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1. Background and Motivation

Valtage collapse in electrical power systems is a phenomenon
characterized by declining or 'sagging' voltages throughout
a large portion of the system. Conceptually, a main cause
of voltage collapse can be interpreted as loss of voltage
contrallability due to a lack of reactive compensation.
This normally results from scme type o©of contingency on an
otherwise heavily loaded system. Voltage collapse may occur
elther in a small subsection o0of a power system, or
throughout the entire system (such as 1in the French system
In December of 1978 [1il1). However, care should be taken to
distinguish between the relatively minor situation of having
a few buses in a system close to their regulatorily defined
low voltage limits, and the situation of voltage caollapse.
A voltage collapse scenario is characterized by the power
system approaching its limit of voltage stability, beyond
which no solution to the powerflow equations is possible., A
typical voltage collapse situation would be a heavily loaded
system which experiences a contingency, such as loss of a

large generator. As the output of outaged generator is
transferred to other generators, the voltage throughout a
large portion of the system declines. Although the LTC

transformers may maintain constant customer voltage, the
sagging transmission system veltage results in an increase
in system real and reactive losses, along with a decrease in
capacltive voltage support, further aggravating the problem.
Nearby generators reach their var limits and eventually have
to be taken off-line. Therefore, 1in the span of a short
time an otherwise stable system is rapldly moving towards
its point of voltage instability. Since veoltage collapse
can occur quite abruptly, some methaed of ildentifying how
close a system is to voltage collapse is needed, along with
2 method of optimally moving the system to a maore secure
operating point. This report addresses the first area.

A large portion of the recent literature devoted to voltage
collapse has had as its goal developing a security measure
to guantify how "close" a particular operating point is to
voltage collapse. The «c¢rucial point in Judging the
effectiveness of a measure of determining proximity to
vaoltage collapse is whether or not it provides planners and
gperators with an i1ndication of when corrective control
actions are necessary. The goal of +thils report 1is to
avaluate an energy based measure of proximity to voltage
collapse which 1s both physically reasonable and provides
information not captured by methods which only lock at a
linearization of powerflow aor system dynamics about a single
operating point. The energy based method will be examined
by first looking at a single line example in both a static
setting and in a dynamic setting. : Then, the energy function
will be applied to more general systems in order to show how
1f can be used to provide a measure of proximity to voltage
collapse. Lastly, the solution of the powerflow equations
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at "low voltage'" operating points will be examined. This
data is needed by the energy function method to determine

proximity to vecltage collapse.

Z. Static Approach to Yoltage Collapse

The energy based method can be motivated by examining the

static powerflow in a single line example, For example,
consider a system with a single lossless line connecting two
buses, number 1 and 2. Bus 1 is treated as the slack bus

with its voltage magnitude fixed at 1.0 pu. Since the line
is lossless, the real power injection at bus 1 must equal
the real power consumed at bus 2. We will assume the load
at bus 2 is represented as a constant P-Q demand. The
following analysis can easily be extended into the case of P
and Q specified as functions of bus voltage. The resulting
power balance equations at bus 2 are:

P. - B:zVsin(ar = 0

@ ~ BzxV® - ByzVcosi(a) = 0
where

V := bus voltage magnitude at bus 2

o := 6, — 62 = phase angle voltage difference from

bus 1 to busZ.

For Byws = ~Buz = 10.0, the locus of the points in the a-V
space satisfylng these two constraints for a range of P and
Q values is shown in figure 2-1. Alternatively, the same

locus of solution points could be plotted as in figure 2-2.
In this case the solution is plotted in the V-P space for
varying values of load power factor. A radial line with a
fixed sending voltage typically has two solutions; this is
due simply to the quadratic nature of the reactive power
constraint. This is represented in figure 2-1 by the two
intersections of +the P and @ constraint curves, and in
figure 2-2 by the dual voltage —solutions for any given P

value and pawer factor, These solution values will be
referred to throughout this report as the "high voltage
solution” and the "laow voltage solution”. The two will be

distinguished by their relative values of voltage magnitude.
Section 5 examines the pattern of high and low voltage
solutions for more complex networks. It should be noted
that a standard Newton—-Raphson powerflow was used in the
solution of all the examples contained in this report. As
shawn in the figures, for certain critical values of P and Q
the constraints have only one solution. If either P or Q@ is
increased further, the powerflow has no solution. At this
bifurcation point (i.e., the point where the two solutions
coalesce into one), the Jacobian of the two power balance
equations is singular. This observation has been used by




some authors as a method of predicting proximity to voltage
collapse. In particular, (2] recommends +the use of the
smallest singular value of the Jacobian of the powerflow
equations, evaluated &t the normal operating point of the
system. This corresponds to the high voltage Ooperating
point in figures 2-1 and 2-2.
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Figure 2-2

3. Dynamic Approach to Vsltage Collapse with

Lyapunov Energy Functions

Although a large contingency may cause a system to be in an
operating state susceptible to valtage collapse, it is most
often the aggregate of small, random events (such as the
gradual increase in load) which actually push the system to
the brink of voltage collapse. Because of this, it appears
that the voltage collapse phenomenon can not be treated as
strictly a static¢ problem. Load dynamics and voltage
contraol dynamics need to be considered. In addition, the
small randam variations that are typically present in
customer load demand may also prove important. These small
changes may be insignificant at normal operating points.
However, near the point of voltage collapse where the
voltage is very sensitlve to changes in lopad, they may be
able to push the system "aver the edge”.



