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Abstract

One of the mechanisms by which dynamic voltage instability
can originate is through the occurrence of a contingency
which causes the system to lose its equilibrium point. In this
context the static power flow equations would become
unsolvable. If comective control action is not taken quickly
enough following the contingency, the system state will vary
as dictated by system dynamics with the usual consequence of
voltage collapse. This paper presents a method to determine
these corrective control actions, with particular attention
given to determining the allowable time frame for corrective
control. To this end, a structure-preserving energy function
is used to define a potential energy well in voltage space for
the post-control system, with the stable equilibrium point
corresponding to the bottom of the well, while unstable
equilibriura  points correspond to saddle points on the
boundary of the well. Then a sufficient condition for the
system to retain stability following the contingency is that the
corrective control action be completed before the system state
has gained sufficient energy to escape the well. The paper
addresses the practical considerations of applying this
method to a realistically sized system which contain a large
number of potential controls. The method is demonstrated
on both small systems and the IEEE 118 bus test system.

I. Infroduction

Optimal transmission system operation requires adequate
control strategies for the prevention of voltage instability.
The lack of such strategies can result in either a widespread
blackout due to voltage collapse, or more commonly, unduly
constrained system economic operation to avoid an
imprecisely defined threat of voltage instability. Voltage
instability generally arises from two types of system events:
gradual parameter variation (such as due to load/generation
variation), and contingencies. In the first case the system
state is assumed to move from a point of relative security to
one of increased vulnerability to voltage instability through a
quasi-static variation (time scale of tens of minutes to hours).
The system then ultimately experiences voltage collapse as a
result of either a saddle node bifurcation in which the
system’s operating equilibrivm disappears [1], or as the
result of a Hopf bifurcation in which a pair of eigenvalues of
the system Jacobian cross the imaginary axis with nonzero
imaginary part [2].

In the second case, a previously stable system loses voltage
stability due to the occurrence of a large disturbance, such as
a line outage contingency. Then, in the absence of effective
control intervention, the system would eventually experience
voltage collapse. For such a case there are three mechanisms
by which the system could experience collapse. First, the
system has an equilibrium point but it is unstable. Second,
following the contingency the system does not have an
equilibrium point. Mathematically this comresponds to lack
of a real solution to the power flow equations. Third, a stable
equilibrium exists, but following the contingency the system
state is not within the region of attraction (ROA) of this
equilibrum. This paper will be primarily concemed with
developing control strategies for dealing with the second and,
to some extent, the third possibilities.

The paper is organized as follows. First, the static
measure from [3] for quantifying the unsolvability of such
power flow cases, along with the method from [4] for
developing statically optimal control responses to restore
such a case to solvability are reviewed. Then, the full
dynamic consequences of unsolvability are considered. The
method is demonstrated on both small systems and the IEEE
118 bus system.

1L

As is known to most planning and operations engineers,
there are often contingent {or sometimes basecase) situations
for which the Newton-Raphson (N-R) power flow does not
converge. Since convergence is not guaranteed, this situation
could be due to either a poor initial voltage guess, or because
the case does not have a real solution. Examples of the
former can be reduced through various methods to prevent
power flow divergence. The concern in this paper is with the
jater. This section reviews a Euclidean measure to quantify
the unsolvability of such cases, and a method to compute the
statically optimal control responses to restore the case to
solvability [3], [4]. ‘

Consider the two bus system shown in Figure 1, where bus
1 is the slack bus and bus 2 is a Joad bus. The buses are
connected through the two transmission lines as shown with
the indicated per unit reactances (100 MVA Dbasc). The
system power flow equations can then be wiitten as
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S = f(x) (1)
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Figure 1: Two Bus System

where S is a vector of the constant real and reactive power
load minus generation at all buses except the slack
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and G + jB is the network bus admittance matrix.

Depending upon the values of P; and Q,, the power flow
equations (1) can have either two, one, or no real solutions
[5]- The region in load parameter space with two solutions is
defined as the solvable region, while the region with no
solution is defined as the unsolvable region; the two regions
are separated by a hypersurface T where the equations have a
single solution and upon which the Jacobian of (4) is
singular.

