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Introduction

Competitive electricity markets in which the participants in-
dividually submit their preferred schedules, and subsequently
the IGO centrally sets the trading solution based on those
schedules, have been put in practice. This market model is
usually known as PoolCo and the PIM Interconnection is a
specific example of its implementation [1]. The trading so-
lution set by the IGO aims usually at short-term efficiency,
which may be measured by the social welfare or surplus [2],
and incorporates rules to enforce feasibility. We define as
feasible a trading solution that respects both the operational
and physical constraints of the electric system. An QPF (Op-
timal Power Flow) tool, which maximizes the participants’
welfare - based on their bids and offers - subject to system
constraints, seeks both short-term efficiency and feasibility.

Participants in a market are expected to behave rationally,
where rationality may be translated into the attempt to max-
imize individual profit. In the PoolCo model, players may do
that by untruthfully revealing their cost/benefit in their of-
fer/bid curves [3].

Given specific market rules, it is of great interest to be able to
model the strategic behavior (or gaming) of the market par-
ticipants and to identify solutions of those games, which we
modeled as static non-cooperative continuous-kernel games
under complete information [4],{5!. Non-cooperative means
that each individual player is pursuing his or her own in-
terests, and continuous-kernel stands for the fact that each
player has at his or her disposal a continuum of choices and
also that the utility functions are continnous. The game iz
static due to the fact that the process of decision-making is
simultaneous for all players involved. It is implicit that the
game is not repeated. Complete information means that ev-
ery player knows his or her own costs/benefits — and those
of all the other players in the market — and that constitutes
common knowledge. This is believed to be true for producers
operating in electricity markets, for which a good estimate
of costs may be obtained from the daily spot price of fuels
(natural gas or other) and from the technological capacity
and corregponding heat rates of the power plants [6). Con-
sumers, on the other hand, have a weak responsiveness to
price changes due, in great extent, to technological restric-
tions. This fact may be translated into limited ability to
gatne the market. We will, therefore, focus primarily on the
supply-side gaming,.

The solutions prescribed by the proposed game are the so-

called Nash equilibria, either in pure or in mixed strate-
gies. They constitute the strategically stable or self-enforcing
points in the bidding space from which the players have no
incentive to deviate. Stability may be alternatively defined
with respect to the readjustment scheme employed by the
players when searching for the equilibrium points.

The paper addresses the problem of how to find multiple
equilibria in PoolCo model where the line constrains have
been considered. It makes use of a modified version of a
previously proposed readjustment scheme {or algorithm) for
a single equilibrium problem and shows a systematical ap-
proach for solving the multiple equilibria problem[7][8].

Modeling strategic behavior in electricity markets is of special
importance if opportunities for market power abuse based
on gaming by participants are to be identified. The present
situation in the Californian market enforces the feeling that
carefully designed market rules cannot be overrated. Further-
more, the goals of a competitive market may be improved by
acknowledging the players’ opportunities to game, by cor-
rectly identifying them, and consequently either preventing
those opportunities or controlling their consequences. There-
fore, this work is not specially aimed at providing players
with toocls to pursue their objectives, but, in contrary, to clar-
ify in which context gaming opportunities may take place.

The paper has four more sections and one appendix, In
section two we revisit the algorithm that identifies a Nagh
equilibrium in a PoolCo model. Section three illustrates the
possibility of existence of multiple of those equilibria and de-
scribes the proposed procedure to systematically find them.
The method is exemplified in section four through a simple
test system. In section five we draw some conclusions about
the proposed method. In the appendix we give the data and
the results for the example presented in section four.

