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00-84633. https://www.nrel.gov/docs/ky2osti/k4633.pdf

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper NREL/CP-5D00-84633 July 2023

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov

Figure 4 from A, Bokhari, et. al., "Experimental Determination of the ZIP Coefficients for Modern Residential, Commercial, and Industrial Loads," *IEEE Trans. Power Delivery*, June. 2014

The gist of the 2023 NREL paper is distributed generation (like PV) can help with CVR through better feeder voltage regulation

#### **Dynamic Load Response**

- As first reported in the below paper, following a change in voltage there will be a dynamic load response
  - Residential supply voltage should be between 114 and 126 V
- If there is a heating load the response might be on the order of ten minutes
- Longer term issues can also come into play
  - Useful paper and figure reference: D. Karlsson, D.J. Hill, "Modeling and Identification of Nonlinear Dynamic Loads in Power Systems," IEEE. Trans. on Power Systems, Feb 1994, pp. 157-166





#### **Determining a Metric to Voltage Collapse**

- The goal of much of the voltage stability work was to determine an easy way to calculate a metric (or metrics) of the current operating point to voltage collapse
  - PV and QV curves (or some combination) can determine such a metric along a particular path  $\overline{\xi}^{300}$
  - Goal was to have a path independent metric. The closest boundary point was considered, but this could be quite misleading if the system was not going to move in that direction



 Any linearization about the current operating point (i.e., the Jacobian) does not consider important nonlinearities like generators hitting their reactive power limits

# Assessing Voltage Margin Using PV and QV Curve Analysis

- A common method for assessing the distance in parameter space to voltage instability (or an undesirable voltage profile) is to trace how the voltage magnitudes vary as the system parameters (such as the loads) are changed in a specified direction
  - If the direction involves changing the real power (P) this is known as a PV curve; if the change is with the reactive power (Q) then this is a QV curve
- PV/QV curve analysis can be generalized to any parameter change, and can include the consideration of contingencies

#### **PV and QV Analysis in PowerWorld**

- A M
- Requires setting up what is known in PowerWorld as an injection group
  - An injection group specifies a set of objects, such as generators and loads, that can inject or absorb power
  - Injection groups can be defined by selecting Case Information, Aggregation, Injection Groups
- The PV and/or QV analysis then varies the injections in the injection group, tracing out the PV curve
- This allows optional consideration of contingencies
- The PV tool can be displayed by selecting Add-Ons, PV

This has already been done in the **Bus2\_PV** case

#### PV and QV Analysis in PowerWorld: Two Bus Example



• Setup page defines the source and sink and step size



#### PV and QV Analysis in PowerWorld: Two Bus Example



- The PV Results Page does the actual solution
  - Plots can be defined to show the results
    - This should be done beforehand
  - Other Actions, Restore initial state restores the pre-study state

| > · Setup                                                | PV Results                                                                                                                                                                                                                                                       |                                                                       |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| > · Quantities to track<br>Limit violations<br>PV output | Run Stop Restore Initial State on Completion of Run Option to restore                                                                                                                                                                                            | initial state                                                         |
| ···· QV setup                                            | Base case could not be solved                                                                                                                                                                                                                                    |                                                                       |
| > · Plots                                                | Present nominal shift      0.000      Gen MW      Load SMW      Load IMW      Load ZMW        Present step size      150.00      0.00      0.00      0.00      View detailed results        Sink      0.00      150.00      0.00      0.00      Other actions >> |                                                                       |
|                                                          | Found 1 limiting case.                                                                                                                                                                                                                                           | C1: $1 + 1 + 1$ <b>D rest</b> $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$ |
|                                                          | Overview Legacy Plots Track Limits<br>□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                                                                                                                      | Click the <b>Run</b> button to run the                                |
|                                                          | Scenario Critical? Critical Reason Max Shift Max Export Max Import # Viol Worst V Viol Worst V Bus                                                                                                                                                               | PV analysis;                                                          |
|                                                          | 1 base case      YES      Reached Nose      297.00      297.00      0                                                                                                                                                                                            | i v unur jono,                                                        |
|                                                          |                                                                                                                                                                                                                                                                  | Check the <b>Restore Initial State</b>                                |
|                                                          |                                                                                                                                                                                                                                                                  | on Completion of Run to restore                                       |
|                                                          |                                                                                                                                                                                                                                                                  | the pre-PV state (by default it is                                    |
|                                                          | ٢                                                                                                                                                                                                                                                                | not restored)                                                         |
| Save Auxiliary Load                                      | d Auxiliary Launch QV curve tool ? Help                                                                                                                                                                                                                          | 70                                                                    |

#### PV and QV Analysis in PowerWorld: Two Bus Example





To restore the starting case, on the **PV Results** page select **Other Actions**, **Restore Initial State** 

#### PV and QV Analysis in PowerWorld: 37 Bus Example



Usually other limits also need to be considered in doing a realistic PV analysis; example case is **Bus37\_PV** 

#### **Shorter Term Dynamics**

- On a shorter time-scale (minutes down to seconds) voltage stability is impacted by controls hitting limits (such as the action of generator over excitation limiters), the movement of voltage control devices (such as LTC transformers) and load dynamics
  - Motor stalling can have a major impact
- The potential for voltage instability can be quantified by looking at the amount and duration of voltage dips following an event



#### Fault Induced Delayed Voltage Recovery (FIDVR)

- FIDVR is a situation in which the system voltage remains significantly reduced for at least several seconds following a fault (at either the transmission or distribution level)
  - It is most concerning in the high voltage grid, but found to be unexpectedly prevalent in the distribution system
- Stalled residential air conditioning units are a key cause of FIDVR – they can stall within the three cycles needed to clear a fault



A M