The boundary Z is dependent, of course, upon the system
topology. For example, Figure 2 shows this boundary in load
parameter space for the two bus basecase with a constant
power load S of 500 MW and 100 Mvar (dashed line), and
for a contingent case with line B removed (solid line}. Note
that the contingency has caused the operating point to change
from being within the solvable region to the unsolvable
region. The problem then is to first quantify the
ensolvability of the case, and then to determine the optimal
method to return to solvability.

The unsolvability of the case can be quantified using the
Euclidean distance in load parameter space from the point §
(in the unsolvable region) to the closest point on the
boundary £. This closest boundary point is determined by
first defining a cost function of one half the square of the
power flow mismatch equations:

Fx) == [10) - SIT [£9)- S ©

Note that F{x) is greater than or equal to zero for all x, and
is equal to zero only at the power flow solutions.
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Figure 2 : Po/Q; Parameter Space Relationships

Since the case is unsolvable, there is no x such that F(x) =
0. Rather, let x™ be defined as the value of x corresponding
to the minimum of the cost function F(x); thus x® can be
thought of as the "best possible” solution to the power flow
equations. Define 8™ = f(x™) to be the point in paramecter
space corresponding to xm. In [3] it is shown that S™ is the
closest point on Z to 8. The Euclidean distance between
these points, given by:

8= |sm-s| = /[s™-S]T[s" - 8] Q)

is then used to measure the unsolvability of 8. A power flow
based algorithm to determine Xx® and hence 8™ is presented
in [3]. As an example, for the two bus case the closest
boundary point is determined to be 451.4/46.2 MW/Mvar
with § = 0.725 per unit (see Figure 2); at this point x™ =
[0.500 -0.451}".

The direction in parameter space to the closest boundary
point is then just -[S - 8], which is parallel to the normal
vector of £ at S™. At S™ the Jacobian of f(xm), J(x™), has
(generically) a single zero cigenvalue. In [6], [7] it is shown
that the left eigenvector associated with the zero eigenvalue
of J(xm), wm, is parallel to the normal vector to  at §™.

Since S is an element of the normal ray emanating from
8™, the "optimal® direction (at least in a Euclidean sense) to
move back to T is in the opposite direction to the normal,
that is [S - S™]. However this direction is seldom practical
since it commeonly involves changes in power injections at a
large percentage of system buses, and in its determination
neither cost not the availability of such controls has been
considered. Rather, to calculate the sensitivity of 8 to
practical controls, let u be defined as the vector of such
controls. Then, using a result from [7], the sensitivities of 8
with respect to u are given by
-wim [£(em) - S]y

'Bl.l = (8)
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where [f(xm) - S], is the Jacobian of the power flow
equations with respect to the system controls u, and wm is the
normalized left eigenvector associated with the zero
eigenvalue of J(xm). The sign ambiguity of the eigenvector
wm (outward or inward from X) is resolved by choosing it to
always be directed outward (i.e., sign of wm is chosen so that
(S-8M) » wm >0).

The values of 5, then provide a linear estimate of the effect
a particular control has upon 5. Neglecting nonlinearitics,
the necessary change in a single control u; to just return the
case to solvability is given by -8/8y;. For the case of power
injection contrals (i.e., elements of S), for which [f(x™} - S]y;
(the column of the Jacobian corresponding to u;) is constant,
the accuracy of the linearization depends only upon the
distance of § from = and the curvature of X in the vicinity of
§M  The error is the difference between Z and its tangent
plane approximation at S™.  For other controls the
linearization accuracy also depends upon how well [£(x™) -
8] is approximated by the Jacobian linearization.