The Individual Welfare Maximization

The original Individual Welfare Maximization (TWM) algo-
rithm assumes that the IGO runs a centralized economic dis-
patch subject to the system constraints (OPF) [7][8]. This
OPF, which uses bids and offers freely submitted by the
participants, sets the nodal prices (Lagrangian multipliers)
that are used to charge / pay corxsumption/ generation on ev-
ery node of the grid [9]. The participants game by untruth-
fully revealing their costs/benefits on their offer/bid curves
or schedules and they may do so by continuously changing
ane or more parameters of the marginal cost/benefit curves
that they submit to the IGO. Which parameter or parame-
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ters they change is not relevant. What is important is the
state or operational equilibrium that is attained by chang-
ing those parameters. We assume that the players have rea-
sonable estimates about all participant’s true costs/benefits
and we also assume that these estimates constitute common
knowledge among players; moreover, that the players are ra-
tional also constitutes common knowledge. The schedules
submitted by the players are valid for one time period of the
market, typically one hour. Therefore, they need to optimize
their bid/offer for a specific time period, which is viewed as
a snapshot in time.

Each player in the market may find the equilibrium points
through his or her own choice of the parameters of the re-
ported schedule and by mimicking the other players’ choices.
This is possible from the rationality and the complete in-
formation assumptions. Hence, the equilibria found by each
player alone will match those found by the other players.
This constitutes the main strength of the Nash equilibrium
concept.

The individual welfare maximization problem is cast as a
nested optimization problem. The inner problem is the OPF,
and the outer problem is the optimization of the individuals’
utility functions subject to the OPF solutions. We denote by
f»() the utility function of player p. The vectors of genera-
tion and load controlled by player p are denoted by P, and
D, respectively. Each player p controls a vector of reported
variables that is represented by <. The nodal prices ap-
plied to the generation and load controlled by player p are a
byproduct of the OPF and appear as A,. The cost and ben-
efit functions of each generator and load are denoted by C;
and B;, respectively. G represents the set of generators and
D represents the set of loads. The cost and benefit function
are assumed to be well deseribed by quadratic functions.

CiP)=ap;.P:+bp;Pi+ep;, i€G (1)

B{D) = CLD!,'.D? +bpiDitepy, 1€D (2)

In this context, o may, for example, replace the true
cost/benefit variable @ in the reported marginal curve. The
equality and inequality constraints are represented by g()
and h(), respectively, where P is the vector of all generated
power, D is the vector of all loads, and x represents the vec-
tor of state variables. The individual welfare maximization
problem may be thus described as follows.

max fp(Pp, Dy, Ap)
“p

st {Pp,Dp, Ay) are determined by
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The utility function of each player p is given by the difference
between the sum of benefits minus charges and the sum of
payments minus costs that results from the set of his or her
controlled generators and loads. We write it below, where
the fixed components have been dropped.

Fo(®p, Dy, Ap) = 3 [Bi{Diyaps,bps) — A Dy +

€D,
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The quadratic parameters are represented in the diagonal
elements of matrices Ap , and Ap,. The linear parameters
appear in Bp p and Bp,. G, and D, are the set of generators
and the set of loads, respectively, controlled by player p.

In order to determine the best set of bid/offer parameters,
the players — whose set is denoted by P — readjust e, on
each iteration k by using Newton's method, until a stationary
point is reached.

ot = off) = (Vo ) [ Ve ol YPEP ()

If a stationary point is found, then it is stable with respect
to the selected readjustment scheme and it constitutes, by
definition, a Nash equilibrium.

The readjustment schemes presented so far in the literature
propose that it be done for each unit {generator or load) of
each player at a time [7},[3]. Although this made sense in a
discontinuous kernel — for it avoids cycling when near the so-
lution — it is not necessary for the IWM readjustment scheme.
So, the change proposed to the original IWM is to let all the
players change all their bids’/offers’ reported parameters on
a single iteration. So, instead of optimizing the parameters
for each unit of each player at a time before proceeding to
the next one, a complete Newton-step is performed on each
individual utility function — in order to optimize all his or
her reported parameters — for each readjustment step. This
change accelerates the algorithm because the readjustment
evolves using all the dimensions of the bidding space, instead
of using only one variable controlled by a single player. The
Gradient and the Hessian of the individual utility functions
may be obtained from the Newton-based OPF solutions, and
the proposed change implies using the cross derivatives of
each individual utility function with respect to the control
variables of the corresponding player.

