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ABSTRACT in [1]), where various measures are compared in terms of a
common criteria based on statistical decision theory. In that work
Research literature examining the phenomena of voliage varions methods are compared in terms of their ability to reliably

collapse has increasing converged towards an explanation classify operating conditions as secure or insecure with respect to
involving quasi-static evolution of the system operating point voliage collapse. Among the conclusions of that work was the
towards & condition where that operating point loses asymptotic observation that "one needs at least one static and one dynamic
stability. However, many works have also recognized the need criterion io identify the voltage collapse problem,” implying that
to supplement such stidies with information reflecting the there is fundamentally different information obtained from the

nonlinear dynamics of the system. This paper will review a two classes of indices. However, as the understanding of
range of existing results on voltage collapse security measures, voltage collapse and the related systemn modelling required to
and will show a range of power system models where the represent the problem has evolved, it has become clear that there
relationship between quasi-static and dynamic security measures are close connections between static and dynamic criteria. This

can be clearly established. It will be shown that the similarities paper will attempt t further illustrate these connections, and will
and differences of the resulting security measures can best be argue that for 2 wide class of models the information obtained
understood by examining the time scale of the external load and from each type of measure can be self consistent (predicting the
parameter variations that drive the evolution of the power system. same vltimate operational limits to load and parameter changes),
and complementary (with quasi-static measures naturaily
capturing slower time scale parameter variations, dynamic

1. Intreduction and Background measures capturing the effect of faster ime scale parameter
variations) Many researchers have previously addressed
The threat of voltage collapse and voltage instability connections between static and dynamic approaches to voltage

phenomena has attracted considerable attention in the power collapse studies, so little in this paper will be truly new, but the
system community over the past decade, as indicated by a anthors hope that collection of a range of results in a singie
tremendous volume of research literature that has been produced consistent presentation (as well as an updated interpretation of the
on the topic. With the accumulating experience of the power authors' own work) will prove useful. This paper is not,
system community, there is growing recognition of the varions howeves, intended as a comprehensive review. The range of
aspects of the problern, combining as it does both slow and fast papers on voltage collapse is so extensive that it is unfortunately
time scale phenomens, and quasi-static analysis methods with inevitable that many relevant works will not be adequately
dynamic models. This paper will contrast various methods of discussed here. To the researchers responsible for these works,

analysis in a consistent system model. the authors offer their apologies. The field will await a
One of the main goals of voltage stzbility analysis for power comprehensive survey at some future date.
system operation is the identification of & useful, computationsally This paper will be organized as follows. A general structure

ractable security index that can be used to judged a system's of equations commeon to power system models will be discussed
vulnerability to voltage collapse, and to evaluate the effectiveness first, and the role of both slow and fast time scale parameter and
of various corrective strategies when the security of the system is load veriations in these models will be highlighted. With this
threatened. Different modelling assumptions, and the mix of structure established, three major "schools of thought” regarding
static and dynamic criteria has often made it difficult io effectively voltage collapse analysis will be reviewed. These will include
compare varions voltage security measure. One of the most bifurcation analyses, sensitivity analyses, and nonlinear dynamic
comprehensive atiempis at such comparison is the work reported analyses based on energy functions. For the last of these
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approaches, a new interpretation in terms of an optimal control
problem will be introduced, which clarifies the role of fast time
scale disturbances in this analysis. The discussion of nonlinear
dynamic measures will also draw connections to voltage collapse
proximity indicators which make use of multiple power flow
solations, which play an important role in the optimal control
problem. The final section of the paper will then restrict attention
to a specific power system model (though not specific network
data), and will show that in this model the various analysis
methods offer results that are very closely related, with
differences arising only from the time scale of parameter or load
variation assumned.

II. General Modeling for Integrated Analysis

To facilitate an examination of both quasi-static bifurcation
and dynamic analyses, as well as more classical sensitivity
analyses, it is useful to look first at a general structure of
equations that encompasses the nonlinear dynamic model.
Working just with the general structure of equations, it is
possible to illustrate many of the necessary assumptions that
underlie sensitivity and bifurcation analyses, and o contrast these
with Lyapunov based nonlinear stability analyses. However, a
general abstract description of equation structure is not sufficient
to examine all of the practical modeling issues that influence
voltage stability. Therefore, following the general structure of
equations to be presented below, a specific power system model
that captures many of the characteristics relevant to voltage
collapse will be constructed in Section V1.

The most commonly used structure of equations vsed in
power system dynarmic simulation programs is that of differential
equations with algebraic constraints [2]. For voltage collapse
analysis, it will be useful to "pull out” the dependence of these
cquations on time varying load parameters, which will be denoted
here as L(t). In simple constant P-Q load models, these
parameters will simply be variations in active and reactive load.
For voltage dependent loads (referred to as "nonlinear ioads” by
some authors [3]), these might be time varying coefficients in a
polynomial, reflecting a time varying change in the composition
of a particular load. In this later case, these time varying
coefficients may multiply system variables such as voltage, so the
vector L(f) may be premultiplied by a state dependent matrix.
The resulting system model will be have the foliowing structure.

=1z, y)+B'(z, YL (18)

0 =gz, y) + Bz, y)L(o) (1b)
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For example, consider a very simple case of this general
structure: a singie generator, represented by a classical model,
feeding a load that is a sum of & constant P-Q term and a time
varying inductive term. The dynamic vector z would have two
components, corresponding to the generator angle and frequency;
the single algebraic variable y would correspond to the load bus
voltage magnitude. The model would have two first order
differential equations, defining derivative of frequency and angle,
and a single algebraic constraint imposing reactive power balance
at the load bus. The reactive power balance equation would
contain the single time varying L{t) term, representing the varying
inductive load, and this term would be premultipled by voliage
magnitude squared (i.., BXz,y) = y9) .

As noted above, this type of mixed system of differential
equations with algebraic constraints is very commonly used in
power systems simulations. However, the behavior of
trajectories in such systems can be markedly different from that
of pure systems of differential equations alone. For example, it
is possible for trajectories to exist over some interval of time, but
disappear at some later point in the trajectory. This is phenomena
has been labelied "impasse point” behavior in circuit simulations
[4], [5], where it usually indicates that the model is deficient
because important parasitic dynamics have been neglected. Also,
when comparing two systems that have the same steady state
equations for equilibria, the stability of equilibrium points can
change wildly depending on whether or not some the defining
equations remain as algebraic constraints in the full dynamic
model. Not surprisingly, techniques for estimating regions of
atiraction must also be modified to accommodare such mixed
differential/aigebraic systems. These issues have begun to be
addressed in the power systems literature in such works as [6]
and [7], but deserve further scrutiny in voltage stability analyses,
This point will be raised again in reviewing bifurcation analyses.