As an aid to analyzing the system dynamically, a Lyapunov or
""energy"” function' is constructed (31. For the simple two
bus case {from section 2, where the voltage at the generator
is assumed to be fixed, the proposed Lyapunov function is
given by:

viw, o, V) 1= BM w2 — B;.Vcos(u) + B:i=V'cos{()
— BBLVZ + 4B,,<Verz - P (ax—a°) + Q. _1ln<vV/V°)

The generalization of this Lyapunov function tc a
multimachine case is found in £41.

A Lyapunov function has the property that along any
trajectory originating from a point in the region of
attraction of a stable equilibrium , the "energy" of the
system decays asymptotically until the equilibrium point is
reached. A traditional analogy is to the dynamics of a
rolling ball contained in a valley. ¥hen the ball is
displaced from its equilibrium point at the bottom aof the
valley, one expects that it will eventually return to that
point with its total energy (i.e. :kinetic and potential>

decreasing asympotically to zero. This 1is +true unless the
ball is given a strong enough 'kick’ so that it is able to
escape out aver a '"pass" bounding the valley. Therefaore one

way to determine whether the ball will return or escape is
toc compare its @ energy with the potential energy value
associated with the lowest @ "pass” (or more formally,
saddlepoint) bounding the valley. If the ball's energy is
below that wvalue, then the ball is guaranteed to return to
its equlilibrium position. The lowest saddle point bounding
the valley 1s determined by the lowest energy unstable
equilibrium point on the boundary. If the boundary of the
valley 1is not uniform in height then it 1s possible that the
ball may return to 1ts equilibrium point even if it has
sufficlent energy to clear the lowest saddle; this may
occur 1if its initial +trajectory does not take it in the
neighborhood of the lowest saddle point.

Figure 3-1 is a plot of the energy in a small system of two
generators <(modeled as constant voltage behind transient
impedance) , with load at each, connected by a single
lossless transmission line. As time t=0 load is suddenly
shifted between the 2 buses. Note the energy's asymptotic
decay to zero, with energy nonincreasing as a function of
time, Figure 3-2 shows that as resistance is introduced

'The terminology Lyapunov function will be used to refer to
a scalar function of state that has the properties of being
pasitive semi-definite about a stable equilibrium and
nonincreasing along trajectories, For system models 1in
which the second property does not hald, the scalar function
of state will be referred to as an energy function.



energy is no longer

into the system, the system
and thus

nonincreasing as it decays asymptotically to zero,
the energy function for the system is no longer strictly a
Lyapunov functilon. In power systems, where the R/X ratio on
lines is normally substantially below 1, an assumption of
lossless lines 1n the derivation of the energy function
appears to be justifiable. For a discussion of the effects
of +transmission losses and the existence of Lyapunov
functions for the lossy case, the reader is referred 1o (5]

and [61.

System Energy after Sudden Load Shift
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Figure 3-2

In power system models which 1include 1load bus voltage
varlations, the low voltage solutions correspond to the
nearest unstable eqguilibrium points. Therefore the method
proposed in this report of determining how close a given
system is to voltage collapse is to measure the difference
iln energy between the high voltage solution and the low
voltage soclutions. This energy difference decreases as _ the
system is moving closer to valtage 1instability. “The
canstant energy contours of the energy function can be
viewed as "potential energy surfaces"” expending outward from
the stable equilibrium point. The closest unstable
equilibrium point (corresponding to a low voltage solution)
represents the nearest saddle point by which trajectories
may escape the potential well surrounding the stable
equilibrium point.

An actual power system 1s never exactly at its equilibrium
point since there are always fluctuations in the P and the Q
load terms (which can be approximated as white noise) at
each bus which are continually "kicking” the system away
from that point. In the normal case, where the energy
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potential well is deep, these minor disturbances have no-

large scale affect. However, as the system moves closer to
voltage collapse the depth of the potential well decreases.
As this happens, the affects of these white noise load
fluctuations can become very 1mportant. If enough of the
"kicks"” occur in the right direction, 1t is possible that
the system might escape its present well. Thus the state of
the system becomes a random process, and one can formally
define the expected time required to exit <the potential

well, The calculation of expected exit times for randomly
perturbed power system models was examined using the theory
of large deviations 1in ([41]. In the 1limit of noise much

smaller than the average load term, the expected exit time
is propeortional to:

exp [viw-, a-, V) /e2].