Another part of the original algorithm that is neglected in
this work is the step-size selection — originally used to pre-
vent crossing regions of the bidding space where the utility
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functions are not differentiable due to the system constraints
[7]. As we will see in the next section, this problem is cir-
cumvented by enforcing some of the system constraints and
relaxing others, ensuring, in this way, differentiable utility
functions in every specified region of the bidding space.

Searching for Multiple Equilibria

In the search for multiple equilibria we consider the prob-
lem in which only the generators game. We do this because
this is the problem faced by present-day electricity markets.
One should, however, consider the following characteristic of
equilibria: if both generators and loads game, and two of
them happen to be in the same bus, this may give origin to
a continuum of equilibria. This is so because the load and
the generator would work as substitutes with respect to each
other.

The proposed search method

If the cost functions of the generators are convex and the
constraints are linear, the problem is well behaved inside
each region defined by the linear constraints. This implies
the use of D.C. power flow equations, which, of course, im-
plies some simplification. For example, the California 180
uses a D.C. model to allocate transmission during market
re-dispatch {10]. The differentiability of the utility functions
breaks down only when linear constraints — for example, line
constraints — are hit. Therefore, if we are able to start the
TWM algorithm with an initial solution inside each region de-
fined by the constraints, then the convex functions and the
linear constraints guarantee convergence if a solution exists in
the region [3]. In cage the algorithm crosses the boundaries
of the region, it means that there is no equilibrium in the
specified region. However, initializing the algorithm ingide a
specific region is not easy. Instead, we run the TWM consid-
ering the linear constraints defining each region as equality
constraints and we relax the remaining inequalities so they
are never hit.

In Figs. 6-9 we show the contour of the utility function —
resulting from the OPF solution — of player 1 in the 4-bus
test system used in example of section 4, as he or she changes
the parameters of the two generators under his or her con-
trol. In Figs. 6 and 7 the limit on line 1-3 is modeled as an
inequality constraint, whereas in Figs. 8 and 9 this limit is
changed to an equality constraint. Fig. 6 of the appendix
shows two equilibrium points: one when the line constraint
is binding (or active) and another one when this constraint
is not binding (or inactive). The observation of the figures
indicates that, if one equilibrium exists for the original prob-
lem with the constraint active, then it will also exist for the
modified problem wherein the line is forced to operate ex-
actly at that limit (Figs. 6 and 7) and the remaining line
limits are relaxed. Yet, that equilibrium will only appear
in the modified problem if it does not exist in the original
problem (Figs. 8 and 9). This gives rise to the necessity of
checking the solutions of the modified problem back in the
original problem.

In summary, we proceed in the following way: the TWM is.
run for each region of the bidding space by forcing the cor-
respondent lines to operate at their lmits and relaxing the
remaining ones; if an equilibrium is found, then the IWM is
run for the original problem, using the possible equilibrium
as starting point, for the for the purpose of checking its ex-
istence. The biggest drawback resulting from this procedure
is, of course, the necessity of checking all the possible feagi-
ble regions given by the feasible combinations of constraints.
As a result of that, the problem is of combinatorial nature
and the number of possibilities may render a non-manageable
probiem. In the next subsections we give some insights on
how to overcome this difficulty.

Feasible cases

A feasible case is one that is supported by a power flow so-
lution. Since we assume D.C. flows on lines, the feasible
solutions may be easily checked by running a LP (linear pro-
gramming} problem.

The algorithin to find multiple equilibria must, therefore,
be run only for the feasible cases (or regions) in the bid-
ding space. The unfeasible regions are never reached and
we need not to consider them. So, prior to initiating the
search, we build a database of feasible cases corresponding
to the feasible combinations of binding constraints. In case
we take into consideration only the line constraints, we have
a database comprising the cases associated with feasible re-
gions of the bidding space, and this database may be repre-
sented as C; = {¢.,¢q, ..., ¢m }, where ¢; = {0,1,—1}, and m
is the number of lines in the system. The triplet ¢; allows us
to represent each line to be either uncongested, or congested
in each of the two possible directions.