To resolve the difficulties inherent in differential/aigebraic
representations one may seek physically plausible dynamic
models for joad that admit the same equilibria as predicted by the
algebraic load model. One approach to introducing such
dynamics is reported in [8], using a load model described in [9].
In these works, the steady state load model used in powerflow
analysis is modified. An alternative approach that keeps the
standard steady state powerflow maodel is described in [7], where
the reactive power balance equations that force a system to
always have zero mismaich at each bus are "permrbed” to a
dynamic model that allows instantansous mismaich o exist. The
new dynamics are assumed to have a fast time constant that
moves voltage magnitude back to an equilibrium with zere
mismatch. This involves modifying the reactive power mismatch
equations by introducing a term dependent on the derivative of
bus voliage magnitude. With either of these approaches, the
result is a new system model composed purely a state space



model, much like the result of 2dding of parasitic dynamics in the
circuit case of [5]. In this case, (1) is condensed to the form:
x = f(x) + B{x)L(1) . @
A first step in comparing various analysis techniques lies in
identifying the assumed time scales of the parameter variations
that enter models such as (1) and (2). Load studies in power
systems have shown that aggregate variation in demand at a
distribution substation level can often be decomposed into two
major components: a relatively large magnitude "moving average”
corponent, slowly varying on a time scale of minutes to hours,
and a smalier magnitude, zero mean component, varying on a
time scale of seconds [10], [11). This separation of time scales is
represented by decomposing the L{t) term into & slow time scale
component, and & small magnitude, zero mean comnpenent, as
indicated below.

Lin= leow(t) + .».. _“(t)

'sm. (3
The first component of (3) captures the familiar hourly
variation in the "load curve” through the course of 24 hours or 2
week, and is used to determine loading levels in most types of
power system studies. The second component models the
inherently random behavior that results from aggregating
thousands of individual switching actions in customer loads.
Once the slowly varying average component is removed, this
remaining fast time scale variation is typically quite small in
magnitude (a few percent of nominal load), and is often
considered negligible in standard power system stability studies.
However, operating conditions associated with voltage collapse
typically display very high sensitivity to small variations in load.
Hence, later in this paper we wili argue that it may be advisable 1o
keep even such small variations explicitly represented in the
model. However, &s a first step, consider the effect of including
only the term lﬁiowm from (3) in (2), and assume that the time
rate of change of this term is indeed slow relative to the time
constants of the dynamics. Intuitively, one expects that the
evolution of the system state, x(t), will tend to be close to the
trajectory, &(1), predicted by solving the quasi-static equilibrium
equation below:
6 = £((0) + BROL, O . @
This should remain valid provided that the dynamics of (2), when
linearized about X(t), are stable with time constants much faster
that the variation on(t). Rigorous conditions for Iix(t) - Q(t)ll to
rernain bounded by a given constant are easily obtained in the
case when the system has a suitable Lyapunov function, and are

17

derived in [12]. Voltage collapse analysis may be viewed as an
aitempt to efficiently predict (or control against) operating
conditions that ultimately fail to satisfy these conditions, since
collapse is associated with x(t) (particularly bas voltages)
diverging from the desired operating point predicted by X(1).

Il. Riforcation Analysis

The discussion of this section will assume that small
magnitude random variations in load are negligible, and that
lew(t) defines the only parameter variation of interest. For
simplicity of notation in this section, this load variation will be
denoted only as L(t). One expects that trajectories x(t) satisfying
(2) will diverge if (4) ceases to have a solution altogether, or if
2(¢4) no longer defines & (sufficiently) stable equilibrium for (2)
when the load term is "frozen” at L(%). This is the viewpoint
adopted in voliage stability biforcation analyses such as [13] and
[14]. These approaches typically assume that a suitable load
prediction exists to define the function L(f), witha starting value
L(0) that yields an acceptable, stable operating point. The goal
then becomes one of determining if there exists a time t, or
equivalently, a load level L(D), at which the assumed operating
point &(1) looses small disturbance stability. For such
bifurcation analyses, stability of the operating point is judged by
examining the linearization of the dynamics about the points
predicted by 2(1). However, considerable information regarding
the local behavior of the true nonlinear trajectories can be
obtained from such linearized analysis. For example, [14] shows
that when the true state x(1) diverges from X(9), its initial direction
of motion can be predicted by an eigenvector obtained from the
linearization about the critical value of X(t).

Identification of criticel loading levels L(1) is facilitated by
the fact that for many simplified dynamic models, the critical
loading is associated with an operating point where the power
flow Jacobian, denoted by J(x), is singular. Relating this
observation 1o (2), this property arises if the linearization 9f/ox
has a zero eigenvalue when J(x) (which often makes up a sub-
block of of/ox) is singular. Section VI will examine a specific
class of system models relevant to voliage collapse for which this
property holds. The critical role of power flow Jacobian has
been recognized for many years, and motivates & number of
security measures that measure proximity to voltage collapse by
the distance of the power flow Jacobian from singularity [15].
From a computational stendpoint, o long as the load variation is
function of one parameter (such as time t in the L(t} model here),
itisa sua.ight‘forwa:rd matter to augment steady state power flow
eguations with constraints that force the power flow Jacobian to
be singular. In this way, the critical parameter value £ can be
solved with very little more computation than a standard power




flow. This generai computational approach is described in [16],
with the power systems application developed in [17]. In many
models, the critical value £ typically predicts a point where two
power flow solutions coalesce, and for further increase in t, the
powerflow no fonger has a solution in the neighborhood of &h.