The expected exit time provides a way in which different
operating points may Tbe ranked in terms of their
vulnerability ta voltage collapse. However, the expected
exlt time is not able to take into.account more long term
variations in the system state (such as load or generation
ramping up). In the next section ™a more heuristic
application of the energy function will be examined, which
combines the energy calculation used to determine expected

exit time with a family of energy curves based upon

anticipated long term changes to the system state.

4. Use of Energy Function to Estimate Proximity to
Volitage Collapse

In this section, the energy method will be used to develop a
security measure which estimates distance to voltage
collapse in terms of the MV load increase required to drive
the system to voltage collapse. This approach will ©be
motivated by first locking at a simple three bus system, and
then by applying the security measure to larger systems. It
will be shown through examples that the energy method can
take into account the affects of generator var limits and
static tap changing (LTC) transformer models.

4.1. Simple three bus system

The first test system consists of two strongly coupled
generataor buses, aumbered 1 and 2, with a weakly coupled
load bus (number 3) attached to the second generator bus.
Bus 1, the slack bus, is attached to bus 2 by line 1, while
line 2 1links buses 2 and 3. This system was chosen for
initial study because it is a simple equivalent
representation of the type of system which is oftemn prone to
voltage collapse. Consider the following system parameters:

Rl = 0.005 X1 = 0.05 Rz2 = 0.02 X2 = 0.06.



Initially assume that the generator at bus 2 1s affline, and
that the only load is a constant P/Q load at bus 3. In this
case the energy function can be calculated for any P/Q load
at bus three. Figure 4-1 plots the difference in energy
between the high and the low voltage powerflow solutions as
the load at bus 3 is increased. Beginning with a load of 50
MW and 25 MVAR, the load 1is increased with a constant P/Q
ratioc of 2 until the critical voltage collapse point 1is
reached. This occurs at approximately P = 242 MV and Q@ =
121 MVAR.

Energy Measure versus Bus 3 MW Load Level
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Figure 4-1

One possible application of the energy values shown in
figure 4-1 is calculation of the ‘expected exit time' of [4]
mentioned 1in the previous section. Thus the energy value
pravides a relative measure of the system security that can
be used to compare different operating polnts. However, the
figure also suggests a more intuitive measure of systemn
security. By shifting the x axis to align the critical
collapse point (the bifurcation point) with =zera MW, each
energy value can be related to a "distance” in MW to voltage
collapse. For example for an energy value of 0.50 <{(which
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occurs when the load at bus 3 is 192 MW and 96 MVAR) the
distance to voltage collapse would be about 350 MW i.e.,
when the energy value is 0.50, voltage collapse will occur
when the load at bus 3 is increased by $0 MW and 25 MVAR.
This suggests the following heuristic test for determining
the distance to voltage collapse under general load

conditions:

1) Calculate the energy value for a given load at bus 3.

2) Use a +table containing the figure 4-1 data (pre-
calculated off-line? to determine the 'distance’ to

voltage collapse.

In order for +this method to be useful, the shape of the
curve 1in figure 4-1 must be relatively insensitive to
changes in the operating point of the systemn. Ideally, amne
would like to approximate distance to voltage collapse for a

wide variety of operating points on-line, using only
information from the aoff-line calculation of a single energy
curve. Note that +the 'energy curve' is simply the

difference in energy between the high and 1low voltage -

pawerflow solutions over a one parameter family of operating
points (MW load at bus 3 being the free parameter used in
figure 4-1>. The following examples examine the feasibility
of this approach.

The operating point of the three bus system is first varied
by changing the load at bus = (with +the generator at that
bus again assumed to be off line). Figure 4-2 shows how the
energy function varies with the load at bus 3 for different
values of load at bus =. The topmost curve corresponds to
the load at bus 2 = 0, and is thus simply a repeat of the
curve in figure 4-1. The remaining curves show the energy
values plotted versus bus 3 load as before, but also as the
1gad at bus 2 is increased in increments of 50 MV and 25
MVAR. As would be expected, the energy value for any given
value of load at bus 3 decreases as the load at bus 2 is
increased, since the system is becoming more heavily loaded
and therefore less secure.” Note that the five curves in
figure 4-2 are nearly identical up to an x-axls shift. This
is shown in figure 4-3 which contains the 5 curves aligned
with their respective critical collapse point at 0O MW,
Thus, for any bus 2 1load 1in the range described, the
distance to voltage collapse (expressed in tolerable MW
increase in load at bus 3) can be approximated by using only
the energy calculated at the current operating point and any
one of the five curves.