Problem size reduction

Due to the non-polynomial nature of the problem — (3™,
if only the line constraints are taken into account — it is im-
possible to manage any real life examples in the absence of
any form of reducing its size. Fortunately, the LP program,
together with careful propagation and pruning, allows the
elimination of a substantially number of cases. In the tree of
Fig. 1 it is shown the sequence in which the cases must be
generated in order to allow pruning. Every new child case is
generated from the parent case by including more congested
lines that are represented further to the right, until the last
represented line is reached. This simple procedure avoids rep-
etition of cases. Then, for each new level of the tree, all cases
are tested, but only the feasible ones are propagated to the
next level. The unfeasible ones are pruned (eliminated and
not propagated} and the cases that are feasible for a con-
figuration further down in the tree are eliminated but still
propagated. For real system where the players have the abil-
ity to congest a reduced number of lines, this method may
prove very efficient.

Secondly, in real systems, the operators know from their ex-
perience which ores are the lines that, under certain operat-
ing conditions, are likely to be congested. In the California
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Fig. 1. Generation of cases

130, for example, this knowledge is used by the system op-
erators to define the inter-zonal interfaces {10]. The market
participants may now use this same knowledge in order to
avoid running an incommensurable number of cases. In addi-
tion, once the history of congested lines has been established
no other cases beyond the ones inferred from that history
need to be investigated.

Mized-strotegy equilibria

The method, as it was proposed, is suitable for finding equi-
libria in pure strategies. For mixed strategies, the algorithm
needs to be modified and that is object of current research.
First, the algorithm must be allowed the crossing of regions
in the strategy space. It is the discontinuities caused by the
system constraints that might cause the reaction curves of
players not to cross and, therefore, give origin to the equilib-
ria in mixed strategies [7]. Secondly, this would require the
algorithm to be initialized precisely in the specified regions,
without relaxing any of the remaining constraints.

The equilibria in mixed strategies may be identified because
they make the proposed algorithm cycle back and forth across
a given constraint (or constraints). The solution for a mixed-
strategy equilibrium is the one that maxdmizes the expected
profit of all players, for strategies with assigned probabilities,
in the spanned regions. The expected profit, e,, for player
p may be written as in (6), where f7() denotes the profit of
player p in region r and & denotes the set of regions spanned
by the equilibrium. The probability with which a given strat-
egy a, is played is denoted by y;. The maximum number of
players is denoted by P.

= | filed, o, ek [Ty

res pEP (6)
Syi=1, VpeP
res
Example

We ran the proposed method on the 4-bus test system whose
configuration can be seen in Figs. 2-5 of the appendix. Table
1 eontains the line reactances. The producers and consumers

participating in this small market are assumed to be well
characterized by their cost and benefit curves as in (1} and
(2), whose parameters’ values are showed in Table I and
Table ITT. Table IV describes the ownership of the generators.

Because the test system has 4 lines, we could expect a maxi-
mum of 81 feasible regions. In fact, there exists a power flow
solution for only 27 of those regions and, hence, a database
of only those cases is built prior to initiating the search.

In this experiment only the generators game and, if both of
the players run the search algorithm, then they will find the
equilibrium solutions of Table V. Upon confirmation, only
equilibriums 1-4 survive, and those are illustrated in Figs.
2-5 of the appendix. There we can observe which lines are
congested for each equilibrium operating point. Equilibrium
5 does not survive confirmation and, if we allowed the confir-
mation algorithm to proceed, it would end up being attracted
to a cycle that is nothing else than a mixed-gtrategy equilib-
riumn that spans regions {0,1,0,0} and {0,0,1,0}.

In Table VI we show the profits attained by the players in
the different pure-strategy equilibria that were found using
the search algorithm. It is easy to verify that the first three
equilibria. provide lower revenues for both the players than
the revenues obtained in the fourth equilibrium. In ather
words, the first three equilibria are strictly dominated by
the fourth equilibrium and could be thus eliminated. This
is not always the case ~ and might not be the case were we
in possession of the solutions in mixed strategies — and the
players may be left in the end with more than one equilibrium
point that is not eliminated by any dominating strategy to
choose from.