For more detailed dynamic power system models, the
linearized dynamic about an operating point predicted by %(t) may
loose stability when complex eigenvalues cross the imaginary
axis, rather than by a real eigenvalue crossing through zero. In the
former case, one expects the physical instability to be manifest by
growing oscillations1; in the later, the divergence of state would
be an exponential with positive real exponent. Hopf bifurcation
associated with imaginary axis eigenvalue crossings was studied
in [18], where it was shown that variation in exciter gains could
yield this type of transition to osciilatory instability. More recent
work in [19] has suggested that oscillations associated with
generator exciter and field dynamics may be responsible for some
types of volige instability. However, the field reports on voltage
collapse incidents [20], [21] suggest that the divergence of voltage
magnitdes from the operating point displayed a monotonic
decline, rather than growing sinusoidal oscillation. This
admittedly limited evidence would seem to indicate that the
instability of voltage coliapse should be modelied by a purely real
eigenvalue crossing through the origin,

To summarize, the general bifurcation approach may be
outlined as follows:

i) A model of the form (2) is assumed, with L(t) a known
function of a single variable.

i) The quasi-static equilibrium %(t) is defined implicitly via
solutions 1o (3).

iii) The Jinearization of (2) evaluated at x(0), 3f/ox{x(0)), is
assumed stable with all eigenvalues strictly in the left half plane.

iv) The critical value f is identified as the smallest positive
value of t for which 9f/0x(3(1)) has eigenvalues crossing the

To obtain a namerical proximity indicator from this approach,
a "distance” to collapse can be defined by the norm size of the
load change necessary to cause loss of stability in the lincarization,
i, by IL(})-L(O)I. A Euclidean norm is typically used, but
other choices, such as a £-e norm, may have more engineering
significance. The traditional Q-V curves that define loading limits
in a single radial line (sormetimes extended to analyze tie line limits
in larger systems [22]) are simple single parameter versions of this
type of measure, This distance to collapse is expressed in the load

111 is also possible that the growing oscillations predicied by the Linearized,
small disturbance stability analysis capture only local behavior, and that the
actual trajectory enters a limit cycle further away from the oid operating
point. This aspect of Hopf bifurcation analysis is considered as an
explanation for power systems oscillations in {18] and [44).
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parameter space; 4 similar distance to coliapse may be defined in
the state space, by calculating IR(f)-R(0).

Altemnative approaches may relax the assumption of known
dependence of L on ¢, and seck a test to indicate whether any load
variation in a set of possible load levels yields a transition 1o
instability for the linearization about % (the dependence of & on the
single parameter t cani no longer be assumed). In this case, load
levels at individual buses are treated as independent variables, and
a set of possible load levels would be defined by examining load
veclors within a given weighted norm bound. One then has a
corresponding family of possible linearized system matrices, and
the goal is to test if there are any unstable matrices in this set.
Because the dependence of the linearized matrices on load changes
is nonlinear, the set of matrices obtained may be quite complex.
However, in {23] it is argued that for some models (similar to
those that will be described in Section VI), the set of linearized
malrices obtained may be well approximated by a "matrix
polytope;” that is, a matrix generalization of a polyhedral set. For
the case when the transition to instability must take place with an
eigenvalue passing through the origin, this problem is very similar
to that of finding singuiar matrices in an interval matrix family.
Recent work on the general interval matrix singularity problem
f24] has indicated that the best known algorithms for this problem
have computational cost that grows exponentially with the
dimension of the matrices and number of free parameters. This
suggests that the problem may formally belong to the class of
computationally intractable problems that computer science
classifies as "NP-hard."

If the problem of deciding whether or not an interval family of
matrices has a singular element is NP-hard, a practical algorithm to
decide (with complete certainty) whether or not 2 multiparameter
family of power system operating points is guaranteed stable is
probably computationally intractable. However, this "curse of
dimensionality” is often confronted in power system
computations, and sufficiently accurate and reliable approximate
algorithms with much Iower computational cost can often be
found. Hence research into this type of multiparameter
bifurcation/small disturbance stability problem will undoubtedly
continue.

IV. Sensitivity Approaches

Most of the carly, classic works on voltage stability relied on
steady state sensitivity analyses, observing that voliage instability
could be associated with an operating point at which the ratio of
inctemental changes in bus voltage to changes in reactive demand
approaches infinity [25], [26]. Interestingly, in many models a
generalization of this approach yields the same prediction of
critical load values as bifurcation analysis, and several more



modermn approaches have exploited sensitivity type approaches
[27] . [28]. To describe such approaches, consider again (4),
which implicitly defines the motion of the quasi-static equilibrium
" as the load parameters evolve in time. Sensitivity approaches
typically treat incremental changes in the load vector AL as
varying independently about a known operating point x° and
nominal Joad level L The resulting form of (4) may then be re-
writien as:

0 = f(x%+Ax) + B(:°+Ax)(L +AL) . o)

Linearizing the relation above about (x°, L °) the implicit function
theorem predicts the sensitivity of Ax with respect to AL as being
given by:

1

of OB ;. 0\ ©
Ax =-I:-3;(x°)+—a-£-(x )L] BEOAL

When the load parameters are simply P-Q load levels, the
matrix B is constant, so the 9B/0x term disappesrs, leaving

3t o
0
Ax = -[a—x(x )] BAL )

From (7) it is clear that the state variables, such as voltage
magnitudes, can become infinitely sensitive to load levels (and in
particular, to reactive load levels) as the systern approaches an
operating point x° where 9f/0x(x°) is singular. But singularity
of affox(x® will of course imply that the linearization of (2)
about this operating point is on the boundary of stability, with an
eigenvalue at the origin. Therefore, while a sensitivity analysis
might appear unrelated to the system dynamics, one sees that
under standard assumptions on the iypes of load parameters
considered, identifying operating points with infinite sensitivity of
state to load changes will simultaneously identify operating points
on the boundary of small disnirbance stability.