10
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Figure 4-3

Before moving on to study the affects of generator var
1imits and tap changing transformers, it is dimportant to

clarify one pdfnt. In relating the energy function to
distance to voltage collapse, the load - and generataor
participation factors must be,taken intoc account. In the

__preceding two egamples, the imncrease in real and reactive

power of the system bas been parameterized by one
independent variable (MW load at bus 37, with assumptions
made on how the other free values depend an this single
For example, in determining the distance in MW
bus 3 is away from voltage collapse, the assumptions made
were that the power factor at bus 3 remained constant and
that the load at bus 2 also remained constant (incremental
load participation of 0. For illustration, figure 4-4
shows the behavior of the energy function as the system
1pads are increased in three different ways: (1) the load at
bus 2 is held constant at 100 MW and S0 MVAR while the load
at bus 3 1is increased with a constant P/Q ratio of 2, i)
the load at bus 2 is again held constant, but the MVAR load
at bus 3 is also held constant as the MW load increases,

parameter.

12




(111> the load at bus 2 changes with that at bus 3, with a
ratic of 2 to 1 {incremental load participation twice that
of bus 2); both buses maintain a constant power factor. As
would be expected, the second curve represents a more secure
scenario than (1), system while the third curve shows the
system less secure than (i),
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Figure 4-4

The dependence of the security measure on load participation
is an inherent feature in the method described above, and
reflects assumptions on expected behavior as the system
evolves with time. 4 weak area with increasing load within
its borders i1s clearly moving more rapidly towards valtage
collapse if the net load (load-generation) neighboring the
area 1is also increasing with time. Likewise, how +the
powerfactors vary as the MV loads within an area increase is
also important in determining expected system behavior.
This information must be taken into account when relating an
energy value to distance to voltage collapse, and one would
expect planners and operators to examine a variety of
participation factor scenarios. However, by combining this
method with the expected exit time security measure, the

13
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energy value also provides a means of ranking operating
points with respect to thelr vulnerability to voltage
collapse independent of participation factors.

u

4.2. Affects of Generator Var limits

The energy based method is based on a nonlinear
representaticn of the powerflow and system dynamics, rather
than working only with a linearization about a glven
operating point. This gives the method the very desirable
property that the affects of voltage regulation controls
hitting their 1limits can be taken into account. In this
cection +the affects of generator var limits will be
considered, while 1in the mnext section the affects of tap
changing transformers will be examined. In the powerflow
calculations used in this section, the var output af the
generators is normally allowed to vary in order to hold its
bus voltage constant; i.e., generator buses are treated as
PYV. However, if the var 1limit is reached, the exciter is
considered to have saturated, and thus the generator's
voltage is held constant; the bus model changes to PQ. This
is the standard approach to:treating var limits in powerflaw

calculations.

Consider again the three bus system of the previous sectiomn.
This time the generator at bus 2 turned on to provide
voltage support (reactive power, but initially it provides
na real power output and there is no load at the bus. One
would expect that the more reactive power the generator can
provide, the greater the load that can be tolerated at bus 3
before voltage collapse occurs. Figure 4-5 shows that this
i{s indeed the case. The lowest curve represents the case of
generator 2 turned off and is thus just a repeat of the
curve found i1in 4-1. The mnext four curves show how the
energy function varies as the maximum var output - of
generator 2 is increased in increments of 50 MVAR. During
the sequence of powerflow/energy calculations wused to
produce this figure, the voltage at bus 2 was held at 1.0
per unit as the load at bus 3 ramped up until generator 2
reached 1its var limit. Thereafter the var output was held
at its maximum. Surprising, the shape of the energy
function curve proves insensitive to the varying var limits
of the generator; the five curves in figure 4-5 are again
nearly identical up to a shift along the horizontal axis.

14
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Figure 4-5

The preceding example shows that the limits on available var
support are taken into account even when the current system
operating polnt (the "high voltage sclution”? has not pushed
the generators to these limits. Intuitively this is becauss
the low voltage solutlon tends to push all neighboring var
sources to their limits and thus reduce the height of the
potential energy boundary that the system must cross to
experilence collapse. Table 1 illustrates this property.

Table 1

Bus 3 load: Bus 2 Generator: Energy
MW MVAR MW MVAR MAX MVAR Limit

100 50 0 0] 0 (gen off> 1.85
100 50O 0 50 50 ' 2,10
100 50 g 71.38 1006 2.34
100 5O 0 71.38 150 2.56
100 B0 0 71.38 200 2.77

15
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Fotice that in the last 3 cases in the table, the gemnerataor
at bus 2 has not saturated at the current operating point,
but the energy function yields different values based upon
the maximum var output of the generator. As expected, the

- larger energy values (indicating a more secure operating

point> are associated with the cases where generator Z has a
greater var margin. This is a very desirable characteristic
to have in a method of determining proximity to voltage
collapse since a voltage collapse scenariac is often
characterized by nearby generators reaching their reactive
power limits as the voltage in the area declines. Thus in
order to gauge how far the current operating point is away
from the voltage collapse point, these limits must be taken

into account.
4.3. Affects of Tap Changing Transformers

In a power system, tap changing transformers (LTC
transformers) are used in both the distribution system and
in the transmission system. Iin the distribution system
their primary purpose is 1o .:maintain the customer voltage
within a narrow band. In the transmission system they are
used both to control the voltage ‘@on the transmission system
and to reduce transmission Jlosses by decreasing the var
flows on the lines, Because of their considerable ability
to control voltage profile of the system, it 1is essential
that their affects be considered in any measure of voltage
security. In this section the affects of the radial load
LTCs will ©be considered, while +the affects of the
transmission system transformers will be exanmined in the

next section.