In Figs. 6-9 of the appendix we illustrate how the utility
function of player 1 may change when the limit on line 1-3 is
varied. It is possible to observe that one of the equilibrium
points vanishes when the lirmit on the line is sufficiently high
{Fig. 8). This fact is not apparent in the modified problem
wherein the limit is enforced as an equality (Fig. 9). In
the making of Figs. 6-9, the price schedule parameters of
generators 2 and 4 controlled by player 2 were fixed to éq =
0.089 and G4 = 0.181, respectively.

Conclusions

The work presented in this paper addresses the problem of
multiple strategic equilibria that constitute the natural oper-
ating solutions in the bidding space for players participating
in centralized electricity markets. Moreover, the paper shows
that under gpecified assumptions it is possible to employ a
systematic procedure to find those multiple equilibria.

When the players are unaware of the set of lines that can
be congested by gaming, they must be able to tell the fea-
sible cases from the non-feasible ones. We showed a sim-
ple method, based on careful propagation and pruning, that
helps building a meaningful database. :
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In the absence of any straightforward rule to eliminate equi-
librium solutions, as elimination of dominated strategies, the
players are left with a multitude of answers for the gaming
problem. Future research on the paper’s topic will have nec-
essarily to address this problem.
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Appendix

TABLE I
TEST SYSTEM LINE PARAMETERS.

Line Reactance | Maximum flow
{p.) {pu)
1-2 0.790 1.87
1-3 0.114 1.81
2-4 0.122 2.11
3-4 1.030 1.93

Base MVA = 100, Bagse XV = 145

TABLE II
PRICE SCHEDULES' PARAMETERS

Parameters
Generator ar Bp
($/MW2h) | (3/MWh)
1 0.05 15.0
2 0.05 6.0
3 0.310 1.0
4 0.10 1.0
TABLE III

VALUE SCHEDULES' PARAMETERS

oad Paa‘ametersb
ap Jol
(8/MW?32h) | (3/MWh)
1 -0.10 80.0
2 -0.10 80.0
3 -0.50 440.0
4 -1.50 440.0
TABLE 1V

GENERATOR'S OWNERSHIP

Generator |

Player I 713 I
1 i Y |
2 V1 V]
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TABLE V
REPORTED PARAMETERS FOR EACH EQUILIBRIUM POINT

Parameter
Eaq. @1 &2 [} a4
($/MW?2h) | (8/MW?3h) | {$/MW?h) | ($/MWZEh)
1 0.0931 0.0883 0.1552 0.1662
2 0.0787 0.0922 0.1975 0.1783
3 0.0965 0.0868 0.1638 0,1748
4 0.0826 0.0906 0.2063 0,1879 177 ¥ 377 AW
5 0.0000 48.0000 0.2696 0.2697
Fig. 4. Equilibrium 3
255 MW 106 MW
TABLE VI

PLAYERS' PROFITS FOR EACR EQUILIBRIUM POINT ($/A)

e Player
Equilibrium T 3
1

16,514 | 20,226
2 17,303 | 21,040
3 16,608 | 20,604
! 17,593 | 21,579

175 MW 373 MW

Fig. 5. Eaquilibrium 4

250 MW 92 bW 314 MW 92 MW

195 MW 378 MY 182 MW 378 MW

Fig. 2. Equilibrum 1

A3 MW 110 MW

178 MW 369 MW 177 MY 376 MW

0.05 0.08 0085 (1) mﬁ 1 DDS |i ons 0:12
. R &y ($AMW2h)
Fig. 3. Equilibrizm 2

Fig. 7. Player 1 utility function; Pi3 = 195MW
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Fig. 8. Player 1 utility function; Py3 < 210MW

afFs 0.0 0085 0.0 0035 a1 0.105 e L3027 a1z

a; (HMW2h)

Fig. 9. Player 1 utility function; P13 = 210 MW