In many cases, such sensitivity analyses can be further
simplified to examination only of the powertflow Jacobian, J(x).
For example, consider again a simple mede! that includes only
generator swing dynamics and algebraic constraints for power
balance et P-Q load buses. The structure of the resulting system
of equations will be that of (1), a mixed system of differential
equations with algebraic constraints of the form:

o=M"{-Do - b5 V) } (82)
Bg =@© (8b)
0=g®, V) (8c)
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where M represents generator reiational inertias, I} generator
damping, (5, V) represents active power mismaich at generator
buses, and g(8, V) represents both active and reactive power
balance constraints at load buses. Note that 5; denoles the subset
of phase angles at generator buses, and & the complete set of bus

phase angles. Then (8) may be rewritten as

@] | Mo M o ©
sl=1 1 o of®eW
Y 0 ¢ IJ8@YVY) (9

It is clear that the linearization of (9) about an cperating point
will have a zero eigenvalue if the Jacobian of the vector function

[T, RT(8, V), gT(B. V)]T becomes singular. Defining
x :=[@?, 8T, 7T, one has
@
S| uE, V)| = r¢
ox 0 Jx)
83, V) (10)

and it follows that in this fype of model, singularity of the
powerflow Jacobian at x° is equivalent to singulsrity of
af/9x(x%, which in wrn is equivalent to infinite sensitivity of
state variable with respect to certain incremental changes in load
parameters, as per (7). This type of relation will be examined in
more detail in Section VL

It is important to note that some recent work employing
sensitivity analysis expands these concepts to consider a type of
steady state "controllability” of voltage by changes in reactive
injections. From an operational standpoint, it is often necessary
not only that sensitivity of voltage to changes in injections be
bounded, but that these changes have an appropriate sign. For
example, it is desirable that an increase in reactive injection from a
generator should increase load bus voltages in an associated
conirol area. These requirements are more stringent than simply
avoiding singularity of the powerflow Jacobian. Work reported in
[27] suggests a variety of computational algorithms for testing this
kind of steady state controllability, several of which require the
Jacobian to maintain a M-matrix structure.

V. Nonlinesr Dynamic Approaches

In describing approaches to voltage collapse that consider
nonlinear dynamics, it is important to note that bifurcation
analyses do in fact identify transitions in the stability of equilibria
for a nonlinear model. However, since bifurcation analysis is
based on behavior of the linearization of the dynamics, one
expects that this approach will determine primarily local behavior




of the trajectories?. In examining the behavior in nonlinear
dynamic systems with a stable equilibrinm point, it is often useful
to obtain more global information, characterizing the set of all
initial conditions that are attracted back to that equilibrium, the so-
called region of atirection. Intuitively, one might associate the
"size” (in an appropriate norm or metric) of this region of
attraction with the ability of the stable operating point to recover
from fast time scale perturbations which tend to disturb the state
away from equilibrinom. Several of the nonlinear dynamic
analyses of voltage collapse which have appeared in the literature
have been concerned with identifying regions of atiraction,

In [29], a nonlinear model is postulated that focuses
exclusively on the dynamics of tap changing transformers, with a
decoupled power flow mode] representing the interchange of
power beiween buses. In this work, time varying parameters of
the form L(t) are not explicitly considered in the dynamic
equations, but it is clear that the regions of attraction estimated by
[29] will vary with system loading levels. It is also interesting to
note that while this model is naturally formulated as differential
equations with algebraic constants in the form of (1), assumptions
of the decoupled power flow approximation and pure impedance
load models makes it possible to solve the algebraic constraints
(1b) explicitly for y in terms of dynamic variables x:=z. Therefore
the authors obiain a set of purely differential equations with the
structure (2). This type of model is globally well posed, with no
possibility of ill defined trajectories or impasse point behavior.
Using only the tap changer dynamics, the authors identify a
feasible stable equilibrium in the state space of tap positions, and
to construct hyper-rectangles in this state space that approximate
the equilibrium’s region of attraction. It is interesting o note that
the authors of [29] comment that the equilibrivm of interest is
stable if the associated Jacobian matrix for the dynamic equations,
af/ox, is nonsingular. Hence this system model again has the
property that transition to instability must take place with an
eigenvalue of the linearized dynamics passing through the origin,
rather than with complex eigenvalues crossing the imaginary axis,
While the question is not explored in [29], it would be interesting
to examine whether or not this condition for loss of stability of the
equilibrium can be related to singularity of the power flow
Jacobian J(x), as is the case in many other dynamic models.

An altemnate nonlinear dynamic approach is an energy based
voltage collapse security measure introduced by the authors in
[30}. The present paper will review that work by presenting a
somewhat different development from that in {30), exploiting an
optimal control derivation of energy that makes explicit the role of
both slow and fast time scale disturbances, Iﬂow(t) and L '“(t).
This analysis will assume that a suitable dynamic load model or

?Though again we note that Hopf bifurcation can go somewhat further, and
predict nonlinear limit cycle behavior in the vicinity of the old operating
point.
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singular perturbation has been empioyed to obtain a system of the
form (2), having no algebraic constraints. An illustration of the
singular perturbation approach will be presented in Section VI.

The analysis assumes the system is at a known load leve] and
operating point; for simplicity, let these correspond to time 1=0, so
the operating point is defined by (L(0), x(0)). Furthermore,
assume that this initial operating point has a stable linearization,
i.e., of/ox(x(0)) has all eigenvalues strictly in the left half plane.
To isolate changes in load, (2) may be re-written as:

x = {fx) + BL() } + BAL® (1)

with AL(t)=Lmlu(t) treated as a zero mean, fast time scale load
disturbance input to the system. Hence the effect of the load
disturbance will not be to change the equilibrium point, but rather
to temporarily perturb the state away from the equilibriom x(0). If
AL(t)=0, the systern would remain at the stable equilibrium x(0).
Sufficiently small "impulses” in AL(t) will result in a state
Irajectories that asymptotically return to x(0), but sufficiently large
load variations will produce state trajectories that leave the region
of attraction about x(0) and diverge.

As discussed above, the "size" of the region of attraction
offers a relative measure of the operating point's ability to recover
from such load disturbances.
formulation, one can make this concept much more precise. The

Using an optimal control

impact of load disturbances clearly depends both on their
instantaneous magnitude and their duration. Therefore, to
measure the size of load distarbances on a time interval [0, T], the
following "cost function” is proposed:

T
CLALE)) = J.IIAL(t)II;dt .
0 (12)

The optimal control problem is then be formulated as follows:
for all possible final times T, and all possible piecewise smooth
controls AL(=) that steer the state from x(0) to a point x(T) on the
boundary of the region of attraction for x(0), what is the minimum
value achieved by Cy{AL(»))? The underlying assumption is that
once the state is driven to the boundary of the region of attraction
for x(0), the deterministic dynamics will tend to dominate, and
cause the state to diverge. For this phenomena to serve as a
plausible description of voltage collapse, one expects that the form
deterministic dynamics after the state reaches x(T) should be such
that the voltage magnitudes tend to rapidly decline.