The 2 bus system used in the above examples 1s modified to
include an LTC transformer between buses 2 and 3. This
transformer is regulating bus 3's voltage to 1.0 per unit;
assume the transformer has 16 steps above and below 1ts
nominal setting, with a per unit step size of 0.0125. Alsa
the assumption of fixed MVAR load will also be relaxed by
allowing the load at bus 3 to consist of inductance <€Q
varies as a function of V#), along with constant M¥VAR load.
Figure 4-6 shows the energy measure as the load at bus 3 is
inereased for the two cases: LTC transformer not regulating,
and LTC regulating. Vhen the LTC transformer is used for
voltage regulation, the system turns gut to be less secure.
The LTC transformer regulation causes the load bus voltage
to be higher, +thus resulting 1n more inductive 1load.
Conversely in the unregulated case the bus voltage is lower,
resulting in less load. Figure 4-7 plots the voltage at bus
3 for both cases. Intuitively, the energy measure accounts
for transformer’'s regulation limits because the low voltage
solution pushes the transformer to its limit. This is the
same phenomenon observed earlier with generator var limits.
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Cffect of LTC Transformer on Bus Uoltage
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4.4, Energy method applied to a larger system.

The following set of examples illustrates the application of

the energy method on a larger system. Frequently the
ibility of voltage collapse exists in more than one area

poss

of the system. The low voltage areas are normally a
collection of buses with very little internal reactive
support, connected ta the rest of +the system through

relatively high impedance branches. A 16 bus network was
constructed to illustrate the use of the energy function
method in a system having multiple weak areas. A ame line
diagram of the system is shown 1in figure 4-8 (see appendix A
for a complete listing of system parameters?. The systen
contalns two areas with potential low voltage problems: area
1, which consists of buses 13, 14, 15, and 10 (generator 15
has an extremely low var 1imit), and area 2, which contalns

buses 9, 10, 11, and 12.
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Figure 4-8

The possibility of voltage collapse in area 1 will first be
examinead, By gradually increasing the load in area 1, the
energy difference between the high and low voltage solutions
can be calculated.® The single free parameter in this case
ls the total MV load in the area. The result is shown in
figure 4-9, which relates energy value to area MW 1load.
Additional curves can be develaoped for any number of
contingencies on the system. Figure 4-10 shows the energy
curves for the following four contingencies: 1) QOutage of
line 3-7, 2) Outage aof the generator at bus 15, 3> Outage of
the generator at bus 8, and 4> Outage of line 6-13. As was
seen 1n the examples with the three bus system, the shape af
the energy function curves is nearly identical up to a shift
along the horizontal axis. Table 2 provides a ranking of
the contingencies by energy value (most to least severe) for
an area 1 load example load of 150 MV,

“See section 5 for a more detailed description of
determining low vaoltage solutions in larger systens.
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Table 2 - Area 1 Contingencies Ranked According to Severity

Contingency

1 - Line 3-7 QOut
4 - Line 6-13 Out
3 — Gen 8 (Out

2 — Gen 15 Out
Base Case

Energy

L4l
.48
V13
.15
22

PR P OO
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From Load of 150 NV
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Figure 4-9
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In a system with more than one weak area, 1t may be
necessary to calculate the energy function for +the low
valtage solutions of each area. The energy value associated

with each low voltage solution appears to correspond to the
likelihood of voltage collapse being initiated by loss of
solution at the bus with the lowest voltage. Table 3 shows
-. the energy values assaociated with  the four above
contingencies when voltage collapse in is forced to occur in
area 2. This is done by gradually increasing the load in
area 2, rather than in area 1. Figure 4-11 displays the
energy curves assocliated with each contingency.
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Table 3 - Area 2 Contingencies Ranked According to Severity

Contingency Energy Distance to collapse
- From Load of 150 MW

1 - Line 3-7 QOut No Solution - Callapse at bus 16

3 — Gen 8 QOut 1.81 155

2 — Gen 15 Out 2.04 171

4 ~ Line 6-13 Out 2.08 173
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As was seen in the previous case, the energy function ranks
the severity of each contingency in a manner which agrees
with engineering Jjudgement. Since the ties of area 2 to the
rest of the system (and to var sources’> are stronger, the
associated energy values are higher. The contingency where
line 3 to 7 was removed 1s an example where area 1 and area
2 join to form a single area of depressed voltage. In this
‘case 1t appears that no low voltage solution is possible
with bus 9 having the lowest voltage; in this case voltage
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collapse would occur at bus 16 before bus 9, even though it
1s the loads in area 2, not area 1, which are increasing.