As an example, Table 1 compares the estimated and actual
changes needed for different controls to return the two bus
case to solvability. Which control(s) to use depends upon
their relative cost and ‘availability, with the switching in of
shunt capacitance being undoubtedly preferable to shedding
load. The last line in the table represents the more realistic
load shed scenario in which both real and reactive power are
simultaneously shed to maintain the same power factor (in
this case pf = 0.98). Of course one would usvally want to
move the control by more than the actual value given in the
table to provide a margin of security. The effects of these
load controls in load parameter space are shown in Figure 3.
There is of course nothing in the method which would
preclude  using  multiple  controls simultancously.
Additonally, application of the method to larger systems is
straightforward, and becausc of the sparsity of [f(x®) - 8]y,
the sensitivities can be computed with minimal computation.
More details and an example using the IEEE 118 bus system
are contained in [4].
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Figure 3 : Load Changes to Return Case to Solvability
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P = 5.0, Q = 1.0 (per unit), 5= 0.725
Control (per unit) | Estimate Actual % Error
AC; 2.15 - 1.80 16.3
AP, -1.082 -1.127 4.0
AQ, -0.976 -1.000 2.5
AS, (0.98 pf) -0.904 -0.922 2.0

Table 1 : Two Bus Control Changes to Return to Solvability

III. Dynamic Considerations of Unsolvability

The previous section examined the unsolvable power flow
problem using purely static analysis. However to fully
consider this problem, the dynamic consequences of the Joss
of the power flow solution must also be addressed. The
unsolvable power flow problem is, by definition, one for
which the system dynamic equations no longer have an
equilibrium point. Thus, if control action is not taken
sufficiently quickly following the contingency which pushed
the system into the unsolvable state, the system would
typically experience voliage instability and eventual collapse.

Thus a method is needed to determine how quickly the
controls must be applied to avoid voltage collapse. This
information could then be used to determine if the proposed
controls possess the necessary time rate of response. A
practical example of this situation is mentioned in [8], where,
in order to avoid voltage collapse, utilities need to decide
between installing fast and expensive SVC’s, or the more
inexpensive but slower switched capacitors. Note that this
problem is akin fo the transient stability problem in which
the question is to determine how quickly a control (typically
circuit breaker operation to clear a faulf) must be applied to
avoid angular instability. The main difference between these
two problems is the much shorter time frame for the transient
stability problem.

To study the dynamic consequences of unsolvability, the
static power flow equations need to be augmented to include
system dynamics. This will be done initially by just
considering load dynamics, with generators represented
using the standard power flow PV bus model (i.e., constant
real power and voltage magnitude) provided their reactive
power is within limits, and by the PQ bus model if the
reactive output attempts to exceed these limits. A number of
different dynamic load models have been proposed, with one
popular model motivated by the fact that many loads are
equipped with regulators (including down-stream LTC
transformers) which, when modeled in aggregate, vary the
load according to a generic first order model [8], [9], [10],

[11], [12):

Tpi A (9a)

PoiVi - Ap Vi AP(x)

AQi(%) (9b)

. b 8
Tqi Ay QoiVi - Mg Vj
with Tp;, Tq; > 0. The first term on the right-hand side
represents the static load demand at the bus, while the second
term is the dynamic load demand. A necessary condition for




an equilibdum point is that the static demand equal the
dynamic demand. During the course of a dynamic
simulation, the dynamic power balance equations must
always be satisfied:

MiVi- Ei(® = 0 (10a)

Ve~ f® = 0

where x is the vector of the voltage angles at all system buses
(except the slack) and the voltage magnitudes at all buses
except the PV generator buses (x is now expressed in polar
coordinates for better clarity of system dynamics). At buses
with no dynamic load (such as buses with no load, PV
generator buses, or purely static load buses) the values of Ap;
and Aqgi are constant, and the steady state load demand is
identical to the dynamic load demand:

PoV; =

(10b)

i Vi (11a)

Aqgi V?

At all other buses A varies according to (9) in an attempt to
reach an equilibrium point.

b
QOiVi

(11b)

To illustrate this problem, again consider the two bus case,
but with line B’s impedance changed to j0.1. Using the load
model from (9}, let Pop = 5.0, Qoz = 1.0, a=0, b=0, a=2, =2,
and Ty, = Tgz = S seconds. From Table 1 it is seen that
following the outage of line B the case would be unsolvable,
with § = 0.725. At some point after the line outage assume a
220 Mvar shunt capacitor is switched in at the load bus. The
Table 1 results show that from a purely static point of view
this should be sufficient restore solvability. Since the static
load demand has no voltage dependence (i.e., a and b are
zero), the desired equilibrium point xs is the power flow
solution after the capacitor has been inserted; the load bus
voltage of this solution is 0.9622-31.3°. The actual dynamic
response of the load bus voltage magnitude is shown in
Figure 4 for different capacitor switching times. As was
shown in [8] and in this figure, it is clear that the time of