As shown in [31], and subsequently exploited in [30], [32],
there exists a class of power system models for which this optimat
control problem is solvable in closed form. Indeed, rather than
defining only the lowest cost of steering the state from stable
equilibrium to points on the boundary of the region of attraction, it



is feasible to define a function $(x) thai measures the minimum
cost of sicering from stable equilibrium x(0) to any other x.
Morcover, it is easy to see that the resulting function has the
properties of a Lyapunov function with respect to the unperturbed
dynamics with AL(+)=0. For example, since the state will not
move from x(0) if the control AL(»}=0, there will always be some
nonzero cost associated with moving the system off its equilibrium
10 a neighboring non-equilibrivm state, x#x(0). Therefore, B(x)
must be locally positive definite about x(0). Also, the function
must be nonincreasing along trajectories of the unperturbed
system. Suppose there exist an x(t;) and an x(tp), ty<ty, such that
a trajectory of the unperturbed system initiated at x(1)) passes
through x(t). The cost of steering form x(0) to x(ty) must be less
than or equal than that of steering to x(t)). To reach x(ip), one can
use the control that steers x(0) to x(ty), set AL(t) to zero
thereafter. The state wiil eventually reach x(t;) with no additionat
contvol cost. It follows that $(x(ty))2B(x{ty)), i.e., the function
D(x(t)) is nonincreasing along trajectories %(t) of the unperturbed
system.

As shown in [31], the minimum control cost defined by this
optimal control approach is equal to a standard Lyapunov function
for a system model that include voltage magnitude variation and
reactive load models, such as that introduced in [33]. It is also
interesting to note that the problem of finding the lowest cost of
control to steer the state from stable equilibrium x(0) out of x(0)'s
region of atiraction is closely related to a classic problem in
Lyapunov analysis. In particular, the "lowest cost” path from
x(0) out of the region of attraction passes through what is termed
the "closest unstable eqguilibrium point,” or closest n.e.p. This
closest n.e.p may be defined geometrically as the (unstable)
equilibrium first encountered by expanding constant contours of
9(x) from x(0). In the optimal contro} interpretation, & given
constant contour represent the set of all points that can be reached
with the same cost of conirol. Using the properties of #(x) as a
Lyapunov function, it is easily shown that these contours must
remain closed, bounded, and contained in x(0)'s region of
attraction until they first encounter another equilibrium point. This
equilibrium will prove to be unstable3, and defines the lowest
saddle point on x(0)'s region of atiraction. Moreover, for the
operating conditions and loading pattemns associated with voltege
collapse, this v.e.p. is typically one that displays very low voltage
magnitudes. These low voltage n.ep.'s are precisely the low
voltage power flow solutions that have been exploited in other
approaches to detecting the onset of voltage collapse conditions
[34], [35], [36]. Trajectories initiated near a low voltage u.e.p.,
but outside x(0)'s region of atraction, will show very rapid

3his statement is true for systems of te form assumed in [D&B), but
sgsin, care is necessary in anelyzing mixed systems of differential equations
wilh algebraic consiraints. The equilibrium first encountered by expending
contours of the ssme function B(x) can prove io be stable in mized
differential/algebraic models.
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decline in voltage magnitude as the state diverges. This will be
examined in more detail in the specific system model of Section
VI

As a final comment on modeling in the Lyapunov/optimal
contro! analyses, it is important to note that the closed form
solution and true Lyapunov function are only rigorously
established for system models with zero transfer conductance and
no voltage dependent terms in the active load model. The issue of
Lyapunov functions for systems with nonzero conductances has
received tremendous attention in the literature, but actually proves
2 minor point in practical analyses. The controversy in the
literature has focused on the question of whether or not il is
possible to obtain a global Lyapunov function for a system with
transfer conductances; that is, 8 Lyapunov fonction that remains
strictly nonincreasing along all possible (rajectories, from any
initia! condition in the state space. This remains a difficult
question, with some evidence [37] suggesting that such a global
Lyapunov function is impossible to construct for models with
ransfer conductance. However, in the practical case when one
begins with an operating point x(0) whose linearization is strictly
stable, it is a trivial matter to construct a fecal Lyapunov function
that has the desired properties in a neighborhood of x(0). In[38],
a methodology is developed to identify a simple additive correction
for the idealized 9(x) that results from the exact, path independent
case. The resnit yields a local Lyapunov function that satisfies the
required conditions in a fairly large neighborhood of the stable
equilibrinm x(0). While not true global Lyapunov functions,
these energy? functions display behavior that is approximately
nonincreasing along (rajectories initiated in x(0)'s region of
attraction, and prove quite reliable in estimating this region of
attraction [32]. Alternative approaches to deriving practically
useful energy functions for for systems models lacking a path
independent integral have been in use for many years [39].

To relate this type of energy analysis back to steady state and
bifurcation analysis, the role of fast versus slow time scale load
variations becomes important. Bifurcation analyses examine load
variations that occur on time scales slower than the underlying
system dynamics, and identify how far a given load increase can
be "pushed” until the operating point looses stability. The energy
enalysis begins with a stable operating point obtained when the
slow load variation is frozen at a value below the critical threshold.
For that operating point x(0), the energy function evaluated at the
ciosest u.e.p identifies the smallest fast time scale load disturbance
that can push the state out of x(0)'s region of aitraction, causing
the state to then diverge. ‘This energy margin essentially measures
the size of the region of attraction, but does 5o using a metric that
is closely related to the dynamics of the system: the solution to the

4The convention here will be to use the term eaergy function when the
fesulting expression can not be proven 1o be nonincreasing slong all
possible trajectories




apiimal control probiem. The limit of the energy margin agrees
with the limits predicted by a bifurcation analysis in that as the
slow load variation pushes the operating point towards a value
where it looses small disturbance stability, the energy margin goes
to zero. The bifurcation analysis for this type of model predicts
that the operating point x(0) must merge with an unstable saddle
point (a type-one u.e.p.) at the critical loading level, This unstable
equilibrium is precisely the closest u.e.p. in energy analysis; when
the closest u.e.p. and operating point merge, it is obvious that the
energy margin between the two must shrink to zero.