Lastly, +the 16 bus system is modified +to include LTC
transformers on the lines between 5 to 1, 6 teo 2, 7 to 3,
and 8 to 4. Each of the four transformers attempt to hold
the voltage of the first bus of the four above pairs at 1.0
per unit, Again assume that each transformer has 16 steps
above and below nominal, this time with a step size of
0.00625. Figure 4-12 compares the energy curve of figure 4-—
9 (with transformers not regulating) to the case where the

LTC transformers are regulating the bus voltage. Note that
the var loads are here assumed to be insensitive to bus
valtage. Under these conditions, the presence of the LTC

transformers increases the energy measure associated with
any area 1 load, and hence the system is Judged more secure.
This is 1in contrast to the case examined in 4.3 where the
presence of LTC's decreased security. The energy measure
appears able to correctly account for LTC +transformers
affects regardless of whether +they improve or degrade

security.

tffects of Network LTC Transformers
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Based on the cases examined here, it appears that the energy
function provides both a means of ranking the severity of

each contingencies, and also provides a more intuitive
relative measure of system security (in this case the
tolerable increase of MW in load 1), As expected, the

measuraes  of distance to collapse require that the
appropriate incremental load and generator participation

factors are taken into account. Computationally, the on-
line requirements of +the method consist only of a few
(ideally two> powerflow solutions per contingency, and
associated evaluations of the scalar energy function, If
one only wishes to rank various operating polnts with
respect to their vulnerability to voltage collapse, no
additional calculation 1s needed. If one wishes to
postulate several possible patterns of expected load
increase, the cffline calculations require repeated
powerflow solutions and energy evaluations along these
nprojected paths" of operating points, As shown in the
preceding examples, typically only one path 1is needed per
load pattern, not one per contingency. The energy value

calculated on—line can then be used to identify where the
system lines on one of the paths, and thus the tolerable
load increase can be identified for either the base case Or

a contingent state.
5. Low Voltage Powerflow Solutions

The powerflow solutions often display more than one possible
solution, as had been seen in figure =-1. Since the energy
function requires the use cf the low voltage solutions, saome
discussion of their characteristics and methods of solution

is needed.

Referring again to the two bus system, it is clear that the
simultaneous soluticon of the P and Q constraints shown 1in

figure 2-1 is obtained at their intersections. Vith low
load values there are two solutions <(the high and low
voltage), which are relatively far apart. Az the load is

increased, these two solutions gradually move together until
they reach the bifurcation point, where the two solutions
coalesce into one. Further 1increase 1in load results a
powerflow with no solution. At the bifurcation point the
Jacobian of the two powerflow equations bhecomes singular.
This is shown in figure 5-1, which is a plot of the smallest
singular value of the Jacobian of the twa bus system used in
section two. The high and low voltage magnitude data from
figure 2-2 is included for reference.
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Figure 5-1

As a '"next step” 1in complexity over the two bus system,
consider the case of a three bus system with twoa radial
lines connected to a single slack bus. Because of the slack
bus between them, the +two halves of +the system are
essentially isolated from one another. This system could be
likened to a larger system with two potentially weak areas,
isolated from one another by a relatively strong portion of
the system. For this case the maximum number of Solutions
ls seen by inspection to be four (both loads at their high
bus solutions, both at their low voltage solution, and the
two combinations of one load high and one lead law), with
each side reaching its bifurcation point independently as
its leoad is increased. The next logical extension of this
system is to couple the two loads by adding a third line
between them. As shall be demonstrated shortly, this system
results in a much more interesting set of solutions.

Caonsider the three bus system with bus 1 as the slack and
buses 2 and 3 as load buses with constant P/Q loads. Each
bus is connected to the other twa with lossless lines of 0.2
per unit impedance. With an initial load of 50 MV and 25
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MVAR at each of the load buses, 4 sclutions are possible.
Figure 5-2 shows the solution trajectories in the Vz—Va
plane as the load at both buses is increased at the same
rate, maintaining a constant -powerfactor. The dnitial
starting voitage points are labeled 1, 2, 3, and 4. Point 1
corresponds to the normal operating point of the pawerflow.
As the 1load is uniformly increased at buses 2 and 3,
trajectory 1 moves downward to the left, indicating that the
voltages at both buses are falling. This is the expected
power system bebavior. Eventually the voltage collapse
point 1is ,reached <(labeled point 5); at this point the
Jacobian becomes singular and no further increase in load is
possible. The other three points correspond to the three
other 1initial pawerflow solutions (the 'low voltage’
solutions). At point 2 the valtage at bus 3 is higher than
that at bus 2; at point 3 both voltages are the same; and at
point 4 the voltage at bus 2 is higher than the voltage at
bus 3. As the load at both buses is increased, the three
trajectories converge, coalescling into a single trajectory
at point 6. By the implicit function thearem [71 it 1is
clear that at this point of coalescing, the Jacoblan must
also be singular. As the load is further increased, the
trajectory continues to the upper right, eventually reaching
the voltage callapse point 5, where the Jacobian again
becomes singular. The simulations for this figure
encountered few convergence praoblems in the vicinity of
point 5. In the immediate neighborhood of this point the
Newton—-Raphsan iteration required one or two more steps to
reach a solution. This ease of solution is closely related
to the choice of load step size. A larger step size meant
less likelihood of 1load conditions extremely near to the
singularity. Geometrically, the singular points comprise a
set of measure zera, so the chance of landing exactly on the
singularity is mnegligible. Figure 5-3 shows the smallest
singular value of the Jacobian along paths 1 and 3 plotted
versus the voltage magnitude at bus 2.
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Figure 5-3