0.9 |
08|
0.7 f

0.8 f

0.5 || ~=¥=Capacitor switched at t = 20
[ |~—&—Capacitor switched att = 33
—— Capacitor switched att = 40
0.4 L———== —

o 20 40 60 80

Time in seconds

Load bus voltage magnitude {per unit)

» S — L

100 120

Figure 4 : Load Bus Voltage for Different Switching Times

contro] application is of critical importance to whether the
system eventually reaches the equilibrium x°.

The traditional method of solving this type of problem is to
perform a series of computationaily expensive time domain
simulations. This is necessary because while each simulation
can determine whether a case is stable or not, it does little to
quantify the degree of stability. In contrast, energy function
methods provide a direct means to quantify system stability.
The use of energy function methods for the related problem
of transient stability is well documented [13], [14], while
their use for quasi-static voltage stability is more recent [15],
[16]. Since the present problem combines aspects of both,
this suggests the use of a unified energy framework {17].

Using the structure-preserving energy function from [15],
B(x), define a "potential energy well" in voltage space for the
system after controls have been applied (i.e., the post-control
system). The SEP (high voltage power flow solution) x*
corresponds to the bottom of the well, while a subset of the
UEPs (low voltage power flow solutions) correspond to
saddle points on the boundary of the well. Then, provided
the energy derivative along trajectories of the system, B(x), is
less than or equal to zero within a bounded region €2 about
x5, a sufficient condition for the system to retain stability
following the contingency is that the control action be
completed before the system has gained sufficient energy to
escape the well, with the minimum value equal to the energy
of a low voltage solution on the boundary of the well, defined
as 9. The region Q_ is defined as the set of all x about x®
for which O(x) = 0. For 9(x) to formally define a Lyapunov
function some restrictions would need to be placed on system
models, including not allowing voltage dependence in Py(V)
and restricting tbe method to networks with no transfer
conductance terms. In the realistic systems considered here,
these restrictions are relaxed, and the term "energy function”
is used rather than Lyapunov function.

Before applying energy methods to the problem, it is
necessary to develop conditions for the load model from (9)
such that 9(x) < 0 for x € Q, This is done by first
developing the relationship between x and A. By dividing
both sides of (10a) by V§* and (10b) by VP, & can be written
as an explicit function of x: ‘

A = g(x) (12)
from which it is straightforward to show that

A= Ik (13)

x = WA (19)

where J(x) is the Jacobian of g(x). Also recall the definition
of the energy derivative

9@ = VO «k (15)

and that for 6(x) from [15] (with a lossless system) for the
post-control system

V()= [AP(®) AQ(X)] (16}
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where AQ,(x) = AQi(x) / Vi. Then using (14) and (9) we get

Vﬂ

- 0 AP(x)
X = 1| % 17
’ ¥ o Y1 a8 a0

q

Finally, defining the diagonal matrix as A, 13)(x) can then be
rewritten as

AP(x)

U N
[APG) AT T AT 1s)

X)

8(x) =

A sufficient condition for B(x) = 0 is that J(x)'lA be
negative definite. Whether this condition is met depends
both vpon J(x) and A. For the case where all the time
constants Ty and Ty; are identical (i.e, A=al with a equal
to the time constant), this condition is met if all of the
eigenvalues of 0.5 (J(x) + J(x)7) are negative. Otherwise the
condition depends upon the relative values of T; and Tg;; it
is strongly dependent upon the ratio of these two values at a
particular bus i. In actuality the size of the region about x°
for which O(x) s O is typically larger than that for which
J(0'A is negative definite. This is due to constraints on
allowable values of [AP(x) AQ(x)] imposed by (9) and (10).
The size of the region for which I(x) is negative definite
depends upon the load parameters o; and B; with, in general,
the region enlarging for higher values. Numerical testing
indicates that for realistic load models the condition that 3(x)
= 0 is usually met along system trajectories.