As a final note on the relation of siow and fast time scale
phenomena in examining voltage collapse, the recent work of [43]
is noteworthy. In that work, the authors do not separate time
scales of exogenous load variations, as has been done here, but
rather separate time scales in the dynamic equations themselves.
This leads to a partition of the state variables (possibly in a new
coordinate system) into slow and fast sets, and an approximate
decoupling of the slow and fast dynamic subsystems. Then
separate stability analyses can be performed for the decoupled
slow and fast subsystems, allowing separate examination of
instability associated with slower dynamics such as tap changing
transformers, and faster dynamics of generator excitation
dynamics coupled to load characteristics. This type of integrated
analysis may ultimately allow coupling between the type of model
described here, and the tap changing transformer dynamic analysis
of [29].

V1. Sample System Model and Comparison of
Proximity Measures

To illustrate the relationships between analysis methods in
more detail, it is not necessary 1o examine specific numerical
examples, but rather the class of models must be considered. To
this end, this section will develop of model of the structure of (1)
that has many of the features considered in voltage stability
analyses, and will allow explicit comparisons between methods of
the types described in preceding sections, We wiil then discuss a
methodology for modifying this mixed system of differential
equations with algebraic constraints to obtain a system of purely
differential equations. Also, the nature of ill-posed trajectories in
the mixed differential/algebraic systems will be reviewed, and the
relation of this problem to load modelling discussed. Finaliy, the
relation between sensitivity, bifurcation and energy analyses will
be illustrated in detail for the differential equation model.

It is also important to note the types of analyses that are not
captured in such models, Only an approximate representation of
reactive output saturation of generation is represented; no detailed
exciter dynamics are incloded. Therefore, approaches to voltage
stability improvement through improved nonlinear control
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schemes for excitation, such as that proposed in [40], is beyond
the scope of this model. Similarly, loss of small disturbance
stability via complex eigenvalues associated with exciter dynamics
migrating across the imaginary axis, as discussed in [18] and [19],
is also not considered.

To illustrate the structure discussed in the preceding sections
for a specific model, consider the following possible
representation. The differential equations represented will arisc
from simple swing dynamics for generators, and from active loads
have a component that is proportional to bus frequency, as
originally developed for Lyapunov analysis in [41]. Linear
frequency dependent loads offer a simple approximation of
behavior of various types of motor loads. Reactive loads are
allowed to be an arbitrary polynomial or exponential function of
bus voliage magnitude; denote this function Qi(V;) The
expression for reactive power absorbed by the network can be
found in any standard text treating power flow analysis, and can
be written as a fanction of the vector oce R™ of phase angles
(relative 1o a reference bus), and the vector Ve R” of bus voltage
magnitudes; denote this expression at bus i as g,{ct, V). The
resulting reactive power balance equation becomes:

0=Q(V)-E(a. V) (13)

In some types of analyses, it proves convenient to first
normalize (13), dividing the equality by V! . The resulting

- Jacobian of the associated power balance equations becomes

nearly symmetric, which can be advantageous both for certain
numerical algorithms and for energy type analyses. With this
normalization, the reactive power balance equations then have the
structure

0=v'{Qvy - W }, (14)

which then make up the algebraic constraints shown by (1b) in the
general model. The L(f) terms would appear as variations in the
terms of Q(V}); these can be made explicit when necessary,
Many anthors have commented on the importance of reactive
limits on generators in the voltage collapse phenomenon. The
structure of equation in (14) may be easily adapted to model this
effect. Assume that the generator excitation system at bus i is
normally in a voltage control mode, with voliage setpoint Vio. A
simple representation of the exciter's behavior would increase the
generators MVar output when bus voltage drops below Vio, and
decrease its output when bus voltage rises above Vio. However,
the reactive output has both upper and lower kimits, so if the
reactive power absorbed by the network exceeds the maximum
output of the generator, the bus voitage will go ont of its "control
band" about Vio. This effect can be approximately represented by
choosing Q,(V;) for the generator as shown in Figure 1 below.



With this assumed form of reactive power balance at a
generator buses, the effect of reactive limits can be incleded in an
algebraic constraint of the same form as (14). It should be clear
that the characteristic given in Figure 1 is really just 2 "smoothing"
of the familiar switching function between PV bus behavior and
PQ bus behavior that is typically used to represent reactive limits
in power flow analysis. In the limit of a step change between
Qimax 2nd Qqip, one recovers the PV/PQ switching behavior,
However, for small disturbance stability analyses that require
differentiation of the characteristic, the smoothed representation in
Figure 1 appears a more tractable and equally plausible
approximation. With the smoothed approximation, the generator
terminal bus voltage magnitude remains a variable in ali ranges of
operation, so the dimension of the power flow Jacobian is not
changed as the generator reaches its reactive limit.

Qv)
[

&

¥ M

Figure 1: Generator Reactive Output versus Terminal Voliage

With the individual component models described above, the
overall system model can be assembled, with variables given by:

® & R™, generator deviation from synchronous frequency,
o € Rrl bus voltage phase angles relative to reference
bus,

V & R0, bus voliage magnitudes,

The differentialfelgebraic equations for this power system
model are then writien as:

@ =-M"T; (o, V) (15)

4=Tw + T,D; T,f(o, V) (15b)

=gl V) (15¢c)
where:

fo, V) := T, V) + BY

17

£, (o, V) 1= active power absorbed by
network atbus {

P? = nominal active power demanded
by load at bus i

g(c, V) := (diaglV]) " {&(ex V) + Qp(V))

E,(0, V) := reactive power absorbed by
network at bus i

QDJ(V i) := reactive power demanded by
load at bus i {or -generated Q)

and M, D,, Dy are constant diagonal matrices describing system
parameters, and T; and T, are constant matrices describing
network topology.

As mentioned above, differential equations with algebraic
constraints may not produce well defined trajectories from all
initial conditions. In particular, they may produce trajectories that
exist over some time interval [0, 't\], but become ili-defined for
t > 1. A wrivial example of this occurs in a two dimensional (non
power systern) example of dx/dt = x+y; O=x2+y2-1. Initiating this
system at (x=0, y=1), it is easily verified that the trajectories
evolve on the circle defined by the algebraic constraint, until the
point (x=1, y=0) is reached. At this impasse point, x can no
longer increase while still remaining on the circle, and the
trajectory can not be continued. In a nmumerical integration that
alternates between updating dynamic variables and solving
algebraic constraints, this problem wonld show up as a new value
of x being generated for which no y solution exists. Reference {7]
verifies that this type of impasse behavior is easily constructed for
simple power system examples when the reactive power balance is
modelled as an algebraic constraint, and the load has some non-
zero constant Q component (though it need not be purely a
constant Q load).