If the loads and their participation factors are changed so
that the load at bus 2 is no longer equal to the load at bus
3, the three trajectories no longer join together. Figure
5-4 shows +the results for the same system examined
previously except that the initial loads were changed to
with 50 MW and 25 MVAR at bus 2 and 45 MV and 22.5 MVAR at
bus 3. As the 1lovad in the system was increased, the load
participation at bus 3 was such that it remained 90% of the
lgad at bus 2. In this example, trajectory 1 remained
relatively unchanged, with the voltages dropping as the load
is increased. Because of its larger load, bus 2's voltage
was always slightly below that of bus 3. The low wvoltage
trajectories changed substantially. Trajectory 2 mnOW no
longer joins those of 3 and 4, but rather moves towards an
intersection with trajectory 1 at +the point of voltage
collapse. Trajectories 3 and 4 alsc maove towards a point of
mutual intersection, however the load value associated with
this intersection point 1s substantially below the value
associated with the point of voltage caollapse for the

As would be expected, the Jacobian of the system

system.
3 and 4 1is

at +the intersection point of <trajectories

=28



singular.
the load at bus 3 was only 60% of the load at bus 2.

bottom +trajectory is continuing to move closer +to the

axis.

Numerically it was not possible to

trajectory for loads at bus 3 which were less than 50%
the initial 50 MW/25 MVAR load at bus 2.

Figure 5-5 shows the results of the case where
The
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Figure 5-D

ASs the ©previcus examples have shown, the paower system
equations often have multiple 'low voltage' solutions. in
order to use the energy function method, if 1s necessary to
determine which of this 'set’' of soluticns is relevant in
defining the desired security measure. This remalins an area
for future research, but the following interpretation of the
results does shed some light on the problem. Returning
again to the simple three "bus system consisting of two
radial 1loads, it is fairly easy to plot the energy
difference between each of the three low voltage solutions,
and the high voltage solution. Figure 5-6 contains this
data plotted vs the load at bus 2 (the loads at bus 2 and 3
are considered equal). As can be seen, the energy value
associated with the case where the voltages at both 2 and 3
are low is significantly higher than for the cases where
either 2 or 3 is high. The energy value in the former case
would correspond to the expected exit time with both areas
experlencing voltage collapse simultaneously <(an unlikely
event if they are +truly independent?, while- in the later
case the energy value would correspond to one of the buses
collapsing independent of the other (a much more likely
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event, and hence a lower energy difference). This suggests
a possible technique for determining which of the low
valtage solutions to use. Since the high veltage solution

corresponds to the known operating point, one may simply use
the low voltage solution which yields the smallest energy
difference between itself and the high voltage solution.
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To find this solution with a Newton-Raphson iteration, a
good tule of thumb 1is to initialize the power flow with
extremely low voltage magnitude <(about 0.1 pu.? at the bus
which is thought to be the most vulnerable to voltage

collapse.

Applying this rule to the system used for figure 5-4, one
would expect voltage collapse to occur at bus 2 first since
the load 1s greater at this bus than at bus 3. Figure 5-7
shows the plots of the energy difference between each of the
three 1low voltage +trajectories and +the high voltage
trajectory. As expected, the trajectory corresponding to
collapse around bus 2 does indeed result in the lowest

value.
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in the sample 16 bus system used in section 4 it was also
found that the lowest system—wide energy margin was obtained
by collapsing around the bus with the lowest energy margin
in an area. This was accomplished by setting the initial
guess for that voltage’s bus to be 0.1 at an angle of zero,
with the other voltages at 1.0. Clearly, the identification
of the weakest bus is a heuristic Jjudgement. Here it was
taken to be the bus with the weakest ties to the rest of the
system. The solution did not reguire that the initial
values be extremely close to the actual values. In the case
of area 1 (which contains buses 13, 14, 15, and 10)
identification of bus 16 as the weakest was straightforward.
Figure 5-8 shows the voltage magnitude prafile for Area 1
collapse using bus 16 as the low initial guess. In the case
of area 2 (which contains buses 9, 10, 11, and 12) labeling
the weakest bus was more difficult. Any of the buses in the
area could have been classified as weakest under the
criterion established for the three bus system. The
heuristic used for the larger system was to select the bus
which had the lowest voltage magnitude in the high voltage
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solution. Figure 5-9 shows two of the low voltage magnitude
profiles for area 2 collapse; one using bus 9, +the other
using bus 12 as the low initial guess.
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1t is interesting to note that as the load in the 16 bus
system was uniformly increased, areas 1 and 2 became less
and less 1independent. Eventually it was no longer possible
to obtain the low voltage solution for the low initial guess
at bus 12. This was similar to what was observed in the
three bus system is figures 4-2 to 4-4; eventually some
solution trajectories terminate at loads below the voltage
callapse point. As +the load was increased further, the
solution at bus 9 alsc terminated; when this occurred areas
1 and 2 could no longer be viewed as separate and thus it
was necessary to collapse the system about the weakest bus
in the combined area {(which in this case was bus 16).