The maximum time to apply control following a
contingency is then determined by calculating the energy for
the contingent system trajectory assuming no control action
(analogous to the tramsient stability fault-on trajectory).
Since this system has no equilibdum point, the system will
eventually gain sufficient energy to exit the region of
attraction about x°. The time at which O(x) increases to 9 is
then the critical time -- control must be applied before this
time to guarantee stability. For example Figure 5 shows the
contours of the post-control energy well for the two bus case,
with the SEP at 0.962 £-31.3° and the UEP at 0.679£-47.4%;

the energy associated with the low voltage solution saddle
node is 9 = 0.0593. Superimposed on the well is the
contingent system trajectory assuming no contro] action. To
retain slability, the capacitor must be switched in before the
trajectory exits the region of attraction of SEP. For this case,
in which the trajectory passes almost through the UEP, the
critical switching time is when the energy is equal to that of
the UEP. Figure 6 plots the value of this energy as a function
of time. From the figure it is directly seen that the trajectory
passes through this point at about 34 seconds. The result
demonstrating the switching of the capacitor at this critical
time is shown by the second curve in Figure 4.
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Figure 6 : Contingent System Energy with No Control
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Figure 5 : Two Bus System Energy Well

Figure 7 : Two Bus System Trajectories

The point at which the trajectory exits the region of
attraction of the SEP is dependent of course on Ty and Tg;.
Figure 7 shows the two bus trajectories first for a case in
which the reactive power responses much faster than the real
power (Jower trajectory in the figure), and then for the
opposite case (upper trajectory). Note that the trajectories no
longer exit through the UEP. Similar to the transient
stability problem, there are two choices for the critical energy
value: the energy associated with the controlling UEP [18],
or the potential energy boundary surface method (PEBS)
which determines the maximum potential energy along the
uncontrolled system trajectory [19). For the first trajectory
the UEP method estimates a maximum control time of 85
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seconds, while the PEBS methods gives 127 seconds. The
actual time is 115 seconds. For the second trajectory the
UEP method estimates a maximum control time of 13.1
seconds, while the PEBS method gives 16.1 seconds. The
actual for this case is 20.4 seconds. This discrepancy arises
because the wide ratios in the time constants result in a
situation where 9(x) actually becomes positive slightly after
the trajectory has passed through the PEBS,

To demonstrate the method on a system with more than a
single UEP, consider the three bus system shown in Figure 8.
For a contingency resulting in the loss of one of the lines
from bus 2 to bus 3 the case becomes unsolvable with § =
0.09. One method to restore solvability is to switch in both
of the 100 Mvar capacitor banks at buses 1 and 2. The post-
control system then has the SEP solution shown in Table 2,
along with three UEP solutions. UEPs A and B are type-one
solutions, while UEP C is type-two. How quickly the
capacitors must be switched depends upon the load model.
Assume that the loads are modeled using the dynamic model
from (9) with a=0, b=0, a=2, =2 at both buses.
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Figure 8: Three Bus System

Voltage | SEP | UEPA | UEPB | UEPC
A 0952 | 0560 | 0747 | 0574
8, 318 | -610° | 445 | -59.7°
Vv, 0987 | 0687 | 0538 | 0646
8, 3200 | 5190 | 653° | 554°

900 - 0207 | 0274 | 0297

Table 2: Three Bus System Post-Control Solutions

If Tp; = Tpa = 2 seconds, with no capacitor switching the
system will experience voltage collapse along trajectory 1
shown in Figure 9. Note that this trajectory does not pass
particularly close to either of the UEPs. Figure 10 shows the
energy as a function of time. The maximum time to switch
the capacitors can be estimated either from when the
trajectory passes through the PEBS or when the trajectory
energy is equal to that of the controlling UEP. The trajectory
passes through the PEBS at about 90.5 seconds with an
energy value of 0.289, which is very close to the actual
maximum of 90.1 seconds (found using a series of time
domain simulations). The centrolling UEP could be

Figure 9: Three Bus Contingent System Trajectories
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Figure 10: Trajectory 1 Energy

determined using a method similar to that of [20] of
integrating the trajectory starting from the PEBS crossing
point. It is also usually possible to determine this UEP by
just initializing the power flow with the PEBS voltage values.
Both methods indicate that UEP B is the controlling UEP.
The trajectory energy value is equal to the UEP value at 77.5
seconds. Figure 11 shows the voltage recovery for a
switching time slightly less than the maximum (90.0
seconds).