The impasse point problem disappears if 2!l loads are modelled
as purely constant impedances, since in this case it is always
possible to explicitly solve for the algebraic variables in terms of
dynamic variables. This problem is tacitly acknowledged in
numerical simulation approaches; for example, the review paper
[2] comments that for load models containing constant power
terms, solving the algebraic constraints may become numerically
ill conditioned (a sign of the onset of impasse point behavior)
when voltages dip. In [2] it is suggested that the simulation
instentaneously "switch” o a constant impedance model. While
such an approach may be physically motivated by the phenomena
of stalling motors, it is clear that a more precise description of
such tansitions would be needed for reasonable voliage stability
analysis. Moreover, it is clear that analytically studying the
behavior of large systems of differential equations with algebraic




constraints can be even more challenging than numerically solving
for specific trajectories.

To eliminate the problem of algebraic constraints while
maintaining consistent behavior in the vicinity of the operating
point, the algebraic constraints may be singularly perturbed to
produce a differential equation for the algebraic variables. In the
case of the bus voltage magnitudes and reactive power balance
equations, this approach produces equations of the form:

V=Lv! {oqW)-geW}. (16)

From an engineering standpoint, (16) may be interpreted as
follows. The demand term is taken as the “independent input,”
and the voltages respond to this input to maintain reactive power
balance. The right hand side of (16) is the difference between
reactive power delivered by the network and reactive power
absorbed by the load (or vis versa for the generator case). When
the load instantaneously demands more reactive power than is
being delivered, (16) predicts that the bus voltage drops until
power balance is re-established. When excess reactive power is
delivered by the network, bus voitage magnitude will increase,
The rate of this change varies with €; for £ sufficiently small, it is
essentially instantaneous and behavior is nearly identical to the
original static model. Clearly, the equilibria of (16) are identical to
the solutions of (14). To obtain consistent behavior between a
model based on (14) and that of a model based on (16}, standard
results in singular perturbations (described in [7]) require that the
linearization of (16} be stable in a neighborhood about the solution
of interest for (14) (i.c., the solution of the full powerflow).
Satisfaction of this condition depends in part on the exact form of
the voitage dependence of the load. This analysis to confirm
stability for a particular load model is left to the reader; here we
will simply state without proof that experience with a wide range
of load models shows the linearization of (16) about reasonable
(per unit voltage magnitade above 0.7) operating points is
typically stable. However, behavior of (16) differs from the
model with algebraic constraints if one examines stability in the
vicinity of "low voltage' power flow solutions. The algebraic
constraint combined with standard small disturbance stability
models would predict these equilibria to be stable; the differential
model (16) predicts such points to be unstable. Unfortunately,
because such low voltage solutions are usually not operable for
other reasons, it is difficult to confirm which prediction best
matches observed physical behavior. The last point concerning
this model relates to the choice of . Clearly, this time constant
should be small (probably less than 0.01 second) to match
observed voltage behavior in power systems; fortunately, the
energy function does not depend on the choice of €.

For differential equations to define generator terminal voltage
under the reactive generation limit model described above, the
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form of (16) is kept, with Q(V) reinterpreted as the reactive power
supplied by the generator. For this interpretation of {16), £ should
be chosen as the time constant associated with the response of the
generators reactive output with respect to terminal voltage
regulation errors. Again, becanse £ does not enter the energy
function explicitly, the exact choice of this parameter is not critical

With the singular perturbation assumptions above, the
modified state model is composed purely of differential equations,
and takes the form

o =-M"T]1e, V) (17a)
a=T,o + T,D]'T,fc, V) (17b)
V=D, g, V) (17¢)

with the new parameter matrix Dy simply being a constant
diagonal matrix composed of the g; terms.

For a network with zero transfer conductances, and for f( o, V)
defined with active loads having no voltage dependent component,
the composite vector function [(Ma)T, (o, V), gT(o, V)17 is
exact. Hence the value of a path integral of this function from
(0, uf, V0) 1 (w, o, V) will depend only on the endpoints.
Therefore one may define

(0,aY) T T
o0 = foun)”, e g Gm][an”ag" an]
0,a°v" (18)

which under the stated assumption on the network and active
power loads may be re-expressed as

n hi}

1 T 1

1a™ae - 13"y BV, V, cos(o, -
i=0 k=0

130 B,V Vocos(od-ad)

i=0 k=0

Qp, 10
M

au -[P°] (-

+
il g
"o t—— s
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In the case where the network is not lossless, and/or the active
load does have a voltage dependent component, the integral given
in (18) is not path independent. In this case, a simple linear
correction term added to 9(x0, x) makes the function satisfy the
criteria formal criteria for a Lyapunov function in the vicinity of
the stable equilibrium, as described in [32]. The discussion to
follow will assume the exact case for illustrative purposes, To
illustrate the close connection between the energy function and the
dynamic model, we define



v (20}

With these definitions, the power system dynamics of (17) may be
rewritten

= AV, 00 %) 1)

By construction, A is nonsingular and negative semi-definite. In
particular, A is the sum of two matrices: a diagonal matrix of non-
positive terms, and a skew symmetric matrix. Roughly speaking,
the right hand side of (21) can be thonght of as a sum of a gradient
like: term {(diagonal matrix times V) and a Hamiltonian like term
{skew symmetric matrix times V8). Given that A is nonsingular,
equilibria of (21) occur only at points where Vy9(x0, x)=0.
Furthermore, if the Hessian of 9 abont an equilibrium is positive
definite, using LaSalle's theorem with 9 as a candidate Lyapunov
function it may be shown that that equilibrium must be
asymptotically stable,

The relation between the gradient of energy and the equilibria
of the dynamic equations provides a first link between energy
analysis and steady state criteria. Suppose that a slow time scale
variation in load parameters is considered, of the general form
suggested in (4), but with the load variations appearing as additive
P-Q terms, Then (17) is modified to become

o =-M"T}f(c, V) (222)
a=To + T, D, T, (e, V) + P()) (22b)
V=D, g V) + Q@O (22)