Identifying low voltage powerflow soluticns represents a
challenging application of bifurcation theory. Determining
the initial guess of the voltage magnitudes and angles in
order to arrive at a desired solution is not always
intuitively obvious. This difficulty can be illustrated by
again considering the two bus system. With a load of 200 MV
and 50 MVAR at bus 2, the voltages at bus 2 corresponding to
the two solutions are 1) 0.922 -12.53° and 2) 0.224 -63.43°.

34



Depending upon the initial voltage magnitude and angle guess
at bus 2, the Newton-Raphson algorithm either converges to
one of these values or does not converge. Figure 5-10 shows
all of the initial voltage magnitude guesses between 0 to 2
pu. and initial angle guesses between —180° and 180° degrees
which converged to the high voltage solution. Likewise,
Figure 5-11 shows those which converged to the low voltage
solution. As one would expect, initial guesses close to one
of the two solutions converged to that solution. However
the boundary between +these +two "regions of attraction”
appears to be very caonplicated. Finding an initial guess
which converges to a given solution does not mean that all
other guesses "closer” +to that solution will necessarily
converge to it. The Newton-Raphson algorithm used here was
forced to abort anytime +the solution process caused a
voltage magnitude to be negative or after 25 iterations.
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Figure 5-12 shows the ''regions of attraction" for the three
system used in figure 5-4 for varying dnitial valtage
magnitude guesses at buses 2 and 3 with constant initial
angle guesses of 0. In this problem, with load values of 50
MW and 25 MVAR at bus 2 and 45 MW and 25 MVAR at bus 3, four

soluticns are shown in Table 4.

Table 4
| V1] Angle 1 |V2| Angle 2 |V3| Angle 3
1 1.0 0.0° 0.944 -5,88° 0.946 -5.66°
2> 1.0 0.0° 0.082 -62.33° 0.462 —14.76°
37 1.0 0.0° 0.450 -16.03° 0.074 -63.14°
4> 1.0 0.0° 0.120 ~-56.54° 0.105 -58.75°
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Figure 5-12

These four solutions correspond to the four "regions of
attraction” in figure 5-12. The regions appear ta be
contiguous, however, as the enlargement of a small portion
of region 2 shows in figure 5-13, their boundaries are not
smooth. The white areas represent 1nitial conditions for

which a solutiaon was not found.
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The regions of attraction become more conplex in the case
where the initial angle guesses were no longer Zzero. Figure
5-14 shows the case with initial angles at bus 2 and 3 of
5.73° ~11.46° degrees respectively. The shapes of the four
large regions from the prévious problem appear relatively
. unchanged; however a new region has formed immediately <o

the left of area 1. Surprisingly, initial guesses in this
area result in convergence to scolution 2. Table 5 shows the
convergence path taken for an initialize guess of V2| = 1.0
and |V3| = 0.58. Upon enlargement, shawn in figure 5-15,
slender area appears between the twao areas.
This area's attraction is to solution 3. More research 1is
required into both the properties of these solutions, and
into algorithms to 1locate the particular low voltage
solution in an area that yields the lowest energy.
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6. Conclusions and Directions for Furtber Research

This report has discussed a new method of assessing
vulnerability of a power system operating point to voltage
collapse based on an energy function defined for the system.
The advantage of this approach is that it offers an impraved
measure of praximity to the voltage collapse point, gilving a
security measure that operators might use to anticipate when
corrective action is necessary, before collapse oOccurs.
From a mathematical standpoint, this advantage comes from
the fact +that the method treats nonlinearities in the
powerflaw and system dynamics, rather than working only with
a linearization at the current operating paint.
Practically, this gives the method the ability to describe
such effects as var 1limits on generators and load tap

changing limits on transformers.

The method in its existing state of development appears to
be guite promising. Further research would be valuable in
several areas. First, more detailed dynamics should be
included in the model and associated energy function. In
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particular, the effects of on load tap changing
transformers, generator voltage control systems, and HVDC
links would be relevant. Further work on calculation of law
voltage sclutions 1s also important. A heuristic method is
needed to efficiently ascertain the critical alternate low
voltage solutions. ’ '
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