The dependence of the direction of voltage collapse on the
load parameters is demonstrated in Figure 9 with trajectories
2 and 3. To get trajectory 2, T,y was decreased to 1 second,
while T,; was increased to 5 seconds. The faster load
recovery at bus 1 now causes that portion of the system to be
more heavily loaded. Consequently, the trajectory crosses the
PEBS in the vicinity of UEP A, which is now the controlling
UEP. The PEBS energy of 0.297 is almost identical to that
of the controlling UEP (0.296). This value is reached at
about 127 seconds, which is also the actual maximum control
time for this case. Conversely, for the trajectory 3 case Tp;
was now increased to 5 second, while Tp; was decreased to 1
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second. The faster load recovery at bus 2 now caused the
trajectory to exit close to UEP B with an energy of 0.279 at
91 seconds while the controlling UEP energy level was
reached at 89.8 seconds. This was also quite close to the
actual of 90.8 seconds.

Furthermore, since it is straightforward to calculate the
sensitivity of the controlling UEP to various control actions
[21], the energy approach could also tell which controls
would be most effective in increasing this time.
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Figure 11: Three Bus Voltage Recovery

As a final example the method is demonstrated on the 118
bus case for the line 5-8 contingency. At a load of double the
basecase value this contingency is unsolvable with § =
0.0648. One method (of last resort) to restore solvability is to
shed load. Assume that 30 MW and 7.7 Mvar are to be shed
at bus 3 (maintaining the original power factor of 0.969).
The method from Section II indicates that, from a static point
of view, this is sufficient to restore solvability. Again the
dynamic question is to determine the maximum allowable
time after the contingency to do this control. With the
contingency occurring at t = 10 seconds, Figure 12 plots the
energy of the system using the dynamic load models from (9)
at a number of buses with c; = B; = 2 and time constants Tp;
& Tg; of 5 seconds. As was the case for the smaller systems,
a sufficient condition for stability is that the load be shed
before the system energy climbs to the value equal to that of
the controlling UEP. For this case the UEP energy of 0.0357
is reached at 133 seconds, while the trajectory crosses the
PEBS at 143 seconds with an energy of 0.0370. These values
are quite close to the actual maximum of about 134.5
seconds. The controlling UEP was quickly determined by
initializing a power flow solution using the PEBS crossing
point values. The power flow had an initial maximum
mismatch of just 0.02 per unit, and converged in 2 iterations.

The practical result of calculating the maximum allowable
time frame for control application after a contingency is the
determination of what controls can be used to mitigate the
contingency. If the time frame is just a few seconds then
cither fast-acting automatic controls must be installed, or
(more likely) system operation is constrained to avoid
operating in that region. With a longer time frame, coupled
with a plan detailing which controls to change should the
contingency occur, effective intervention by the power system
operator becomes a possibility. The advantage of the energy
approach is that fairly good estimates of the maximum time
for control application can be determined directly.

Figure 12 : 118 Bus Contingency with No Control

IV. Conclusion

This paper addresses the practical problem of power flow
cases which have no real solution. It has been shown that it
is straightforward to statically determine a set of controls
which could restore a case to solvability. However system
dynamics must also be considered to ascertain whether the
controls can be applied quickly enough following the
contingency to avoid voltage collapse. The paper has shown
that energy methods offer the potential for directly
determining the maximum allowable time frame for control
application. This application of energy methods is similar to
their use for the transient stability problem, with the critical
encrgy value determined using the controlling UEP concept.
Future research includes further investigation of a composite
encrgy function suitable for both voltage and transient
stability assessment, along with more detailed dynamic
models.
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