The equation for the quasi-static evolution of the equilibrium,
£(1), can then be written as:

0= A{voud, £w) + BLO } (23)
where
e & O &
B:=l¢ I o}:L@=|PO]
6 ¢ I Q)

Again noting that the matrix A is nonsingular, the quasi-static
evolution of the equilibrium is entirely determined by

0 = Vo0, £0) + BL(Y) 2%
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Moreover, when partitioned into three blocks consistent with (®,
o, V), the second and third blocks of V& are simply the power
balance equations. Hence one has the unsurprising result that the
only parts of the equilibrium that evolve with changing load are the
bus phase angles and voltage magnitudes, as predicted by the
power flow,

The close association of the power flow Jacobian to the
linearized dynamics can also be easily illustrated in this model.
The linearization of the dynamics about an equilibrinm ?&(t) is
determined by the Hessian of 9, and is given by

k—A—aE—ﬁ{ﬁ(t) )
e 25)

Bat from the construction of the energy function 19, it follows (for
the idealized exact case) that

2 M ¢
2860, ﬁct»=[ } :
ox

LI 1¢0))) (26)

Recalling that M is & diagonal matrix of generator inertia
constants, the Hessian of the energy is positive definite if and only
if the Jacobian of the power flow is positive definite. Moreover,
from (25) and (26) it is ¢lear that a singular power flow Jacobian
must produce a zero eigenvalue of the linearized dynamics. One
concludes that the linearization is stable if and only if the power
flow Jacobian is positive definite, and is on the boundary of small
disturbance stability when the power flow Jacobian becomes
singular, Hence, a quasi-static bifurcation analysis to determine
when the equilibrium %(t) looses small disturbance stability is
reduced to testing when J G((t)) looses strict positive definiteness
and becomes singular.

Specializing the rejation (7) to this model also confirms that
the quasi-static solution for the operating point becomes infinitely
sensitive 10 changes in P-Q load levels as J (9{({)} approaches
singularity. Hence, for the model examined here, tests for infinite
sensitivity of voltages to loads predict the same critical loading
value as a bifurcation analysis to detect when the operating point
looses small disturbance stability. The energy/optimal control
based security measure also goes to zero as the operating point
approaches the condition of singular JGR(Y)).

The above discussion confirms that the three basic methods all
predict the same critical loading level for the quasi-static load
variation, lElow(l)' However, when the nominal load has not yet
reached & level where small disturbance stability is lost, the
manner by which different methods measure the proximity 1o
collapse can very widely. As noled earlier, some methods use the
smailest singular value of the power flow Jacobian. If applied to
models that allow discontinnous switching of generators from PV




to P(} representations, the Jacobian will display a change of
dimension when the switching occurs, and the smallest singular
value will then be discontinuous with respect to changes in load,
as was illustrated for an IEEE 30 bus test system example in [42].
While the continuous model for reactive saturation suggested in
Figure 1 would eliminate the discontinuity, eigenvalues and
singular values remain highly nonlinear functions of the elements
ofJ (9((1:)). so this proximity measure would still be expected to
display very nonlinear behavior. Sensitivity based measure that
attempt to track the magnitude of certain dV/dQ terms as J((t)
evolves will also tend to display very nonlinear behavior, and may
vary widely from bus to bes. The plots of such measures
provided in [42] are very informative in this regard. As an
alternative, approaches that use the norm margin of load variation
until collapse, of the form IIL(E)—L (0}, will tend 1o be smoother,
more nearly linear function of t. However, these measures may be
very sensitive to the assumed functional dependenceof Lon t, In
physical terms, this is the assumed pattern of load increase. It is
clear that a pattern of load increage that puts greater load on buses
with weak reactive support will push the system to collapse more
rapidly, and lead to a smaller margin. This is a desirable
characteristic for the proximity measure, provided the predicted
pattern of load increase is sufficiently accurate. In an operating
environment where the load projections may have significant
margins of error, and operators wish to determine the risk of
voltage problems on a time horizon of several hours, this could
prove problematic. The obvious alternative is to look for a worst
case pattern of load increase (perhaps with some constraints to
keep the studied load patterns realistic), and judge proximity to
collapse by the minimuem, worst case distance. However, from a
computational standpoint, this reduces again to the potentially
intractable problem of testing for singularity in a multiparameter
family of Jacobian matrices.

The energy/optimal control approach offers a more
computationally tractable "worst case” proximity measure, but it is
able to do so because of a different assumption on the nature of the
load variation. The quasi-static measures seek to identify the
worst case variation in Ii'!ow(t) such that the solution to (4) yields

an operating point on the boundary of small disturbance stability,

or equivalently, with infinite sensitivity of state to further load )

variations, The energy measure assumes that the current operating
point defines a fixed equilibrium for the dynamic model, and the
load variations of interest are on a fast time scale that excites the
dynamics and moves the state temporarily away from equilibrium.
In this formulation, the "worst case” fast ime scale load variation
AL(t) is in fact the solution to the optimal control problem that
drives the system state out of the equilibrium point's region of
attraction. As described in Section V, the energy based proximity
measure is then an integral of the norm squared of this AL(f) load
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variation with respect to time. It is important to stress that once
the operating point and load level under study are set, a0 asswned
patern of quasi-static load evolution (Iéiow(t) ) is necessary for the

energy caleulation. This is perhaps the most critical distinction
between the guasi-static measures and the energy based measure,
and again stresses the need for careful understanding of the
assumed time scales when comparing various voltage collapse
proximity measures.

VI. Conclusions

This paper has compared the a range of voliage collapse
analysis techniques that include both quasi-static bifurcation and
sensitivity measures, and nonlinear dynamic measures. For a
reasonable power system model incorporating many of the
characteristics relevant to voltage collapse, and an assumption of
slow timne scale, quasi-static evolution of loads, it is shown that all
such measures predict the same ultimate loading limit. However,
if the load variations of interest include both a slow moving
"average” term, and a faster time scale zero mean "disturbance”
term, it is argued that a measure of proximity to collapse offered
by nonlinear analyses will contain additional information. It is
hoped that the close connections between various analysis
techniques can be exploited, so that the various security measures
can be used in complementary fashion in actual applications,
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